文档视界 最新最全的文档下载
当前位置:文档视界 › magnetic cloud

magnetic cloud

A statistical study of interplanetary shocks and pressure pulses

internal to magnetic clouds

Michael R.Collier,1Ronald P.Lepping,1and Daniel B.Berdichevsky1,2

Received10March2006;revised7October2006;accepted8November2006;published2June2007.

[1]We have examined Wind field and plasma data over the time period from November

of1994through August of2003to find cases of interplanetary shocks and pressure pulses

internal to magnetic clouds for which we could determine accurate shock normal

directions.We have found eight cases in82clouds,so these shocks and pressure pulses

occurred in approximately10%of the Wind magnetic clouds.Of the eight cases,six were

forward shocks and two were pressure pulses.The internal shocks and pressure pulses

tend to occur in the latter half of the clouds,i.e.,timewise,about two-thirds of the way

through.In every case the magnetic field change is highly compressive at the shock

showing little or no change(<10°)in angle during or after the magnitude jump.These

shocks and pressure pulses internal to magnetic clouds appear to be associated with outline

asymmetric halo coronal mass ejections of greater than average speed which may imply

an interaction between an earlier,slower halo CME and a later,faster,off-center CME

driving a strong shock,but other interpretations are possible and they are discussed.

Citation:Collier,M.R.,R.P.Lepping,and D.B.Berdichevsky(2007),A statistical study of interplanetary shocks and pressure pulses internal to magnetic clouds,J.Geophys.Res.,112,A06102,doi:10.1029/2006JA011714.

1.Introduction

[2]Magnetic clouds are a subset of interplanetary(IP) ejecta which have three characteristics:(1)strong magnetic fields,(2)a smooth rotation of the magnetic field direction through a large angle,and(3)a low proton temperature and proton plasma b p[Burlaga,1995].They are associated with solar flares and disappearing filaments and,although there are interplanetary coronal mass ejections(ICMEs)without these signatures[Bothmer and Rust,1997],magnetic clouds are also associated with ICMEs[e.g.,Berdichevsky et al., 2002].Typically,magnetic clouds at1AU have a radial cross section whose diameter is about0.25AU and last for about a day,although the determination of the beginning and end times of magnetic clouds can be subjective [Burlaga,1995;Lepping and Berdichevsky,2000;Lepping et al.,2006].

[3]A small fraction of magnetic clouds exhibits large and sudden magnetic field magnitude increases inside,which we will show are frequently internal interplanetary(IP)shocks or pressure pulses(PPs).The phenomenon of internal shocks and pressure pulses,although recognized for many years[e.g.,Lepping et al.,1997],has not been studied systematically until now.

[4]An example of a well-studied magnetic cloud which exhibits an internal shock passed the Wind spacecraft on 18–19October1995[Lepping et al.,1997;Collier et al., 2001].One of the unusual features of this particular internal shock is its normal orientation,which was roughly perpen-dicular to the magnetic field(q nB=105°)and close to antiparallel to the cloud axis(q axis–norm=150°).

[5]As will be discussed later,many of the features of the 18October1995internal shock are general features statis-tically present for almost all of the cases where interplan-etary shocks and pressure pulses were observed internal to magnetic clouds in the Wind data set.These features include:(1)appearing in the latter half of the cloud,

(2)having associated density and velocity increases,and

(3)showing little or no change in the magnetic field direction across the transition.In spite of these similarities, there is also some indication that the shock internal to the 18–19October1995magnetic cloud is not typical[Lepping et al.,1997].

[6]This paper reports a study of all shocks and pressure pulses internal to magnetic clouds observed by the Wind spacecraft from November of1994through August of2003. Although this paper addresses magnetic clouds only at 1AU,this phenomenon is not restricted to1AU or its vicinity.For example,the magnetometer on Ulysses appears to have observed a shock internal to a magnetic cloud at about5AU late on day228in1997[Forsyth et al.,1999].

[7]Although the term‘‘internal shock’’is used through-out the remainder of this manuscript,it should be noted that this really means‘‘internal shock or pressure pulse’’as two of our cases,to be discussed,have magnetosonic Mach numbers below unity(cases1and5).

2.Method

[8]All cases of magnetic clouds that appear in the Wind data set from launch in November of1994through August

JOURNAL OF GEOPHYSICAL RESEARCH,VOL.112,A06102,doi:10.1029/2006JA011714,2007

1NASA Goddard Space Flight Center,Greenbelt,Maryland,USA.

2Now at L-3Government Services,Inc.,Largo,Maryland,USA.

Copyright2007by the American Geophysical Union.

0148-0227/07/2006JA011714

of2003were considered candidate magnetic clouds for this study.An internal shock or pressure pulse is defined as an unbalanced(in a pressure sense),sharp(quicker than 12min),large(D B/B>0.23)change in the magnitude of the magnetic field within the boundaries of a magnetic cloud and which is well-fit by the Rankine-Hugoniot jump conditions,so an accurate structure normal can be deter-mined from the data.

[9]This search,which included82clouds,resulted in the eight cases listed in Table1.The first column shows the case number for the purpose of this paper while the second column shows the magnetic cloud number from the Wind/ MFI Web page(https://www.docsj.com/doc/ad8639080.html,/mfi/mag_cloud_ pub1.html)and links from there.This table also includes the cloud start and end times based on the magnetic cloud parameter fits of Lepping et al.[1990]from the Wind/MFI Web page along with the cloud duration in hours,the time of the internal shock,the fraction of the way through the cloud that the shock occurs(timewise)and finally the type of discontinuity,either a pressure pulse(PP)or a fast forward shock(FS).The related magnetic cloud fit param-eters are provided in Table1of Lepping et al.[2006]. Forward shock(FS)applies to the cases in which the upstream speed exceeds the Alfve′n speed and magnetosonic speed,and pressure pulse(PP)applies when the ratios are less than unity.

[10]The first two columns in Table2,again for conve-nience,list the case numbers from this study and the numbers from the Wind/MFI Web page.The next three columns are the components of the shock normal unit vector in GSE coordinate directions x,y,and z.The sixth column is the angle q Bn between the upstream magnetic field and the shock normal.The seventh column is the cloud axis angles in the ecliptic plane(longitude,f A)and out of the ecliptic plane(latitude,q A)so that the orientation of the cloud axis in GSE coordinates is given by the unit vector ^n cloud=cos q A cos f A^x+cos q A sin f A^y+sin q A^z.The next three columns are the magnetic cloud axis vector in GSE coordinates,and the last column is the angle between the magnetic cloud axis and the shock normal vector,with the related acute angle in parentheses.

[11]The Rankine-Hugoniot jump conditions were deter-mined using the method of Berdichevsky et al.[2000,2001]. The uncertainties in the angles between the magnetic field and the normal,q Bn,were evaluated using the root-mean-square deviation for a distribution of solutions.

3.Previous Work

[12]There has been relatively little work done on these shocks and pressure pulses internal to magnetic clouds and, indeed,they appear to have been largely unrecognized as a class of phenomena by the community.However,some cases have been addressed by a few investigators. [13]Chao et al.[1999]examined number2of our cases.The unusual normal orientation of the shock in the 18–19October1995magnetic cloud led them to suggest that this internal shock is related to an X-ray flare observed on the Sun at9°N,54°W on16October1995at1221UT. The propagation of the interplanetary disturbance associated with this flare would have produced the observed shock orientation from simple geometrical considerations. [14]Collier et al.[2001]also examined case2using a greater variety of Wind data.On the basis of the unusual shock orientation as well as an electron heat flux dropout that occurred on the same side of the cloud from whence the shock came and a cold5keV proton beam observed nearly coincident with the shock,they proposed that the internal shock was due to some of the magnetic cloud’s field lines reconnecting near the foot points of the magnetic cloud.

[15]Burlaga et al.[2003]discuss cases6and7.They interpret case6as being due to ejecta related to a halo CME

Table1.Magnetic Cloud and Shock Times

Case LN Magnetic Cloud Start Time Magnetic Cloud End Time Duration,hours Shock Time Frac Type 10295Mar04(063)10.895Mar05(064)03.817.095Mar04(063)20.00.54PP 20695Oct18(291)19.895Oct20(293)01.329.595Oct19(292)17.90.75FS 32597Nov07(311)15.897Nov08(312)04.312.597Nov07(311)17.80.16FS 43498Jun24(175)16.898Jun25(176)21.829.098Jun25(176)16.20.81FS 55100Oct03(277)17.100Oct04(278)14.121.000Oct04(278)06.60.64PP 66402Mar19(078)22.902Mar20(079)15.416.502Mar20(079)13.40.88FS 76502Mar24(083)03.802Mar25(084)22.843.002Mar25(084)01.20.50FS 87403Jun17(168)17.803Jun18(169)08.314.503Jun18(169)04.70.75FS

Table2.Magnetic Cloud and Shock Parameters

Case LN Shock Normal GSE J Bn,deg

MC Axis

J axis–norm,deg f A,deg,GSE J A,deg,GSE x,GSE y,GSE z,GSE

102à0.87à0.050.5082±7205à76à0.22à0.10à0.97107(73) 206à0.580.740.3775 ±1* 287à80.29à0.95à0.14156(24) 325à0.610.78à0.1863±324438à0.35à0.710.62117(63) 434à0.85à0.50à0.2081±615121à0.820.450.3667 551à0.920.350.1875±758330.440.710.5493(87) 664à0.700.310.6489±145200.660.660.3492(88) 765à0.700.140.7085±2288350.25à0.780.5783 874à0.73à0.680.0055±1264à52à0.06à0.61à0.7963

___________

observed on18March2002(day77).They interpret case7 as being associated with a CME observed on22March 2002(day81).As will be discussed later in this paper,these identifications are consistent with an association between fast shocks internal to magnetic clouds and outline asym-metric CMEs.

[16]Berdichevsky et al.[2005]discuss a magnetic cloud observed near Earth on20March2003which was preceded by about8hours by a shock.Although not one of the cases listed in Tables1and2,this case is notable because the authors argue that the upstream shock is not driven by the magnetic cloud.This conclusion was based on the fact that the velocity of the magnetic cloud’s leading edge was less than the shock propagation velocity,the orientations of the cloud boundaries and the shock normal were inconsistent with the cloud driving the shock,and the ram pressure at the front of the cloud was less than that in the shock sheath.The implication of the Berdichevsky et al.[2005]study is that, apparently,the shock had encountered and overtaken the magnetic cloud.It is possible that the shocks and pressure pulses studied here,which are internal to magnetic clouds, are cases like those in the Berdichevsky et al.[2005]study in which the shocks are caught in the process of traversing a magnetic cloud.If this should be the case,then the common behavior of these internal shocks and pressure pulses may suggest that some interesting processes occur in the traversal.

[17]These ideas address the origin of particular internal shocks and pressure pulses inside particular magnetic clouds which may not be representative of the origin of shocks and pressure pulses inside of magnetic clouds in a general sense.

4.Discussion

[18]Figure1shows the magnetic field and plasma parameters from the eight cases of shocks internal to magnetic clouds found in this study.The thin solid grey vertical line is the time of the shock ramp and the two thicker lines are the start and end times of the magnetic clouds.

[19]Figure2shows a series of higher-resolution images similar to those of Figure1but covering a2hour time period centered on the shock.In each of the eight cases in Figure2,the rows show the magnetic field magnitude, latitude,and longitude and the solar wind convection speed, density,and thermal speed from top to bottom.These profiles give‘‘plausibility’’support for the nature of these signatures as being shock-like,i.e.either bona fide shocks or pressure pulses,as claimed.In every case,the shock is most notable in the magnetic field magnitude,given at the top,while hardly appearing at all in the two magnetic field angles.Thus the shocks are compressive also in magnetic field.In every case,both the magnetic field magnitude and density increase across the discontinuity.

[20]For the18October1995magnetic cloud,the shock normal was quasi-perpendicular to the magnetic field and quasi-parallel to the cloud axis.To compare these character-istics with those of the other seven cases,Figure3shows a scatterplot of the angle between the shock normal and the upstream magnetic field,q Bn,versus the angle between the cloud axis and the shock normal,q axis–norm.Seven of the eight cases suggest a loose linear relationship,with q Bn correlating with q axis–norm.

[21]Interestingly,these seven cases also have angles between the cloud axis and the shock discontinuity normal greater than50degrees;i.e.,they are propagating largely perpendicular to the cloud axis,a property that would ostensibly support the idea that another structure has im-pacted the rear of the cloud causing the observed internal shock.The one notable exception to this behavior is the internal shock of the18October1995magnetic cloud which appears to be propagating primarily antiparallel to the magnetic cloud axis,as was pointed out by Lepping et al.[1997]and Collier et al.[2001].This behavior along with the other signatures reported by Collier et al.suggest that the18October1995internal shock may have a different origin than most shocks internal to magnetic clouds.

[22]The Figure4scatterplot indicates another very inter-esting characteristic of these internal shocks and pressure pulses,namely that they appear to occur preferentially in the latter half of the cloud,timewise.This is indicated by the clustering of the points above the central horizontal line in the plot.The choice of plotting the fraction of the cloud traversed in time prior to the passage of the shock or pressure pulse versus q Bn rather than some other parameter was arbitrary.

[23]Referring to Table1,most of the cases(6of8) considered here were fast interplanetary shocks rather than pressure pulses.

5.Conclusions

[24]The internal shocks and pressure pulses studied here occurred in eight of82magnetic clouds observed by Wind from November of1994through August of2003,i.e.,in about10%of the clouds.Considering that the magnetic field profile within magnetic clouds is almost always very steady and slowly rotating,to observe such sudden,large, and systematic changes in the field in10%of magnetic clouds may be surprising.However,even though10%may constitute a minority of magnetic clouds,it is frequently through an understanding of such unusual cases that we gain the greatest insight into the subject at hand. [25]Table3addresses the question whether or not there exists any obvious correspondence between the frequency of these shocks internal to magnetic clouds and the fre-quency of CMEs themselves.The first column of this table shows the calendar year1996(solar minimum)through 2002(late solar maximum).The second column shows the number of observed CMEs based on SOHO Large Angle and Spectrometric Coronagraph Experiment(LASCO)data from Yashiro et al.[2004].The third column shows the number of magnetic clouds observed by Wind at1AU and the fourth column shows the number of these clouds containing internal shocks.

[26]There are many caveats concerning the CME number listed in the second column mentioned by Yashiro et al.,not the least of which are that manual CME identification is subjective and that SOHO suffered many months of down-time in late1998.Nevertheless,low statistics notwithstand-ing,Table3does appear to suggest that the occurrence of magnetic clouds with internal shocks does not increase with

the number of CMEs observed at all solar latitudes,which might be expected if the internal shocks were due to CME interactions.However,it is also the case that when com-paring the results of this study with the CME rate,the speed of the CMEs also plays a role,as will be discussed later.[27]As discussed previously,in three of the eight cases (2,6,and 7)examined,potential external sources of

these

Figure 1.The cases of internal shocks and pressure pulses considered in this study.Each case is labeled with this study’s case number in the upper right corner.Each row in each case is the magnetic field magnitude,the bulk convection speed,and the thermal speed.

Figure2

internal shocks and pressure pulses have been identified [Collier et al.,2001;Burlaga et al.,2003].However,in one of these cases (2)a flare was identified which may have been associated with a CME driving a shock [Sheeley et al.,1986],but no evidence in the low corona for associated ejecta or shocks could be found [Collier et al.,2001].[28]One might expect that if diverse external sources are responsible for these internal shocks,then they would produce a wide range of characteristics.However,this does not seem to be the case.Remarkably,almost all,if not all,of the interplanetary shocks and pressure pulses internal to magnetic clouds have the following properties.

5.1.1* Occurrence Distribution

[29]The internal shocks and pressure pulses appear to occur preferentially in the latter half of the magnetic clouds,timewise.This is the case for seven of the eight cases studied here,as illustrated by Figure 4.This behavior seems odd and would ostensibly argue against an interpretation in which the shocks simply pass through the cloud,in which case the distribution might be expected to be more uniform,or at least not so clumped as observed.

[30]It is possible,of course,that this ‘‘nonuniform’’distribution is simply the result of poor statistics.However,it is also possible that these interplanetary shocks and pressure pulses occur preferentially in the latter half of the magnetic clouds because generally the Alfve ′n speed is lower in the trailing part of the cloud than in the leading

part.The asymmetry in the Alfve ′n speed is due to the asymmetry in j B j within most magnetic clouds caused mainly by the magnetic cloud’s interaction with the up-stream solar wind and partly is due to magnetic cloud expansion.That is,j B j is on average higher in front and lower in the rear of magnetic clouds.(Note that the shock Alve ′nic Mach number,M =v s /v A with v A =j B j /????????4p n p ,is larger in the rear of magnetic clouds because there j B j tends to be smaller and in some cases n is larger [see,e.g.,Lepping et al.,2003].)This property makes it easier to form shocks in the latter parts of most magnetic clouds.As Figure 1shows,however,clearly not all of our cases can be explained this way.For example,cases 2,3,and 7could not.Also note that many clouds at 1AU show a speed gradient from front to rear which may also contribute to making an internal shock encounter more likely in the rear.

5.2.1 Quasi-Perpendicular Character

[31]In all cases found in this study,the shocks are quasi-perpendicular in nature (i.e.,the upstream magnetic field is approximately perpendicular to the shock normal),and therefore the magnetic field magnitude,the solar wind velocity,and the density all rise across the shock or pressure pulse (a fast forward mode wave).

5.3.1 Magnetic Field Orientation

[32]In every one of the internal shocks and pressure pulses examined,the field magnitude increases across them

Figure 2.A 2hour period centered around the shock time for each of the eight cases shown in Figure 1.Each case is labeled with this study’s case number in the upper right corner.Each row in each case is the magnetic field magnitude,the latitude and longitude angles of the field,the solar wind convection speed,the solar wind density,and the solar wind thermal speed from top to

bottom.

Figure 3.Scatterplot showing the angle between the cloud axis and the shock normal q axis –norm versus the angle between the upstream magnetic field and the shock normal q Bn ,both in degrees,for all eight of the cases comprising this

study.Figure 4.Scatterplot of the angle between the magnetic field and the shock normal q Bn in degrees versus the fraction of the way through the cloud,timewise,that the shock occurs.

________

(as time increases),but the magnetic field direction remains almost unchanged through the transition.In one case(case6) it is very close to perpendicular,consistent with an angle between the magnetic field just upstream of the shock and shock-normal of90°,within a degree.

[33]However,the small angle between the shock normal and the cloud axis in the18October1995event(case2) appears to be unusual(see Figure3).In general for these events,the angle between the shock normal and cloud axis correlates well with the angle between the shock normal and the local magnetic field,with the angle between the shock normal and cloud axis typically being greater than45°.The 18October1995event,however,does not follow this trend. The correlation coefficient for the seven events shown in Figure3excluding the18October1995event is0.71.* [34]There are a number of possibilities that could explain the existence of these internal shocks:

[35] 1.The internal shocks arise by chance due to distant sources unrelated to the magnetic clouds[e.g.,Chao et al., 1999].In this case,the nonuniformity shown in Figure4, namely that the internal shocks appear to occur overwhelm-ingly in the latter half of the magnetic clouds,would be explained by poor statistics.

[36] 2.The internal shocks result from some solar wind structure impacting the rear of the magnetic cloud near the time of observations at1AU.One piece of evidence for such a process is the observation of a faster stream in the rear of the magnetic cloud than in the front,especially than in front of the upstream shock.Cases2,4,5,6,7,and8all appear to exhibit this gradient in speed at the rear of the magnetic cloud consistent with interpreting the shock as the result of an impinging structure on the magnetic clouds. However,most of these cases are marginal(e.g.,7).Other possibilities may be at work in cases1and3which show a lower speed at the rear than upstream of the shock. [37]Indeed,independent of whether or not the internal shocks result from some solar wind structure impacting the rear,the likelihood of encountering a shock in the rear of a cloud may be higher because many clouds at1AU show a speed gradient from front to rear,with higher speeds in the front.In this interpretation,the shocks will spend a longer time in regions of lower solar wind speed and hence will have a higher probability of being observed there.Note, however,from Figure1that the relative speed change across the cloud is generally not that large.

[38]Finally,it is worth mentioning SOHO observations associated with these events for which SOHO data are available.For all cases of fast shocks observed within magnetic clouds during the SOHO era(cases3,4,6,7, and8),we were able to determine associated halo CMEs in the SOHO LASCO CME catalogue(https://www.docsj.com/doc/ad8639080.html,/ CME_l ist/).These were identified as the closest(in time) halo CME which occurred before the start of the magnetic cloud.Table4summarizes the properties of these halo CMEs.The first column indicates the case number of the study along with the start time of the magnetic cloud from Table1in column2.Column3shows the date and time of the CME’s first appearance in the LASCO/C2field of view. Column4shows the linear speed of the CME observed by LASCO,and column5shows the type of halo CME: symmetric,brightness asymmetry,or outline asymmetry.

[39]Interestingly,all of these cases are‘‘outline asym-metric’’CMEs of greater than average speed.Outline asymmetric CMEs are characterized by a heliocentric dis-tance of the CME’s leading edge significantly different at different position angles around the disk.

[40]It has been suggested(N.Gopalswamy,private communication,2006)that these internal shocks and pres-sure pulses may result from the interaction between an earlier,slower halo CME and a later,faster off-center CME which drives a strong shock.In this interpretation, the outline asymmetric CMEs identified in Table4would not directly correspond to the Wind magnetic clouds in the second column of Table4[Gopalswamy et al.,2001]but rather would be responsible for the internal shocks. [41] 3.The internal shocks represent an intrinsic property of some magnetic clouds.In this case,perhaps some shocks are created later in the same region as the magnetic cloud originated and propagate with almost the same speed as the magnetic cloud’s leading edge.So,they are a‘‘part’’of the magnetic cloud,at least in some regions of the magnetic cloud.The shock forms close to the Sun either completely inside the cloud or partially inside and partially outside the https://www.docsj.com/doc/ad8639080.html,ter,at say1AU,the shock is still inside of the magnetic cloud because the speed of the nose of the magnetic cloud is close to the shock’s speed.

Table3.Relationship to CMEs

Year CME Number a Magnetic Clouds

Clouds With Internal Shocks

199620440

1997351171

1998697111

199995740

20001580141

20011465100

20021652102

a CME number from Yashiro et al.[2004].

Table4.Summary of SOHO Halo CME Observations Associated With Fast Shocks Internal to Magnetic Clouds

Case Magnetic Cloud

Start Time Halo CME Time a Speed,km/s Type

397Nov07(311)15.897Nov06(310)12.21556outline asym. 498Jun24(175)16.898Jun20(171)18.3964outline asym. 602Mar19(078)22.902Mar18(077)02.9989outline asym. 702Mar24(083)03.802Mar22(081)11.31750outline asym. 803Jun17(168)17.803Jun15(166)23.92053outline asym.

a From https://www.docsj.com/doc/ad8639080.html,/CME_l ist/.

_________

[42]These types of nondriven interplanetary shocks were formerly known as‘‘blast shocks’’[e.g.,Gopalswamy et al., 1998]but have since fallen out of favor and may not be physically possible,at least not all the way out to1AU (blast shocks may form close to the Sun but then damp quickly).However,some may have been observed at this greater distance.Berdichevsky et al.[2000]examined all interplanetary shocks observed by the Wind spacecraft between November1994and May1997to determine a number of different parameters including whether there was a driver associated with the shock.They found eight cases lacking apparent drivers(out of42total cases or19%). Berdichevsky et al.point out that blast shockwaves gener-ated at the Sun(which would have no association with any driver at all)cannot be easily distinguished from a shock having a driver with a single spacecraft,because the driver might be missed by a single spacecraft.Furthermore,they found that the distribution of weak shocks without apparent drivers shows orientations pointing well out of the ecliptic plane which might suggest unobserved drivers rather than the local observation of a blast wave with an origin at the Sun.

[43] 4.The one internal shock with a normal approxi-mately aligned with the cloud axis(the18October1995 case)may have a shock source at or near the footpoint which is ducted along the magnetic cloud axis[Collier et al.,2001].

[44]Whatever their origin,these interplanetary shocks and pressure pulses have appeared inside about10%of magnetic clouds observed over9years by Wind.They exhibit many surprising features but appear to constitute a class of physical phenomena that have largely gone unno-ticed by the community.

[45]Acknowledgments.Special thanks to Keith Ogilvie and Alan Lazarus for the use of Wind/SWE data in this study and to Adam Szabo and Tom Narock for data handling.Also,thanks to Nat‘‘Gopal’’Gopalswamy for helpful conversations.DBB acknowledges the support of NASA LWS NASW-02035.

[46]Zuyin Pu thanks V olker Bothmer and another reviewer for their assistance in evaluating this paper.

References

Berdichevsky,D.B.,A.Szabo,R.P.Lepping,A.F.Vinas,and F.Mariani (2000),Interplanetary fast shocks and associated drivers observed through the23rd solar minimum by Wind over its first2.5years, J.Geophys.Res.,105,27,289–27,314.

Berdichevsky,D.B.,A.Szabo,R.P.Lepping,A.F.Vinas,and F.Mariani (2001),Correction to‘‘Interplanetary fast shocks and associated drivers observed through the23rd solar minimum by Wind over its first 2.5years,’’J.Geophys.Res.,106,25,133.Berdichevsky,D.B.,C.J.Farrugia,B.J.Thompson,R.P.Lepping, D.Reames,M.L.Kaiser,J.T.Steinberg,S.P.Plunkett,and D.Michels (2002),Halo-coronal mass ejections near the23rd solar minimum:Lift-off at the Sun,interplanetary tracking,and in-situ observation at1AU,Ann. Geophys.,20,891–916.

Berdichevsky,D.B.,I.G.Richardson,R.P.Lepping,and S.F.Martin (2005),On the origin and configuration of the20March2003interpla-netary shock and magnetic cloud at1AU,J.Geophys.Res.,110, A09105,doi:10.1029/2004JA010662.

Bothmer,V.,and D.M.Rust(1997),The field configuration of magnetic clouds and the solar cycle,in Coronal Mass Ejections,Geophys.Monogr. Ser.,vol.99,edited by N.Crooker,J.Joselyn,and J.Feynman,pp.139–146,AGU,Washington,D.C.

Burlaga,L.F.(1995),Interplanetary Magnetohydrodynamics,pp.89–98, Oxford Univ.Press,New York.

Burlaga,L.,D.Berdichevsky,N.Gopalswamy,R.Lepping,and T.Zurbuchen (2003),Merged interaction regions at1AU,J.Geophys.Res.,108(A12), 1425,doi:10.1029/2003JA010088.

Chao,J.K.,C.B.Wang,D.J.Wu,and R.P.Lepping(1999),Interaction of the Oct.14–19,1995magnetic cloud with a solar interplanetary distur-bance,Eos Trans.AGU,80(17),Spring Meet.Suppl.,S269. Collier,M.R.,et al.(2001),Reconnection remnants in the magnetic cloud of October18–19,1995:A shock,monochromatic wave,heat flux drop-out,and energetic ion beam,J.Geophys.Res.,106,15,985–16,000. Forsyth,R.J.,A.Balogh,E.J.Smith,and J.T.Gosling(1999),Magnetic field structure of transients at Ulysses:Their relationship to coronal structure and CMEs,paper presented at IUGG99,Int.Union of Geod. and Geophys.,Birmingham,U.K.

Gopalswamy,N.,M.L.Kaiser,R.P.Lepping,S.W.Kahler,K.Ogilvie, D.Berdichevsky,T.Kondo,T.Isobe,and M.Akioka(1998),Origin of coronal and interplanetary shocks:A new look with WIND spacecraft data,J.Geophys.Res.,103,307–316.

Gopalswamy,N.,https://www.docsj.com/doc/ad8639080.html,ra,S.Yashiro,M.L.Kaiser,and R.A.Howard (2001),Predicting the1AU arrival times of coronal mass ejections, J.Geophys.Res.,106,29,207–29,217.

Lepping,R.P.,and D.Berdichevsky(2000),Interplanetary magnetic clouds:Sources,properties,modeling,and geomagnetic relationship, Recent Res.Dev.Geophys.Res.,3,77–96.

Lepping,R.P.,J.A.Jones,and L.F.Burlaga(1990),Magnetic field structure of interplanetary magnetic clouds at1AU,J.Geophys.Res., 95,11,957–11,965.

Lepping,R.P.,et al.(1997),The Wind magnetic cloud and events of October18–20,1995:Interplanetary properties and as triggers for geo-magnetic activity,J.Geophys.Res.,102,14,049–14,063. Lepping,R.P.,D.Berdichevsky,A.Szabo,C.Arqueros,and https://www.docsj.com/doc/ad8639080.html,zarus (2003),Profile of an average magnetic cloud at1AU for the quiet solar phase:WIND observations,Sol.Phys.,212,425–444.

Lepping,R.P.,D.B.Berdichevsky,C.-C.Wu,A.Szabo,T.Narock, F.Mariani,https://www.docsj.com/doc/ad8639080.html,zarus,and A.J.Quivers(2006),A summary of WIND magnetic clouds for the years1995–2003:Model-fitted parameters,asso-ciated errors,and classifications,Ann.Geophys.,24,215–245. Sheeley,N.R.,Jr.,C.R.Devore,and L.R.Shampine(1986),Simulations of the gross solar magnetic field during sunspot cycle21,Sol.Phys.,106, 251–268.

Yashiro,S.,N.Gopalswamy,G.Michalek,O.C.St.Cyr,S.P.Plunkett, N.B.Rich,and R.A.Howard(2004),A catalog of white light coronal mass ejections observed by the SOHO spacecraft,J.Geophys.Res.,109, A07105,doi:10.1029/2003JA010282.

àààààààààààààààààààààà

D.B.Berdichevsky,M.R.Collier,and R.P.Lepping,NASA Goddard Space Flight Center,Code673,Building2,Room246,Greenbelt,MD 20771,USA.(michael.r.collier@https://www.docsj.com/doc/ad8639080.html,)

记账凭证和收款凭证

记账凭证和收款凭证 收款凭证是指用来反映货币资金增加业务而编制的凭证。是用来记录货币资金收款业务的凭证,它是由出纳人员根据审核无误的原始凭证收款后填制的。下面就为大家解开记账凭证和收款凭证,希望能帮到你。 记账凭证是登记账簿的依据,按其所反映的经济内容不同,一般分为收款凭证、付款凭证和转账凭证。 收款凭证。是指用于记录现金和银行存款收款业务的会计凭证。 收款凭证根据有关现金和银行存款收入业务的原始凭证填制,是登记现金日记账、银行存款日记账以及有关明细账和总账等账簿的依据,也是出纳人员收讫款项的依据。 记账凭证的填制方法1.除结账和更正错误,记账凭证必须附有原始凭证并注明所附原始凭证的张数。所附原始凭证张数的计算,一般以原始凭证的自然张数为准。与记账凭证中的经济业务记录有关的每一张证据,都应当作为原始凭证的附件。如果记账凭证中附有原始凭证汇总表,则应该把所附的原始凭证和原始凭证汇总表的张数一起计入附件的张数之内。但报销差旅费等的零散票券,可以粘贴在一张纸上,作为一张原始凭证。一张原始凭证如涉及到几张记账凭证的,可以将该原始凭证附在一张主要的记账凭证后面,在其他记账凭证上注明该主要记账凭证的编号或者附上该原始凭证的复印件。

2.一张原始凭证所列的支出需要由两个以上的单位共同负担时,应当由保存该原始凭证的单位开给其他应负担单位原始凭证分割单。原始凭证分割单必须具备原始凭证的基本内容,包括凭证的名称、填制凭证的日期、填制凭证单位的名称或填制人的姓名、经办人员的签名或盖章、接受凭证单位的名称、经济业务内容、数量、单价、金额和费用的分担情况等。 3.记账凭证编号的方法有多种,可以按现金收付、银行存款收付和转账业务三类分别编号,也可以按现金收入、现金支出、银行存款收入、银行存款支出和转账五类进行编号,或者将转账业务按照具体内容再分成几类编号。各单位应当根据本单位业务繁简程度、人员多寡和分工情况来选择便于记账、查账、内部稽核、简单严密的编号方法。无论采用哪一种编号方法,都应该按月顺序编号,即每月都从1号编起,顺序编至月末。一笔经济业务需要填制两张或者两张以上记账凭证的,可以采用分数编号法编号,如1号会计事项分录需要填制三张记账凭证,就可以编成1(1/3)、1(2/3)、1(3/3)号。 4.填制记账凭证时如果发生错误,应当重新填制。已经登记入账的记账凭证在当年内发现错误的,可以用红字注销法进行更正。在会计科目应用上没有错误,只是金额错误的情况下,也可以按正确数字同错误数字之间的差额,另编一张调整记账凭证。发现以前年度的记账凭证有错误时,应当用蓝字填制一张更正的记账凭证。 5.实行会计电算化的单位,其机制记账凭证应当符合对记账凭证的一般要求,并应认真审核,做到会计科目使用正确,数字准确无误。

记账凭证封面填写规范 记账凭证封面填写样本

记账凭证封面填写规范记账凭证封面填写样本 记账凭证输入设计至关重要 ,输入设计目标是保证输入的准确可靠性 ,控制输入的工作量和保证输入的方便性。那么记账凭证的封面要怎么填写呢?下面就为大家解开记账凭证封面填写内容,希望能帮到你。 1、记账凭证单号----封面内页第一张记账凭证号码 (如:内页第一张记账凭证号码21号---50号); 则填写:记账凭证单号----自第 21 号至第 50 号; 2、原始凭证,汇总凭证张数---(封面内页第一张记账凭证号码20号---“记账凭证右边---附原始凭证张数5”如:5张)---从20号的“5张”---至50号每一张的原始凭证张数合计填列如共计原始凭证张数300张; 操作:原始凭证,汇总凭证张数---共 300 张; 3、会计凭证总页数---全部页数320张---记账凭证20张,原始凭证,汇总凭证张数300张;

操作:会计凭证总页数---共 320 页。 1.除结账和更正错误,记账凭证必须附有原始凭证并注明所附 原始凭证的张数。所附原始凭证张数的计算,一般以原始凭证的自然张数为准。与记账凭证中的经济业务记录有关的每一张证据,都应当作为原始凭证的附件。如果记账凭证中附有原始凭证汇总表,则应该把所附的原始凭证和原始凭证汇总表的张数一起计入附件的张数之内。但报销差旅费等的零散票券,可以粘贴在一张纸上,作为一张原始凭证。一张原始凭证如涉及到几张记账凭证的,可以将该原始凭证附在一张主要的记账凭证后面,在其他记账凭证上注明该主要记账凭证的编号或者附上该原始凭证的复印件。 2.一张原始凭证所列的支出需要由两个以上的单位共同负担时,应当由保存该原始凭证的单位开给其他应负担单位原始凭证分割单。原始凭证分割单必须具备原始凭证的基本内容,包括凭证的名称、填制凭证的日期、填制凭证单位的名称或填制人的姓名、经办人员的签名或盖章、接受凭证单位的名称、经济业务内容、数量、单价、金额和费用的分担情况等。 3.记账凭证编号的方法有多种,可以按现金收付、银行存款收 付和转账业务三类分别编号,也可以按现金收入、现金支出、银行存款收入、银行存款支出和转账五类进行编号,或者将转账业务按照具

商品价格的计算方式及成本

接下来,外贸业务员必须透彻了解外贸价格的核算方式,严谨细致,实际上,在真实的外贸中,价格最重要。因此,如何报价,如何讨价还价,才是外贸制胜之关键。 外贸货物的价格,有独特的计价方式。如前所说,外贸交易绝大多数是通过远洋运输方式进行。由于中间环节多,费用也相应地杂乱繁多。除了货款以外,还有运杂费、海关申报(简称报关)的费用、商品检验费用、码头装卸杂费等,并且这此费用在与不同国家交易时还都不一样,再考虑到国际贸易中间商,很可能从A国采购,运到B国港口,再卖到C国,这就更为麻烦,很难用普通贸易的方式去计算价格了。 具体说来,你的产品从出厂到通过集装箱远洋运输交付到国外客户指定的外国海港码头或某个地点,将可能产生下列几种或全部费用: 1.产品的出厂价格。 2.申报进出口商品检验检疫局检验以及出具品质证明的费用,即商检费。 3.申报中国海关出口的费用,即出口报关费。 4.租用集装箱装货并运到中国海港码头的费用以及在中国码头产生的各项杂费。 以上为货物运至中国海港码头出口前的手续和费用。 5.用远洋货轮运至外国海港码头的运费,即海运费。 6.办理国际货物运输保险的保险费。 以上为货物运至外国码头的手续和费用。 7.集装箱在外国海港码头卸货及其他码头上收取的杂费。 8.申报外国海关进口的费用,即进口报关费,有时候还需要缴纳进口关税。 9.货物从外国海港码头运至客户指定地点的费用。 以上为货物交到客户手中前的手续和费用。 此外,因为货款的收取需要经过银行,银行也会收取一定的经办手续费。 分析上述费用构成,我们不难发现,可以将海港码头作为划分费用的基准点。这样做还有个好处,就是区分责任。比如,以中国码头为基准点的话,我们就承担到第4点,负责完好地将货物运到中国码头并商检报关,其他事情由客户自己负责,货物如果在远洋运输中有损坏,客户自己找海运公司和保险公司索赔。如果以外国码头为基准点,则我们承担到第6点,负责将货物完好送抵外国码头。绝大多数的企业就到此为止,只有少数是要求我们做第9点的,毕竟客户作为本地人熟悉当地情况,操作7~9点比我们要方便,费用也划算。但由于国际贸易的发展,外贸已经渗透到到世界各个角落,一些不熟悉外贸或出于某咱原因不便操作的外国买家,希望省点事直接在“自己家门口”收货,因而要求我们全

出口报价和成本核算

出口报价和成本核算 一、出口报价核算(一)报价数量核算 在国际物资运输中,经常使用的是20英尺和40英尺集装箱,20英尺集装箱的有效容积为25立方米,40英尺集装箱的有效容积为55立方米。出口商在做报价核算时,建议按照集装箱可容纳的最大包装数量来运算报价数量,以节约海运费。 依照产品的体积、包装单位、销售单位、规格描述来运算报价数量: 例1:商品03001(三色戴帽熊)的包装单位是CARTON(箱),销售单位是PC(只),规格描述是每箱装60只,每箱体积为0.164立方米,试分别运算该商品用20英尺、40英尺集装箱运输出口时的最大包装数量和报价数量。 解:每20英尺集装箱:包装数量=25÷0.164=152.439,取整152箱报价数量=152×60=9120只 每40英尺集装箱:包装数量=55÷0.164=335.365,取整335箱报价数量=335×60=20100只 例2:商品01006(蓝莓罐头)的包装单位是CARTON(箱),销售单位是CARTON(箱),每箱体积为0.0095立方米,试分别运算该商品用20英尺、40英尺集装箱运输出口时的最大包装数量和报价数量。 解:每20英尺集装箱:包装数量=25÷0.0095=2631.578,

取整2631箱报价数量=2631箱 每40英尺集装箱:包装数量=55÷0.0095=5789.473,取整5789箱报价数量=5789箱 注意:由于该商品的包装单位和销售单位相同,故此例的报价数量=包装数量。 (二)采购成本核算通过邮件和供应商联络,询问采购价格,用以成本核算。 例如:商品03001"三色戴帽熊",供应商报价为每只6元,求采购9120只的成本? 解:采购成本=6×9120=54720元 (三)出口退税收入核算先查询产品的"海关编码",可明白增值税率和出口退税率。 例如:查到商品03001"填充的毛绒动物玩具"的海关编码是95034100,可查出增值税率为17%、出口退税率为15%.已从供应商处得知供货价为每只6元(含增值税17%),试算9120只三色戴帽熊的出口退税收入? 解:退税收入=采购成本÷(1+增值税率)×出口退税率=6×9120÷(1+17%)×15%=7015.38元 (四)国内费用核算国内费用包括:内陆运费、报检费、报关费、核销费、公司综合业务费、快递费。 已知内陆运费为每立方米100元,报检费120元,报关费150元,核销费100元,公司综合业务费3000元,DHL费100元。

出口报价和成本核算理论

出口报价和成本核算理论+实际案例,看了就明白!(11月7日修正版,每一步都说明) 一、出口报价核算 (一)报价数量核算 在国际货物运输中,经常使用的是20英尺和40英尺集装箱,20英尺集装箱的有效容积为25立方米,40英尺集装箱的有效容积为55立方米。出口商在做报价核算时,建议按照集装箱可容纳的最大包装数量来计算报价数量,以节省海运费。 根据产品的体积、包装单位、销售单位、规格描述来计算报价数量: 例1:商品03001(三色戴帽熊)的包装单位是CARTON(箱),销售单位是PC(只),规格描述是每箱装60只,每箱体积为0.164立方米,试分别计算该商品用20英尺、40英尺集装箱运输出口时的最大包装数量和报价数量。 解:每20英尺集装箱: 包装数量=25÷0.164=152.439,取整152箱 报价数量=152×60=9120只 每40英尺集装箱: 包装数量=55÷0.164=335.365,取整335箱 报价数量=335×60=20100只 例2:商品01006(蓝莓罐头)的包装单位是CARTON(箱),销售单位是CARTON(箱),每箱体积为0.0095立方米,试分别计算该商品用20英尺、40英尺集装箱运输出口时的最大包装数量和报价数量。 解:每20英尺集装箱: 包装数量=25÷0.0095=2631.578,取整2631箱 报价数量=2631箱 每40英尺集装箱: 包装数量=55÷0.0095=5789.473,取整5789箱 报价数量=5789箱 注意:由于该商品的包装单位和销售单位相同,故此例的报价数量=包装数量。 (二)采购成本核算 通过邮件和供应商联络,询问采购价格,用以成本核算。 例如:商品03001"三色戴帽熊",供应商报价为每只6元,求采购9120只的成本? 解:采购成本=6×9120=54720元 (三)出口退税收入核算 先查询产品的"海关编码",可知道增值税率和出口退税率。

出口报价和成本核算

出口报价和成本核算理论 报价通常使用FOB、CFR、CIF三种价格。对外报价核算时,应按照如下步骤进行:明确价格构成,确定价格构成。确定成本、费用和利润的计算依据,然后将各部分合理汇总。以下用实例说明三种贸易术语的对外报价核算: 背景材料:吉信贸易公司收到爱尔兰公司求购6000双牛料面革腰高6英寸军靴(一个40英尺集装箱)的询盘,经了解每双军靴的进货成本人民币90元(含增值税17%),进货总价:90X6000=540000元;出口包装费每双3元,国内运杂费共计12000元,出口商检费350元,报关费150元,港区港杂费900元,其他各种费用共计1500元。吉信公司向银行贷款的年利率为8%,预计垫款两个月,银行手续费率为0.5%(按成交价计),出口军靴的退税率为14%,海运费:大连-都柏林,一个40英尺集装箱的包箱费率是3800美元,客户要求按成交价的110%投保,保险费率为0.85%,并在价格中包括3%佣金。若吉信公司的预期利润为成交金额的10%,人民币对美元的汇率为8.25:1,试报每双军靴的FOB、CFR、CIF价格。 1、FOB、CFR和CIF三种价格的基本构成 FOB:成本+国内费用+预期利润 CFR:成本+国内费用+出口运费+预期利润 CIF:成本+国内费用+出口运费++出口保险费+预期利润 2、核算成本 实际成本=进货成本-退税金额(退税金额=进货成本/(1+增值税率)X 退税率) =90-90/(1+17%)X14%=79.2308元/双 3、核算费用 (1)国内费用=包装费+(运杂费+商检费+报关费+港区港杂费+其他费用)+进货总价X贷款利率/12 X贷款月份 =3*6000+(12000+350+150+900+1500)+540000*8%/12*2 =18000+14900+7200=40100元 单位货物所摊费用=40100元/6000双=6.683元/双(注:贷款利息通常烃进货成本为基础) (2) 银行手续费=报价*0.5% (3) 客户佣金=报价*3% (4) 出口运费=3800/6000*8.25=5.2247元/双 (5) 出口保险费=报价*110%*0.85% 4、核算利润(利润=报价*10%) 5、三种贸易术语报价核算过程 (1)FOBC3报价的核算 FOBC3报价=实际成本+国内费用+客户佣金+银行手续费+预期利润 =79.230+6.6833+FOBC3报价*3%+FOBC3报价*0.5%+FOBC3报价*10% =85.9141+FOBC3报介*(13.5%) 等式两边移项得:

应收款凭证模板设置解析(上)

应收凭证模板设置解析(上) ● 本文档适用于 K/3 所有版本的应收凭证模板的设置 ● 学习完本文档以后,您可以了解应收凭证模板设置对生成凭证的影响及取数原理 ● 2011年11月20日 V1.0编写人: 赵 静 ● 2011年11月 28日 V2.0修改人:王苏婉 ● ● 本文件使用须知 著作权人保留本文件的内容的解释权,并且仅将本文件内容提供给阁下个人使 用。对于内容中所含的版权和其他所有权声明,您应予以尊重并在其副本中予以保 留。您不得以任何方式修改、复制、公开展示、公布或分发这些内容或者以其他方 式把它们用于任何公开或商业目的。任何未经授权的使用都可能构成对版权、商标 和其他法律权利的侵犯。如果您不接受或违反上述约定,您使用本文件的授权将自 动终止,同时您应立即销毁任何已下载或打印好的本文件内容。 著作权人对本文件内容可用性不附加任何形式的保证,也不保证本文件内容的 绝对准确性和绝对完整性。本文件中介绍的产品、技术、方案和配置等仅供您参考, 且它们可能会随时变更,恕不另行通知。本文件中的内容也可能已经过期,著作权 人不承诺更新它们。如需得到最新的技术信息和服务,您可向当地的金蝶业务联系 人和合作伙伴进行咨询。 著作权声明著作权所有 2011金蝶软件(中国)有限公司。 所有权利均予保留。 本期概述 版本信息 版权信息

目录 1.应用背景 (3) 2. 应收单据凭证模板的设置 (3) 2.1 发票的凭证模板设置 (3) 2.2 其他应收单的凭证模板设置 (11) 3.收款类单据凭证模板的设置 (12)

1.应用背景 为保证应收款管理系统与总账系统数据的一致,在应收款管理系统处理完单据业务后,必须通过凭证处理功能生成单据对应凭证并传入总账。应收款管理系统除了坏账损失、坏账收回、坏账准备的凭证不在应收系统的凭证处理中完成,其他的单据都可以通过凭证处理功能生成。那么生成凭证的时候如何才能生成自己想要的凭证,凭证上的数据是从哪里取的,针对这些情况,下面我们就分析一下不同模板设置取数的情况。 2. 应收单据凭证模板的设置 2.1 发票的凭证模板设置 发票分为普通发票和增值税发票,,两种应收类型的发票的凭证模板是一样的,这里就以增值税发票为例。 进入K/3主控台后,依次单击【系统设置】→【基础资料】→【应收款管理】→【凭证模板】,双击打开凭证模板的界面如图-1所示。 图-1 凭证模板设置界面 先查看下系统设置好的凭证模板,打开0012销售专用发票的凭证模板如图-2所示。

海运出口报价与成本核算

海运出口报价与成本核算

(一)报价数量核算 在国际货物运输中,经常使用的是20英尺和40英尺集装箱,20英尺集装箱的有效容积为25立方米,40英尺集装箱的有效容积为55立方米。出口商在做报价核算时,建议按照集装箱可容纳的最大包装数量来计算报价数量,以节省海运费。 在主页的"产品展示"中查看产品详细情况,根据产品的体积、包装单位、销售单位、规格描述来计算报价数量。 例1:商品03001(三色戴帽熊)的包装单位是CARTON(箱),销售单位是PC(只),规格描述是每箱装60只,每箱体积为0.164立方米,试分别计算该商品用20英尺、40英尺集装箱运输出口时的最大包装数量和报价数量。 解:每20英尺集装箱: 包装数量=25÷0.164=152.439,取整152箱 报价数量=152×60=9120只 每40英尺集装箱: 包装数量=55÷0.164=335.365,取整335箱 报价数量=335×60=20100只 例2:商品01006(蓝莓罐头)的包装单位是CARTON(箱),销售单位是CARTON(箱),每箱体积为0.0095立方米,试分别计算该商品用20英尺、40英尺集装箱运输出口时的最大包装数量和报价数量。 解:每20英尺集装箱: 包装数量=25÷0.0095=2631.578,取整2631箱 报价数量=2631箱 每40英尺集装箱: 包装数量=55÷0.0095=5789.473,取整5789箱 报价数量=5789箱 注意:由于该商品的包装单位和销售单位相同,故此例的报价数量=包装数量。 (二)采购成本核算 通过邮件和供应商联络,询问采购价格,用以成本核算。 例如:商品03001"三色戴帽熊",供应商报价为每只6元,求采购9120只的成本? 解:采购成本=6×9120=54720元

PCB如何计算成本及报价

PCB如何计算成本及报价 大凡电子厂采购人员都曾为PCB多变的价格所困惑过,即使一些有多年PCB采购经验的人员至今也未必全部了解此中的原委,其实PCB价格是由以下多种因素组成的: 一、PCB所用材料不同造成价格的多样性 以普通双面板为例,板料一般有FR-4,CEM-3等,板厚从0.6mm到3.0mm不等,铜厚从½Oz到3 Oz不同,所有这些在板料一项上就造成了巨大的价格差异;在阻焊油墨方面,普通热固油和感光绿油也存在着一定的价格差,因而材料的不同造成了价格的多样性。 二、PCB所采用生产工艺的不同造成价格的多样性 不同的生产工艺会造成不同的成本。如镀金板与喷锡板,制作外形的锣(铣)板与啤(冲)板,采用丝印线路与干膜线路等都会形成不同的成本,导致价格的多样性。 三、PCB本身难度不同造成的价格多样性 即使材料相同,工艺相同,但PCB本身难度不同也会造成不同的成本。如两种线路板上都有1000个孔,一块板孔径都大于0.6mm与另一块板孔径均小于0.6mm就会形成不同的钻孔成本;如两种线路板其他相同,但线宽线距不同,一种均大于0.2mm,一种均小于0.2mm,也会造成不同的生产成本,因为难度大的板报废率较高,必然成本加大,进而造成价格的多样性。 四、客户要求不同也会造成价格的不同 客户要求的高低会直接影响板厂的成品率,如一种板按IPC-A-600E,class1要求有98%合格率,但按class3要求可能只有90%的合格率,因而造成板厂不同的成本,最后导致产品价格的多变。 五、PCB厂家不同造成的价格多样性 即使同一种产品,但因为不同厂家工艺装备、技术水平不同,也会形成不同的成本,时下很多厂家喜欢生产镀金板,因为工艺简单,成本低廉,但也有一部分厂家生产镀金板,报废即上升,造成成本提高,所以他们宁愿生产喷锡板,因而他们的喷锡板报价反而比镀金板低。 六、付款方式不同造成的价格差异 目前PCB板厂一般都会按付款方式的不同调整PCB价格,幅度为5%-10%不等,因而也造成了价格的差异性。 七、区域不同造成价格的多样性

各种凭证样式及填写

一、通用记账凭证样式 通用记账凭证简介及填写 通用记账凭证是用以记录各种经济业务的凭证。采用通用记账凭证的经济单位,不再根据经济业务的内容分别填制收款凭证、付款凭证和转账凭证,所以涉及到货币资金收、付业务的记账凭证是由出纳员根据审核无误的原始凭证收、付款后填制的,涉及转账业务的记账凭证,是由有关会计人员根据审核无误的原始凭证填制的。在借贷记账法下,将经济业务所涉及的会计科目全部填列在“借方余额”或“贷方余额”栏内。借、贷方金额合计数应相等。制单人应在填制凭证完毕后签名盖章,并在凭证右侧填写所附原始凭证的 张数。 二.收款凭证的格式

收款凭证的介绍及其填制方法 收款凭证是用来记录货币资金收款业务的凭证,它是由出纳人员根据审核无误的原始凭证收款后填制的。在借贷记账法下,在收款凭证左上方所填列的借方科目,应是“库存现金”或“银行存款”科目。在凭证内所反映的贷方科目,应填列与“库存现金”或“银行存款”相对应的科目。金额栏填列经济业务实际发生的数额,在凭证的右侧填写所附原始凭证张数,并在出纳及制单处签名或盖章。 凭证左上角“借方科目”处,按照业务内容选填“银行存款”或“库存现金”科目;凭证上方的“年、月、日”处,填写财会部门受理经济业务事项制证的日期;凭证右上角的“ 字第号” 处,填写“银收”或“收”字和已填制凭证的顺序编号:“摘要”栏填写能反映经济业务性质和特征的简要说明:“贷方一级科目”和“二级科目”栏填写与银行

存款或现金收入相对应的一级科目及其二级科目:“金额”栏填写与同一行科目对应的发生额:“合计栏”填写各发生额的合计数;凭证右边“附件张”处需填写所附原始凭证的张数;凭证下边分别由相关人员签字或盖章:“记账”栏则应在已经登记账簿后划“√”符号,表示已经入账,以免发生漏记或重记错误。在最下面的财务主管,记账,出纳等处,需要相关人员签字或其签章 三.转账凭证的格式 转账凭证的介绍及其填制 转账凭证是根据转账业务(即不涉及现金和银行存款收付的各项业务)的原始凭证填制或汇总原始凭证填制的,用于填列转账业务会计分录的记账凭证。转账凭证是登记有关明细账与总分类账的依据。

PCB成本核算及价格

PCB如何计算成本及报价 上一篇/下一篇2012-06-2717:05:53 查看(1209)/评论(0)/评分(0/0)大多电子厂采购人员都曾为PCB多变的价格所困惑过,即使一些有多年PCB采购经验的人员至今也未必全部了解此中的原委,其实PCB价格是由以下多种因素组成的: 一、PCB所用材料不同造成价格的多样性 以普通双面板为例,板料一般有FR-4,CEM-3等,板厚从0.6mm到3.0mm不等,铜厚从½O z到3Oz不同,所有这些在板料一项上就造成了巨大的价格差异;在阻焊油墨方面,普通热固油和感光绿油 也存在着一定的价格差,因而材料的不同造成了价格的多样性。 二、PCB所采用生产工艺的不同造成价格的多样性 不同的生产工艺会造成不同的成本。如镀金板与喷锡板,制作外形的锣(铣)板与啤(冲)板,采 用丝印线路与干膜线路等都会形成不同的成本,导致价格的多样性。 三、PCB本身难度不同造成的价格多样性 即使材料相同,工艺相同,但PCB本身难度不同也会造成不同的成本。如两种线路板上都有1000 个孔,一块板孔径都大于0.6mm与另一块板孔径均小于0.6mm就会形成不同的钻孔成本;如两种线路板其他相同,但线宽线距不同,一种均大于0.2mm,一种均小于0.2mm,也会造成不同的生产成本,因为 难度大的板报废率较高,必然成本加大,进而造成价格的多样性。 四、客户要求不同也会造成价格的不同 客户要求的高低会直接影响板厂的成品率,如一种板按IPC-A-600E,class1要求有98%合格率, 但按class3要求可能只有90%的合格率,因而造成板厂不同的成本,最后导致产品价格的多变。 五、PCB厂家不同造成的价格多样性 即使同一种产品,但因为不同厂家工艺装备、技术水平不同,也会形成不同的成本,时下很多厂家 喜欢生产镀金板,因为工艺简单,成本低廉,但也有一部分厂家生产镀金板,报废即上升,造成成本提高,所以他们宁愿生产喷锡板,因而他们的喷锡板报价反而比镀金板低。 六、付款方式不同造成的价格差异 目前PCB板厂一般都会按付款方式的不同调整PCB价格,幅度为5%-10%不等,因而也造成了价 格的差异性。

注塑件成本核算(报价)

注塑件成本核算 1、一般耗用取得系数是多少? 耗用系数分两种情况: 一,可以加水口料,2%-5% 二,不可以加水口料,单模水口重量/(单模水口+成品)+2%至5% 备注:水口料可否退回加工主,否则水口料要折价,还要参考订单数量 2、不同的设备、吨位、穴数、时间不同,公式分别是什么? 一,不同吨位价位; 例150吨-800至1000元/天 120吨-600至800/天,具体情况还要看操作工人数(一台机几人做) 二,每天(24小时)啤模数; 一般以20至22小时计(可能机,模故障) 20(小时)*60(分)*60(秒)/单模周期(秒)=每天啤塑模数 每啤单价=每天加工费/每天啤塑模数,每穴单价=每啤单价/穴数 第2问可能比较复杂,若是不好具体说的话,那么能否给我个范围,或者给我一个样例,比如用什么设备在什么情况下,加工费用是多少?

例,150吨注塑机每天加工费1000元,每模啤塑周期20秒出8穴 20(小时)*60(分)*60(秒)/20单模周期(秒)=3600(每天啤塑模数) 1000元/3600=0.28元/模 0.28元/8穴=0.035穴 3、上哪里可以查到不同的注塑机的费用?一般机器的耗损怎么计算? 注塑机耗损一般以8年计 例150吨每台13万 13万/8年/12个月=0.1354万/月 塑胶件的成本与很多因素有关系,但主要与以下几点组成: 1。原料成本------此成本较为好计算,问一原料供应商多少钱1公斤,将产品的重量乘以的3%的损耗再乘以原料价,即可得到原料成本; 2. 机台成本--------此点问一下塑胶厂,不同注塑机的每小时的加工费用是多少?假设1台100吨的注塑机每小时的加工费用为60元/小时,那么每分钟的加工费用为1元;此时要计算 塑胶件的注塑周期是多少时间,模具的开模穴数是多少?假设你要估价的塑胶件的射出周 期为30秒,那么1分钟可以射出60秒除以30等于二,

各种凭证样式及填写

各种凭证样式及填写

————————————————————————————————作者:————————————————————————————————日期: ?

一、通用记账凭证样式 通用记账凭证简介及填写 通用记账凭证是用以记录各种经济业务的凭证。采用通用记账凭证的经济单位,不再根据经济业务的内容分别填制收款凭证、付款凭证和转账凭证,所以涉及到货币资金收、付业务的记账凭证是由出纳员根据审核无误的原始凭证收、付款后填制的,涉及转账业务的记账凭证,是由有关会计人员根据审核无误的原始凭证填制的。在借贷记账法下,将经济业务所涉及的会计科目全部填列在“借方余额”或“贷方余额”栏内。借、贷方金额合计数应相等。制单人应在填制凭证完毕后签名盖章,并在凭证右侧填写所附原始凭证的张 数。 二.收款凭证的格式

收款凭证的介绍及其填制方法 收款凭证是用来记录货币资金收款业务的凭证,它是由出纳人员根据审核无误的原始凭证收款后填制的。在借贷记账法下,在收款凭证左上方所填列的借方科目,应是“库存现金”或“银行存款”科目。在凭证内所反映的贷方科目,应填列与“库存现金”或“银行存款”相对应的科目。金额栏填列经济业务实际发生的数额,在凭证的右侧填写所附原始凭证张数,并在出纳及制单处签名或盖章。 凭证左上角“借方科目”处,按照业务内容选填“银行存款”或“库存现金”科目;凭证上方的“年、月、日”处,填写财会部门受理经济业务事项制证的日期;凭证右上角的“ 字第号” 处,填写“银收”或“收”字和已填制凭证 的顺序编号:“摘要”栏填写能反映经济业务性质和特征的简要说明:“贷方一级科目”和“二级科目”栏填写与银行

相关文档