文档视界 最新最全的文档下载
当前位置:文档视界 › 烟气余热利用(DOC)

烟气余热利用(DOC)

烟气余热利用(DOC)
烟气余热利用(DOC)

对我厂烟气余热利用的合理化建议

摘要:

我厂地处贵州省六盘水市水城县发耳镇,发耳镇地势四周高,中间低,呈锅底形,全年气候温热,雨量偏低,平均海拔1200米,年降雨量为1100-1200毫米,年平均气温为25℃,属低热河谷地带,有“天然温室”之称。总面积104平方公里,矿产资源主要有煤、铁、粘土。其中以煤储量最大,目前已探明19亿余吨。主要分布在湾子沿北盘江边,煤质较好,煤的灰粉一般在14%,粘吸指数为50,发热量6500卡。对于正处在少年时期的燃煤机组发耳电厂而言,占据较好的地理位置,有着大好的发展前景。然而,由于设计与电厂体制的一系列原因,导致我厂现运行设备设计与现实偏差,未处在最佳运行状态,尤其是烟气余热未得到很好的利用,又因煤质的变化导致除灰脱硫超负荷运行,所以,实行烟气余热利用技改势在必行。

我国60~1 000 MW电站锅炉烟气余热利用于凝结水、给水及送风系统,其转换效率为19.5%~23%,根据能级原理,提出了一种深度利用烟气余热和减少回热抽汽损失、实现锅炉排烟温度自动控制的高效循环系统方案。热力学分析表明,此方案可使600 MW机组无煤附加功率由0.6 MW增加至20 MW左右,全厂净效率提高0.9%,投资回收期小于2.0年,具有良好的节能减排、降低发电煤耗的作用,并对新建和老机组设计优化提出了原则性的建议。

关键词:锅炉;排烟温度;能级利用;烟气余热回收;高效循环系统

烟气余热利用从上世纪50年代以来,在60~1000 MW等级电站锅炉上进行了广泛的探索,取得了一定的成绩,但是与国外先进设计相比存在较大差距。上世纪90年代以来,俄罗斯、德国等国家根据能源价格和环保要求的变化,锅炉排烟温度设计值降低到100℃,并在新建机组或老机组改造中得到了工程验证,使供电煤耗下降6--7 g/(kW.h),但目前国内尚未见可行性和应用价值方面的报道。

根据能级和系统工程原理,提出了一种深度利用烟气余热和减少回热抽汽做功损失,实现排烟温度稳恒控制的高效系统,不但能提高机组性能,而且能深度利用锅炉余热,较大程度地改善锅炉尾部低温受热面结露腐蚀和堵灰问题。

超临界机组锅炉烟气利用高效循环系统

能级理论指出:无论是纯凝机组、再热机组,还是供热机组,都可以看成由若干个能级组成,从锅炉到凝汽器,每个能级的热功效率,逐级下降,相同的热量作用于不同的系统(不同的能级),将会对系统的做功能力产生不同的效果。锅炉受热面可分为锅炉能级受热面和低能级受热面,过热器、再热器、水冷壁、省煤器和高压加热器是锅炉能级受热面,空气预热器、暖风器和低压加热器是低能级受热面,如果将锅炉空气预热器后的低能级烟气热能通过换热器转移到同等能级的低压加热器,就会出现锅炉冷端(烟囱)排烟损失减少量与汽轮机冷端(冷却塔)排汽损失增加量基本相当的问题,区别仅为冷源损失由锅炉侧转移为汽轮机侧。

图1

图1为具有余热回收的高效循环及温度分布系统,该系统由烟气深度冷却、旁通省煤器、送风、旁路高压给水和凝结水5部分杓成。

高效系统的主要特征:与目前发电系统相比,此系统的主要特征如下:(l)锅炉烟气能级的梯级利用和深度冷却,减少锅炉排烟损失;(2)锅炉排烟温度的自动控制,防止锅炉低温烟气低温腐蚀,提高锅炉适应煤种及气候变化的能力,提高安全经济及自动化水平;(3)利用汽轮机回热系统过热蒸汽过热度,提高回热效率;

(4)提高了机组调峰能力,额定工况下可获得2%的无煤附加发电功率。

高效系统的调节原理:调节旁路省煤器的烟气挡板和给水量,使空气预热器的排烟温度为最佳排烟温度;调节烟气冷却器前置预热器的热媒水流量和凝结水流量,使烟气冷却器的排烟温度和空气预热器空气进口温度为最佳值;高效系统的联合运行,可以有效控制锅炉排烟温度,以抵消负荷、煤种变化和气温变化对

锅炉低温腐蚀的影响,同时使锅炉尾部烟气的热能最大限度地被利用,使电站处

于最佳运行状态。

高效系统的节能原理:在传统的以热力学第一定律为基础能量平衡分析中,锅炉和汽轮机回热系统均作为单能级系统,然而,锅炉中烟气是分布式热源,炉膛中烟气热能与尾部烟气的热能在品质上是有差别的,空气预热器、低压加热器与高压加热器、高压省煤器存在较大的能级差别,锅炉加热给水和高压加热器的热能属于高品质热能,锅炉空气预热器和低压加热器的热能属于低品质热能,锅炉尾部对流受热面的传热的不可逆性小于汽轮机高压抽汽加热给水的不可逆性,增加高效循环系统后,实现了增加锅炉尾部烟气加热给水减少回热系统加热给水的份额,相当于低温烟气生产出了高温蒸汽,减少了高压抽汽的做功损失,提高了机组的热循环效率,这是高效循环系统提高机组绝对效率的根本原因。高效循环系统与锅炉受热面吹灰系统组成锅炉冷端管理系统,可以实现锅炉排烟温度的白动控制和锅炉排烟的深度冷却,使机组供电煤耗下阵5~6 g/(kW.h),节煤效益显著,锅炉效率达94. 4%。

可以看出,采用此高效循环有一下好处:

一、烟气深度冷却

电除尘器前烟温125℃,由烟气冷却器深度冷却到90℃,深度冷却器由两部分组成,一部分回收热量传递给热水媒介,热水媒介通过前置预热器系统将热量传递给空气,空气温度由20℃上升到60℃;另一部分加热从8号低加引出的凝结水,凝结水温从60℃上升到100℃;旁路烟道从省煤器后引20%的380℃锅炉高温烟气加热给水和凝结水,将锅炉烟温冷却到125℃。给水回热系统既是汽轮机组热力系统的基础,也是电厂热力系统的核心,回热循环系统可以显著提高朗肯循环效率,对机组的热经济性起着决定性的作用。高压加热器为高能级系统,因过热蒸汽温度高,通常

设置外置蒸汽冷却器或内置蒸汽冷却段,利用过热蒸汽加热上级给水,减少不可逆损失。动力学界的一般概念是:任何减少回热加热会降低机组的效率,通过理论分析和热力计算表明,如果利用低能级烟气加热高压给水,可以提高回热效率。如360℃的烟气因温压(传热温差)的限制,不可能生产大于360℃的过热蒸汽,但可通过加热给水,排挤抽汽发出附加功率,相当于利用360℃的低温烟气代替回热抽汽系统340℃至450℃高温蒸汽,提高了机组经济性。本方案能够深度回收锅炉排烟热量,提高汽轮机回热抽汽效率。

二、低低温除尘

1、排放标准

2004年1月1日,随着《火电厂大气污染物徘放标准》(GB 13223 - 2003)的实施,我国火电机组的粉尘排放质量浓度控制标准从200 mg/m3降为50

mg/m3,SO2排放质量浓度控制标准降为400 mg/m3。目前,国家环境保护部正着手对GB 13223进行修改,旨在进一步提高我国火电机组环保排放控制标准。

2、低低温烟气工艺原理

低低温烟气工艺流程为在锅炉空气预热器后设置烟气冷却器,使进入除尘器的烟气温度降低到90℃,提高烟气处理性能,通过这种除尘十湿法烟气脱硫工艺达到高效除尘、脱硫的效果,使烟囱人口粉尘排放质量浓度大大降低。按此流程,烟气经过烟气冷却器后,温度从120--130℃降到90℃左右,烟气中的S03与水蒸气结合,生成硫酸雾,此时由于未采取除尘措施,SO3被飞灰颗粒吸附,然后被电除尘器捕捉后随飞灰排出,不仅保证了更高的除尘效率,还解决了下游设备的防腐蚀问题,并实现了系统的最优化布置。

3、烟气冷却后电除尘的工艺特点

采用烟气冷却后,烟气系统的运行温度为90℃,低于目前锅炉设计120℃以上烟气温度;粉尘的比电阻降低,除尘性能得以提高,采用三电场除尘器能够达到五电场除尘器的效率。与传统的除尘十湿法烟气腕硫环保工艺相比,其电除尘工艺特点如下。

(l)电除尘人口烟气温度由130℃左右降低到90℃左右后,实际烟气流量大大减少,这不仅对系统有利,而且也有利于降低引风机和增压风机的电耗,降低运行费用(对于1号炉增引合一后更为节电)。

(2)在该系统的除尘装置中,烟气温度已降低到露点以下,而烟气含尘质量浓度却很高,因而总表面积很大,为硫酸雾的凝结附着提供了良好的条件。通常情况下,灰硫比大于100时,烟气中的SO3去除率可达到95%以上,SO3质量浓度将低于2. 86 mg/m3。

(3)在系统内部设置挡板,通过内部挡板连动形成不带电打击方式,来防止粉尘的飘散。另外,在烟气深冷器人口设置吹灰装置来保证管式换热器管表面的清洁。

(4)由于高质量浓度粉尘对SO3具有包裹作用,烟气中的绝大部分SO3分子通过除尘器被除掉,然后通过除灰系统带走,因此烟气系统不容易出现低温腐蚀现象,经济效益明显。

(5)目前几乎所有的系统设计都是将脱硫增压风机放在脱硫塔之前,主要是考虑风机的工作条件,即磨损、腐蚀等问题。采用防腐工艺,就有条件不受场地布置的限制,把脱硫风机放在吸收塔之后,可提高系统的可用率(待2、3、4号炉增引合一后也可实施试验)。另外,吸收塔和升温换热器等工作在负压状态下,可降低结构和密封的要求,同时降低约5%的能耗。

(6)该工艺采用管式烟气加热器,无泄漏,同时回收的热量可用于空气预热器加热空气系统。

国外火力发电行业烟气余热应用

近几年,国外已经把火电机组的排烟温度设计值大大降低,锅炉排烟温度为100℃左右。1991年德国联合电力公司(VEAG)公司委托RVW能源公司和VEBA 鲁尔电力公司组成联合工作组,就Boxberg电厂和德国黑泵(Schwarze Pumpe)电厂安装的现代化机组开展了设计研究工作和模拟试验,德国黑泵电厂2×800 MW褐煤发电机组,在电除尘器前加装了烟气冷却器,利用烟气加热锅炉给水。德国科隆尼德奥森( Nideraussem)1 000 MW级褐煤发电机组采用分隔烟道系统充分降低排烟温度,把旁路省煤器加装在空气预热器的旁通烟道中,在烟气热量足够的前提下引入部铃烟气到旁通烟道内加热给水,排烟温度为100℃,锅炉效率达94. 6%。

这些电厂的回热系统有2个明显特点:(l)增加了烟气热量回收环节,即在电气除尘器前的烟道上安装了烟气冷却器,回收的热量用于加热给水、凝结水和送风;

(2)烟气的最后排放不是通过常见的专用烟囱,而是通过白然通风冷却塔排入大气(我厂此改造不太现实)。

如图2:

图2

俄罗斯白上世纪90年代以来,在300~500 MW机组改造时,大力推行在锅炉尾部增加旁路省煤器加热给水(或凝结水)的“烟气加热器”技术,以降低锅炉的排烟温度,提高锅炉及电除尘效率。由于旁路给水在烟气加热器中吸热后返回至热力系统温度相应的部位,在热力系统中加热给水所需要的汽轮机抽汽量减少,所减少的抽汽将在汽轮机通流部分继续做功,因而可获得附加电功率。俄罗斯把此类机组称为“高效机组”。据统计,至1999年俄罗斯设“高效机组”达35台,机组容量从50 MW到800 MW,其中300 MW 12台、600 MW 8台、800 MW3台。锅炉排烟温度处于105~130c,锅炉效率达92%/~94%,机组功率可增加3%-8%,通过电除尘向空排放的粉尘量减少30% - 60%。2000年实施“燃煤电厂技术改造”战略规划,并将其划分为2个阶段:第1阶段(2000 -2005年)致力于延长发电设备使用期限的研究,重点以技术特性先进的设备替换同等容量老龄设备;第2

阶段(2006 - 2010年)着力抓好样机的研制,为先进高效机组的工业应用奠定基

础。

费用预算

相对于常规热力系统,高效循环系统主要增加了烟气冷却器前置空气预热器、旁路高压给水加热器和低压凝结水加热器及旁路烟道和附属的管道阀门,安装费按材料成本的1/2计,设计费用170万元,附属系统费用估计为700万元,年维护费用按设备投资费用的2%计算,改造项目总投资费用约为3 740万元。

结论

当设计燃用高热值、低灰分、低硫分优质烟煤时,适合采用此种烟气深冷加低低温电除尘工艺;采用烟气冷却后,烟气系统的运行温度为90℃,低于目前设计的120℃以上;粉尘比电阻降低,除尘性能得以提高,采用三电场除尘器能够达到五电场除尘器的效率。而且,低温工艺可降低烟气换热器、增压风机、烟道防腐等费用,投资基本不变,减少年运行电费434. 18万元。

在老电厂纯凝机组增加高效循环系统后,全厂净电效率可以提高0.9%,煤耗降低5~6g/(kW.h),机组无煤附加功率提高2%,单位kW投资为新建机组的1/2-1/3,高效系统所增加的投资回收期小于2.0年。

在新建工程,纯凝电厂增加高效循环系统后,机组铭牌功率提高2. 5%/-3. 0%,全厂净发电效率提高1.2%~1.3%,煤耗降低7~8 g/(kW.h),相当于其单位kW投资降低2.0%/-2. 5%,投资回收期小于1.O年,供热机组可以降低供电煤耗

13--15 g/(kW.h)。

建议在我厂全面推进高效洁净燃煤电厂的设计理念,通过从锅炉烟气余热利用、汽轮机内效率、降低辅助系统耗功、降低背压、提高循环效率等各个环节,

提高燃煤发电效率。同时结合我国投产的600 MW机组进行对比研究,尽快在我厂建设一套高效率、低排放、高技术水平的燃煤超临界示范电站。

冷凝燃气锅炉烟气余热回收利用研究

冷凝燃气锅炉烟气余热回收利用研究 摘要近些年来,随着经济社会的快速发展,国家对环境保护、节约资源、能源综合利用等提出了较高的要求。在北京市集中供热系统中,燃气锅炉得到了广泛的应用,而燃气锅炉所排放的烟气具有较高的温度,可以采取有效措施来降低烟气排放温度,并实现对烟气余热的有效回收,其不仅可以使燃气锅炉的供热效率得到有效提升,而且还可以达到比较理想的节能效果。本文将会以北京市某热源厂为例来对冷凝燃气锅炉烟气余热回收利用技术进行探究。 关键词冷凝燃气锅炉;烟气余热;回收利用 如今,随着燃气锅炉在供热行业中的广泛应用,与燃煤锅炉相比具有热效率更高、污染更小等特点。在锅炉中天然气燃烧过程中,将会有大概92%左右能量转化为热量、7%左右为排烟热损失、1%左右表面散热损失掉。因此,做好烟气余热回收利用工作就显得尤为重要。通常情况下,很大一部分烟气中的余热存在于水蒸气中,在回收显热、降低烟气温度的同时,会有效回收烟气中的水蒸气潜热,从而实现烟气全热的正回收。烟气余热回收利用主要是以天然气为驱动源,借助回收型热泵机组,就能够使锅炉排烟从80℃降至30℃,从而使大量的水蒸气冷凝潜热被回收,这样既可以达到节省燃气锅炉燃气耗量的目的,而且还可以降低PM2.5雾霾形成物的排放,达到节能减排的双重效果。 1 冷凝燃气锅炉烟气余热回收利用技术 1.1 利用换热器烟气余热回收技术 在烟气余热回收利用技术中,换热器是比较常用的设备,对其进行科学、合理的选择尤为关键,根据换热方式的差异,可以将烟气余热回收利用方式划分为直接接触式换热型、间接接触式换热型[1]。 (1)直接接触式换热器。直接接触式换热通常是以直接接触的方式来实现两种介质相互传热传质的过程。通常情况可以根据接触结构的不同划分为折流盘型、多孔板鼓泡型和填料型如图1所示。因为我国供热供回水温度相对比较高,导致直接接触式换热型换热器在烟气余热回收利用过程中并未得到广泛的应用。(2)间接接触式换热器。间接换热通常是指在被壁面分隔来的空间里冷热介质可以实现独立流动,并通过壁面来使实现冷热介质的换热。在烟气余热回收利用技术中,常用的间接接触式换热器有热管换热器、翅片管换热器和板式换热器. 1.2 利用热泵回收烟气余热技术 在燃气锅炉中,天然气燃烧过程中所产生的烟气露点在55—65℃之间,在进行回收烟气冷凝余热阶段,一般要求供热回水温度在烟气露点温度范围以内。一旦供热回水温度超过了烟气露点温度,则需要借助热泵回收烟气冷凝余热来实现预热供热回水。目前,在烟气余热回收利用过程中,吸收式热泵回收烟气余热

火力发电厂烟气余热利用的分析及运用

POWER SUPPLY TECHNLLOGIES AND APPLICATIONS 火力发电厂烟气余热利用的分析及运用 郭洪远 (宁夏京能宁东发电有限责任公司宁夏灵武750400) 【摘要】由于目前水资源、能源紧缺、环境日益恶化等等状况,合理有效的利用电厂的烟气余热,提高火电机组的效率,减少煤耗是节能的主要且重要的措施之一。在火力发电厂中,锅炉的排烟余热问题一直是困扰人们的一个问题。本文对发电厂烟气余热利用的途径进行了分析,重点研究了利用烟气余热来加热凝结水的系统。研究表明,设置烟气余热系统,可大大提高火力发电厂热效率,降低煤耗,增加发电量,具有一定的经济效益和社会效益。因此在电厂优化设计中,合理有效的利用火电厂的烟气余热,提高机组运行效率,节约用水,减少煤耗,是节能的关键。 【关键词】烟气余热;优化设计;提高效率;节能 引言 由数据统计可知,在火力发电厂中,锅炉的排烟热损失大约占锅炉热损失的70%,随着锅炉运行时间的增加,受热面污染程度也随之增加,排烟温度要比设计温度高大约25℃,在我们国家,存在着很多锅炉投运时间较长、排烟温度较高甚至达到200℃的火电机组。如果能够合理的利用工艺和新技术来降低锅炉排烟温度,回收利用排出的烟气余热,将较大程度上降低火力发电厂的煤耗,达到节约能源的目的。 1.烟气余热利用的状况 目前,国外已经把火电机组的排烟温度设计为大约100℃,比之前的排烟温度值大大降低,在近几年来国外建立火电厂的共同特点有: (1)烟气的最终排放并不是通过常见的专用烟囱,而是通过自然风冷却塔排人大气之中。 (2)增添了烟气热量回收的环节,即在烟气脱硫装置和除尘器之间的烟道上安装了烟气冷却器,回收的热量用于凝结水的加热。

烟气余热回收装置的利用(2021年)

Enhance the initiative and predictability of work safety, take precautions, and comprehensively solve the problems of work safety. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 烟气余热回收装置的利用(2021 年)

烟气余热回收装置的利用(2021年)导语:根据时代发展的要求,转变观念,开拓创新,统筹规划,增强对安全生产工作的主动性和预见性,做到未雨绸缪,综合解决安全生产问题。文档可用作电子存档或实体印刷,使用时请详细阅读条款。 [摘要]文章主要介绍锅炉排烟余热回收的必要性和利用方向,当今国内外烟气回收装置的应用情况,从设计角度提出设置烟气余热回收装置(烟气冷却器)需要考虑的问题,并列举工程设计方案及其预期的节能效果。 [关键词]烟气余热回收;低温腐蚀;节能 [作者简介]梁著文,广东省电力设计研究院,广东广州,510000 [中图分类号]TM621.2[文献标识码]A[文章编号]1007-7723(2010)10-0111-0003 一、引言 在火电厂的运行中,煤炭燃烧及各种用能设备、热能换热设备产生了大量的余热,然而这些能量多数都被浪费了。近些年来,在国家大力倡导“节能减排”能源利用政策的大环境下,国内某些电厂成功地设计安装了余热回收利用装置,给电厂带来很好的经济效益。 对火力发电厂讲,锅炉热损失中最大的是排烟热损失。对小型锅

发电厂节能减排之烟气余热利用

发电厂节能减排之烟气余热利用 众所周知,火力发电厂主要有两大热损失,分别是汽轮机系统的冷端排汽冷凝热损失以及锅炉系统尾部排烟热损失。影响火电厂锅炉排烟热损失的主要因素是排烟温度,目前,我国燃煤电站锅炉排烟温度大多在120——140℃,锅炉效率约90%——94%。在各种热损失中,排烟热损失占锅炉热损失的一半以上,如果能有效降低电站锅炉的排烟温度至70——90℃,锅炉效率将提高2%——5%,供电煤耗将下降2——5g/kWh,二氧化碳的排放量也相应有大幅度的减少。因此,随着近些年来能源价格的不断攀升以及节能减排要求的日益严格,电站锅炉尾部烟气余热的回收利用受到广泛重视。降低锅炉排烟温度可以有多种设计方案:一是通过燃烧优化调整来降低排烟温度;二是增加锅炉受热面来降低排烟温度;三是增加锅炉空气预热器受热面来降低排烟温度;四是在锅炉尾部烟道增加低温省煤器,利用凝结水或其它介质吸收排烟余热来降低排烟温度。但经过多次的试验研究以及现场论证,利用低温省煤器回收烟气的余热是最直接、最简便、也是最有效可行的余热回收的方法。 低温省煤器的运用可以有效地回收烟气余热,提高高温烟气的利用效率,减少排放损失。其用途主要有以下几方面: 1、利用回收烟气热量通过暖风器加热空气 为了防止或减轻空气预热器低温腐蚀和堵灰,需要加装暖风器来提高空预器入口风温。 此以气水换热暖风器替代常规的蒸汽暖风器,以循环水作为热媒,把在烟气侧吸收热的热量释放给一、二次冷风,将进入空气预热器前的冷风预加热,从而实现烟气热量的回收利用,并且减少了常规蒸汽暖风器的辅助蒸汽用量。 2、利用低温省煤器加热回热系统的凝结水 利用低温省煤器加热冷凝水的方式有两种:一是让烟气和凝结水直接进行热交换,这种方式优点是一级换热,换热效率高,缺点是若换热管一旦泄漏,会直接污染凝结水,影响机组安全运行;二是设置水水换热器,让烟气和凝结水间接进行热交换,这种方式优点是二级换热,换热效率较一级换热低,优点是系统安全,便于调节。低温省煤器在热力系统中的连接方式直接影响到其经济效果和分析计算的方法以及运行的安全、可靠性。就其本质而言,低温省煤器联入热力系统就只有两种连接系统:一是低温省煤器串联于热力系统中,简称串联系统,如图1所示;二是低温省煤器并联于

烟气余热回收装置的利用(新编版)

烟气余热回收装置的利用(新 编版) Safety work has only a starting point and no end. Only the leadership can really pay attention to it, measures are implemented, and assessments are in place. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0521

烟气余热回收装置的利用(新编版) [摘要]文章主要介绍锅炉排烟余热回收的必要性和利用方向,当今国内外烟气回收装置的应用情况,从设计角度提出设置烟气余热回收装置(烟气冷却器)需要考虑的问题,并列举工程设计方案及其预期的节能效果。 [关键词]烟气余热回收;低温腐蚀;节能 [作者简介]梁著文,广东省电力设计研究院,广东广州,510000 [中图分类号]TM621.2[文献标识码]A[文章编号]1007-7723(2010)10-0111-0003 一、引言 在火电厂的运行中,煤炭燃烧及各种用能设备、热能换热设备产生了大量的余热,然而这些能量多数都被浪费了。近些年来,在国家大力倡导“节能减排”能源利用政策的大环境下,国内某些电

厂成功地设计安装了余热回收利用装置,给电厂带来很好的经济效益。 对火力发电厂讲,锅炉热损失中最大的是排烟热损失。对小型锅炉,燃用高硫分煤时,排烟温度比较高,可以达到180~220℃左右;中型锅炉排烟温度在110~180℃。一般来说,排烟温度每升高15~20℃,锅炉热效率大约降低1.0%。因此,锅炉排烟是一个潜力很大的余热资源。 二、烟气余热的利用方向 烟气余热的利用方向主要可分为预热并干燥燃料、预热助燃空气、加热热网水、凝结水等。 1.用水水换热的暖风器替代常规蒸汽暖风器,即以一次循环水为热媒,将在烟气侧吸收的热量释放给一、二次冷风,将进入预热器前的冷风预加热,以减少常规蒸汽暖风器辅助蒸汽用量。 2.利用烟气余热干燥褐煤。其核心设备(干燥机滚筒)是稍微倾斜并可回转的圆筒体,湿物料从一端上部加入,干物料在另一端下部进行收集。约150℃的热烟气由进料端或出料端进入,从另一端

烟气余热利用方案说明

烟气节能器方案简要说明 xx公司在xx新建一条生产线,该生产线的一部分工艺采用天然气作为燃料进行加热,产生的废气目前通过烟道排出,浪费了部分能源。由于新厂地处东北,冬季气温低需要进行供暖,目前使用4台额定功率523kW的燃气常压热水锅炉提供热水满足供暖。为了充分利用能源,减少排放和生产成本,拟对生产线废气余热进行部分回收,以降低燃气常压热水锅炉的燃气消耗。 一、 概况 铁岭新厂共有两条生产线,均用天然气作为燃料进行供热。每条生产线使用后的废气流量为3000m3/h,温度约175℃,通过500×600mm的矩形烟道排放,烟道位置和走向如下图。 箭头所示位置可安装烟气节能器,上下距离约2000mm。 新厂车间供暖面积10000m2,办公区供暖面积2000m2,使用4台功率523Kw、天然气耗量53.5m3/h、进/回水温度85/60℃的燃气常压热水锅炉并联在供热管网的循环管路上进行供暖和供热,整个管网用一台流量187m3/h、扬程44m的离心泵驱动。

二、 烟气节能器 烟气热水器回收废气一部分余热,将一部分供暖循环水从60℃加热到85℃,用来代替部分天然气。换热器形式为管壳式,采用双金属复合管作为传热元件,水平装配。烟气从热水器的下方进入,从热水器的上方流出,供暖循环水从热水器的上方进入,从热水器的下方流出,形成逆向流动。烟气节能器的设计参数如下表: 节能器吊挂在烟道中间,烟侧进出口与烟道焊接在一起。节能器的上方有压缩气体吹扫口,在节能器下方的烟气入口处安装可抽出的规格为50目的单层不锈钢滤网。 三、 实施步骤

1.在厂房的主横梁上焊接水平梁,然后向上焊接斜拉梁,向 下焊接吊挂梁; 2.断开烟道,将节能器吊装到烟道中间,并与烟道焊接,同 时节能器的吊耳与吊挂梁进行焊接; 3.从供暖循环水主管引水管到节能器的进水和出水口,并用 法兰连接; 4.引一压缩空气管道连接到节能器附近并与吹扫口连接。 四、 节约燃气预测 序号项目单位数值 1 节能器换热功率kW 480 2 节能器每年工作时间h 2200 3 节能器年回收热量kJ 3.8×109 4 节约天然气量m313.35×104 2台节能器每年可节约天然气大约26.7×104立方米。 五、 经济效益简单预估 1.项目收益估算 注:采暖季按3个月计算,在东北通常是4个月 2.项目静态投资回收期估算

烟气余热回收利用装置

钻井柴油机烟气余热回收利用装置 申请号/专利号:200920139896 本实用新型公开了一种钻井柴油机烟气余热回收利用装置,包括水罐以及盘管热交换器,盘管热交换器具有进气端与出气端,进气端与柴油机的排气管相连通;盘管热交换器还具有进水口与出水口,进水口与出水口之间连接着装有循环泵的循环水管路,循环水管路从油罐中穿过,水罐连接在循环水管路上。本实用新型结构简单,易于制造,利用柴油机排出的烟气余热加热油罐中的存油,达到了在冬季用0#柴油替代-35#柴油、节能减排的目的,同时提高了井队冬季开钻工作效率,降低了井队运行成本。 申请日:2009年02月24日 公开日: 授权公告日:2010年01月06日 申请人/专利权人:新疆塔林石油科技有限公司 申请人地址:新疆维吾尔自治区克拉玛依市白碱滩区门户路100号 发明设计人:杜其江;何龙;李树新;田成建;林宣义;吕伟;姚庆元;尚玉龙;李建华;马伟;王琪 专利代理机构:乌鲁木齐新科联专利代理事务所有限公司 代理人:李振中 专利类型:实用新型专利 分类号:F02M31/16;F02G5/02;F01N5/02 点此查看跟该专利相关的主附图\公开说明书\授权说明书 烟气余热回收装置的利用 2010年第10期沿海企业与科技一一NO.10.2010l堂箜12堇塑!£Q△曼坠坠量烈!垦!丛:墅墨竖趔坠錾!量丛堡E鱼匹垦丛丛Q!!E蔓羔!垡丛婴坚!坐i!曼!!塑Q:12主!烟气余热回收装置的利用梁著文〔摘要〕文章主要介绍锅炉排烟余热回收的必奏巨和利用方向。当今国内外烟气回收蓑王的应用情况。从设计角度提出设置

烟气余热回收装王(烟气冷却器)需要考虑的问题。并列举工程设计方案及其预期的节能效果。〔关键词〕烟气余热回收;低温腐蚀;节能〔作者简介】粱著文,广东省电力设计研究院,广东广州。510000〔中圈分类号〕TM621.2〔文献标识码〕A〔文章编号〕1007-7723(2010)10-0111-0003一、引言2.利用烟气余热干燥褐煤。其核心设备(干燥机滚筒)是稍微倾斜并可回转的圆筒体,湿物料从一端上部加入,干物料在另一端下部进行收集。约150。C的热烟气由迸料端或出料端进入,从另一端的上部排出,热烟气和物料以逆流或顺流的方式接触,出口烟气温度约降至120℃左右。3.安装防腐蚀管式换热器,用来加热厂房或是厂区的水暖系统热网循环水,以替代或部分替代常规的热网加热器,从而节省了热网加热器的加热蒸汽量,增加了发电量。4.利用烟气的余热加热凝结水,用来提高全厂的热效率,降低煤耗,增加电厂发电量。加热的方式主要有两个:一是直接加热方式,即安装烟气回热加热器,使烟气与凝结水直接进行热交换;二是间接加热方式,即安装烟气回热加热器及水水换热器,使烟气在闭式水和烟气回热加热器内进行热交换;吸收烟气余热后的闭式水进入水水换热器内与凝结水进行热交换,然后再将热量带入主凝结水系统,图l为系统流程图。在火电厂的运行中,煤炭燃烧及各种用能设备、热能换热设备产生了大量的余热,然而这些能量多数都被浪费了。近些年来,在国家大力倡导“节能减排”能源利用政策的大环境下,国内某些电厂成功地设计安装了余热回收利用装置,给电厂带来很好的经济效益。对火力发电厂讲,锅炉热损失中最大的是排烟热损失。对小型锅炉,燃用高硫分煤时,排烟温度比较高,可以达到180—2200C左右;中型锅炉排烟温度在110—180℃。一般来说,排烟温度每升高15.20。C,锅炉热效率大约降低1.o%。因此,锅炉排烟是—个潜力很大的余热资源。二、烟气余热的利用方向烟气余热的利用方向主要可分为预热并干燥燃料、预热助燃空气、加热热网水、凝结水等。1.用水水换热的暖风器替代常规蒸汽暖风器,即以一次循环水为热媒,将在烟气侧吸收的热量释放给一、二次冷风。将进人预热器前的冷风预加热。以减少常规蒸汽暖风器辅助蒸汽用量。硝装置电功tn水牟龠圈1系统流程万方数据三、烟气余热回收装置在国内外的应用情况1.德国黑泵(Schwa眺Pumpe)电厂2×800MW褐煤发电机组在静电除尘器和烟气脱硫塔之间加装了烟气冷却器,利用烟气加热锅炉凝结水。2.德国科隆Nidemusseml000MW级褐煤发电机组采用分隔烟道系统充分降低排烟温度,把低温省煤器加装在空气预热器的旁通烟道中,在烟气热量足够的前提下引入部分烟气到旁通烟道内加热锅炉给水。3.日本的常陆那珂电厂采用了水媒方式的管式GGH。烟气放热段的GGH布置在电除尘器上游,烟气被冷却后进人低温除尘器(烟气温度在90—100℃左右)。4.外高桥电厂三期2×1000MW机组进行了低温省煤器改造,低温省煤器布置在引风机后脱硫吸收塔前,根据性能考核报告,其节能效果明显。目前国内较多应用。器传热管的金属安全壁温Ta。由于以上烟气酸露点的计算采用的是经验公式,但实际煤质及具体的运行情况会通常偏差较大,按锅炉厂的常规经验设计,一般会加5~lO℃的温度裕量作为金属安全壁温。如果在实际运行中通过取样检测能够获得较准确的烟气露点温度,可以相应调整烟气冷却器的金属安全壁温ta。(三)传热管的堵灰问题低温受热面的积灰不仅会污染传热管表面,影响传热效率,严重时还会堵塞烟气流动通道,增加烟气流动阻力,甚至影响锅炉安全运行,而导致不得不停炉清灰。为保证烟气余热回收装置不发生堵塞,应保持传热管的积灰为干灰状态。因此,在电站锅炉烟气余热回收装置运行过程中,保证传热管金属温度高于烟气水蒸汽露点温度、传热管上不会造成水蒸汽结露至关重要。对于干灰的清理,可采取以下几方面的措施:1.烟道内烟气流动顺畅,在结构设计上不出现大量积灰源,同时保证吹灰器能吹到所有的管束,不留吹灰死角。2.烟气流动速度均匀,设计烟气流速高于lOm/s,使烟气在流动中具有一定的自清灰功能。3.采用成熟可

烟气余热回收技术方案

烟气余热回收利用改造项目 技术方案 ***节能科技有限公司 二O一二年

一、运行现状 锅炉房配备2.1MW锅炉2台(一用一备),供热面积5万m2;**炉配备2.1MW 锅炉2台(一用一备),供热面积4.5万m2。经监测,**锅炉房2台锅炉正常运行排烟温度在150--170℃,平均热效率在89%,**锅炉房2台锅炉正常运行排烟温度在 160-180℃,平均热效率在88%,(标准应不高于160℃)。锅炉系统运行进出水温差较小,排烟热损失较大,同时影响锅炉热效率的提高,回收利用潜力明显。 二、技术介绍 烟气冷凝回收利用技术是国家第一批特种设备节能技术推荐目录中的成熟技术。有着显著的节能效益。主要原理: 1m3天然气燃烧后会放出9450kcal的热量,其中显热为8500kcal,水蒸气含有的热量(潜热)为950kcal。对于传统燃气锅炉可利用的热能就是8500kcal的显热,供热行业中常规计算天然气热值一般以8500kcal/nm3为基础计算。这样,天然气的实际总发热量9450kcal与天然气的显热8500kcal比例关系以百分数表示就为:111%,其中显热部分占100%,潜热部分占11%,所以对于传统燃气锅炉来说还是有很多热量白白浪费掉。 普通天然气锅炉的排烟温度一般在120--250℃,这些烟气含有8%--15%的显热和11%的水蒸气潜热。加装烟气冷凝器的主要目的就是通过冷凝器把烟气中的水蒸气变成凝结水,最大限度地回收烟气中含有的潜热和显热,使回收热量后排烟温度可降至100℃左右,同时烟气冷却后产生的凝结水得到及时有效地排出(1 nm3天然气完全燃烧后,可产生1.66kg水),并且大大减少了co2、co、nox等有害物质向大气的排放,起到了明显的节能、降耗、减排及保护锅炉设备的作用。从而达到节能增效的目的。 三、改造方案 3.1、设备选型 烟气余热回收器选用瑞典爱瑞科(AIREC)板式烟气热回收器。 瑞典AIREC公司是世界上唯一一家钎焊式模块 化非对称流量板式换热器的专业生产制造商,凭借 独到的设计理念,雄厚的产品开发能力和多年行业 丰富的实践经验使AIREC成为在非对称流量换热领 域的真正领导者。 irCross21由多块板片重叠冲压在一起,在真 空和高温的环境下,板片用铜或镍焊接在一起,具 有很高的机械强度,更大的传热面积,更高的效率,

锅炉烟气余热回收利用分析与措施研究

锅炉烟气余热回收利用分析与措施研究 在当今社会里,节能已成为继煤炭、电力、石油和天然气之后的“第五能源”。而在现在的工业锅炉的使用中普遍存在着热量利用率低下,排放烟气余热温度过高,以及烟气内污染环境气体含量过高等问题。本文将就这些问题做深入的分析,并提出一定措施来解决当前问题。 目前,节能已是我国经济发展的一项长远战略计划,也是当前一项紧迫的任务。当前,全社会都在开展节能降耗,缓解能源压力,建设节能型社会,而工业锅炉余热资源的回收利用是节约能源的重要措施,工业锅炉排烟余热所占锅炉热量比重较大。如果不控制锅炉烟气余热,将会给地球环境和资料带来极大的危害。 1锅炉烟气余热问题分析 大型锅炉都安装有铸铁管或不锈钢式省煤器,用来助燃空气或预热锅炉给水,但是由于石油、煤、天然气燃料中均含有硫,在燃烧时,硫氧化物的产生是必不可少的,它与水蒸气结合后即形成硫酸蒸汽。当锅炉尾部受热面的金属壁面温度低于硫酸蒸汽的凝结点(称为酸露点),就会在其表面形成液态硫酸(称为结露)。长久以来,省煤器等物体由于结露引起腐蚀,甚至还会穿孔,这种现象时常发生,严重影响了锅炉的运行安全,所以目前的锅炉都是通过提高排烟温度来缓解结露和腐蚀现象的产生,致使锅炉烟气温度很高,从而导致大量热量散发到大气中,浪费资源又污染环境。 据相关数据表明,一般工业锅炉的热效率约为60~70%,它的排烟温度大概在250℃~3 50℃之间,而导热油炉,排烟温度更是达到280℃以上,大量余热未充分利用,如果把这些烟气直接排放到空气中,这不但会导致气温升高,污染了环境,而且极大的浪费了能源。因此降低锅炉烟气温度已成为锅炉节能的一个重要途径,同时又必须解决锅炉低温腐蚀的难题。 但是,在进行烟气余热回收利用实现节能时,应注意以下几个问题:酸露点腐蚀的部位

烟气余热利用热水系统设计方案_secret

二台600Kw 煤层气发电机组高温烟气余热利用 热水系统 1、销钉管换热技术原理 2、设备特点 3、设计目的 4、系统原理及组成 5、热工计算 6、施工说明 7、经济效益分析 青岛xx公司 2012年3月

2 一、 销钉管技术的应用原理 强化换热表面的对流传热是提高换热设备传热系数最有效的方 法。一般强化换热表面的措施虽然使传热系数有一定提高,但幅度 不大,并且经过强化的传热管外表面容易腐蚀结灰,因而使用寿命 较短,传热效果也因结灰、结垢而大幅度降低。而销钉管技术彻底 改变了这些致命弱点。经过特殊焊接工艺制作的销钉管,其单位长 度的传热面积是相同规格的普通光管的七倍左右。这样,即使在传 热系数相同的条件下,销钉管的吸热量也是普通光管的七倍左右。 另外在热源介质横向冲刷钢针的同时,在钢针的圆柱北面形成对称 的稳态旋流和回流区,热边界不断的被破坏和再重新形成,从而使整个换热面边界层减薄,这样就减小了热阻而大大提高了换热系数,而且强烈的回流和旋流使销钉管表面具有较强的防灰防垢和较高的自除灰能力。 二、 销钉管余热回收装置的结构特点

①结构紧凑 单位长度的销钉管换热面积是普通光管的七倍左右,同时销钉管之间用小半径推制弯头连接。因而相同换热面积的销钉管余热回收装置普通光管的设备相比,其体积和占地面积成数倍的减小,并且其重量也有不同幅度的降低。因而,在设备布置安装和吊装等方面为用户提供了很大的空间。 ②维修方便 销钉管是采用整根无缝钢管制造完成的,各销钉管之间用弯头连接,使其具有很高的耐压性能,一般情况很少出现质量方面的问题。如果偶然发现某一根销钉管出现泄漏,也可以方便的进行更换。 ③受压元件热应力小 每一件受压元件在整体组装时,无任何强制组装现象,因而不会产生组装应力。同时每一销钉管组,只有一端焊接在钢结构上,而另一端呈自由状态。这样设备在运行过程中,无热应力产生。 ④标准化设计和灵活的尺寸变化 迄今为止,我们已开发设计了多系列的标准产品。广泛应用于大中小型柴油机和天然气发电机组,以及锅炉的高温烟气的余热回收利用,另外,我们可在短时间内按照用户要求,根据用户提供的设计参数,对各种余热回收装置进行灵活设计。 ⑤可高效连续的运行 根据其传热机理和结构特点,我们不难得知,销钉管技术具有 3

锅炉烟气余热回收利用

目前,节能已是我国经济发展的一项长远战略计划,也是当前一项紧迫的任务。当前,全社会都在开展节能降耗,缓解能源压力,建设节能型社会,而工业锅炉余热资源的回收利用是节约能源的重要措施,工业锅炉排烟余热所占锅炉热量比重较大。如果不控制锅炉烟气余热,将会给地球环境和资料带来极大的危害。 1锅炉烟气余热问题分析 大型锅炉都安装有铸铁管或不锈钢式省煤器,用来助燃空气或预热锅炉给水,但是由于石油、煤、天然气燃料中均含有硫,在燃烧时,硫氧化物的产生是必不可少的,它与水蒸气结合后即形成硫酸蒸汽。当锅炉尾部受热面的金属壁面温度低于硫酸蒸汽的凝结点(称为酸露点),就会在其表面形成液态硫酸(称为结露)。长久以来,省煤器等物体由于结露引起腐蚀,甚至还会穿孔,这种现象时常发生,严重影响了锅炉的运行安全,所以目前的锅炉都是通过提高排烟温度来缓解结露和腐蚀现象的产生,致使锅炉烟气温度很高,从而导致大量热量散发到大气中,浪费资源又污染环境。 据相关数据表明,一般工业锅炉的热效率约为60~70%,它的排烟温度大概在250℃~350℃之间,而导热油炉,排烟温度更是达到280℃以上,大量余热未充分利用,如果把这些烟气直接排放到空气中,这不但会导致气温升高,污染了环境,而且极大的浪费了能源。因此降低锅炉烟气温度已成为锅炉节能的一个重要途径,同时又必须解决锅炉低温腐蚀的难题。 但是,在进行烟气余热回收利用实现节能时,应注意以下几个问题:酸露点腐蚀的部位主要在锅炉的空气预热器后,进一步降低排烟温度和提高热效率,因此要从设计,选材和安装操作等方面采取措施,来防止和减少低温露点腐蚀。 ①稍高于烟气露点腐蚀温度。露点防腐蚀的一般方法是通过精心的设计,在效率降低不多的情况下,提高换热面的壁温,使之稍高于烟气露点温度,使之不产生露点,从而防止腐蚀。②选用耐腐蚀材料。比如,我们可以用ND钢(09CrCuSb),因为它具有较高的抵抗低温腐蚀能力,不但能抗硫酸腐蚀,而且在负氯离子中也具有较高的耐蚀性,而它的力学性能与碳钢相当。③加入换热器。锅炉余热回收主要是在烟气进入水膜除尘器前增加烟道截面积,同时再加入一组换热器。的加入会影响到锅炉的排烟流量和排烟阻力,而增加烟道截面积主要是为避免加入换热器后在烟道中形成的阻力。 通过利用热管式换热器的余热回收装置能将烟气中的高品位余热进行回收,可使工业炉效率提高8~10%。它是把传统工业锅炉排出的废烟气,用于提高锅炉软水温度,或用锅炉排出的废烟气,加热锅炉助燃空气提高送风温度,实现节能,这个装置的使用对锅炉效率的提高具有重大的理论与现实意义。 2余热回收装置的使用 热管换热器的使用使锅炉的利用率大有提高,它是通过不同形式的组合,回收锅炉烟气余热,例如:用于预热锅炉助燃空气(空预器);预热锅炉给水(省煤器);生产热水(水加热器);生产蒸汽(余热锅炉)。热管换热器能够将燃气锅炉烟气温度降低至80℃左右,燃柴油锅炉烟气温度降低至100℃左右,这是铸铁管或不锈钢式省煤器或空气预热器无法做到的。它具有以下特点: 热管是敏度极高的换热元件,它是在真空管内液体之间相互传递热量,真空内部热阻小,具有良好的等温性能等特点,具体表现在: ①体积小,传热效率高。热管可以相变传热,还可以在换热流体两侧时肋化,强化其传热。相同热负荷下,可减少管数,可扩大流通面积,可降低流速,这样就大大减轻了他们的磨损,延长换热器的使用寿命。②具有极强的抗腐蚀能力。由于他们之间的传热靠真空管内液体相变进行,由于壁面温度高,而且等温性能好,设计时应该使管壁温度稍高于烟气露点温度,这样烟气冲刷热管时就不会结露,烟气中含硫不会溢出,而是随烟气排出,所以热管、管箱

烟气余热利用(DOC)

对我厂烟气余热利用的合理化建议 摘要: 我厂地处贵州省六盘水市水城县发耳镇,发耳镇地势四周高,中间低,呈锅底形,全年气候温热,雨量偏低,平均海拔1200米,年降雨量为1100-1200毫米,年平均气温为25℃,属低热河谷地带,有“天然温室”之称。总面积104平方公里,矿产资源主要有煤、铁、粘土。其中以煤储量最大,目前已探明19亿余吨。主要分布在湾子沿北盘江边,煤质较好,煤的灰粉一般在14%,粘吸指数为50,发热量6500卡。对于正处在少年时期的燃煤机组发耳电厂而言,占据较好的地理位置,有着大好的发展前景。然而,由于设计与电厂体制的一系列原因,导致我厂现运行设备设计与现实偏差,未处在最佳运行状态,尤其是烟气余热未得到很好的利用,又因煤质的变化导致除灰脱硫超负荷运行,所以,实行烟气余热利用技改势在必行。 我国60~1 000 MW电站锅炉烟气余热利用于凝结水、给水及送风系统,其转换效率为19.5%~23%,根据能级原理,提出了一种深度利用烟气余热和减少回热抽汽损失、实现锅炉排烟温度自动控制的高效循环系统方案。热力学分析表明,此方案可使600 MW机组无煤附加功率由0.6 MW增加至20 MW左右,全厂净效率提高0.9%,投资回收期小于2.0年,具有良好的节能减排、降低发电煤耗的作用,并对新建和老机组设计优化提出了原则性的建议。

关键词:锅炉;排烟温度;能级利用;烟气余热回收;高效循环系统 烟气余热利用从上世纪50年代以来,在60~1000 MW等级电站锅炉上进行了广泛的探索,取得了一定的成绩,但是与国外先进设计相比存在较大差距。上世纪90年代以来,俄罗斯、德国等国家根据能源价格和环保要求的变化,锅炉排烟温度设计值降低到100℃,并在新建机组或老机组改造中得到了工程验证,使供电煤耗下降6--7 g/(kW.h),但目前国内尚未见可行性和应用价值方面的报道。 根据能级和系统工程原理,提出了一种深度利用烟气余热和减少回热抽汽做功损失,实现排烟温度稳恒控制的高效系统,不但能提高机组性能,而且能深度利用锅炉余热,较大程度地改善锅炉尾部低温受热面结露腐蚀和堵灰问题。 超临界机组锅炉烟气利用高效循环系统 能级理论指出:无论是纯凝机组、再热机组,还是供热机组,都可以看成由若干个能级组成,从锅炉到凝汽器,每个能级的热功效率,逐级下降,相同的热量作用于不同的系统(不同的能级),将会对系统的做功能力产生不同的效果。锅炉受热面可分为锅炉能级受热面和低能级受热面,过热器、再热器、水冷壁、省煤器和高压加热器是锅炉能级受热面,空气预热器、暖风器和低压加热器是低能级受热面,如果将锅炉空气预热器后的低能级烟气热能通过换热器转移到同等能级的低压加热器,就会出现锅炉冷端(烟囱)排烟损失减少量与汽轮机冷端(冷却塔)排汽损失增加量基本相当的问题,区别仅为冷源损失由锅炉侧转移为汽轮机侧。

烟气余热回收装置的利用

烟气余热回收装置的利用

烟气余热回收装置的利用 [摘要]文章主要介绍锅炉排烟余热回收的必要性和利用方向,当今国内外烟气回收装置的应用情况,从设计角度提出设置烟气余热回收装置(烟气冷却器)需要考虑的问题,并列举工程设计方案及其预期的节能效果。 [关键词]烟气余热回收;低温腐蚀;节能 [作者简介]梁著文,广东省电力设计研究院,广东广州,510000 [中图分类号]TM621.2 [文献标识码]A [文章编号]1007-7723(2010)10-0111-0003 一、引言 在火电厂的运行中,煤炭燃烧及各种用能设备、热能换热设备产生了大量的余热,然而这些能量多数都被浪费了。近些年来,在国家大力倡导“节能减排”能源利用政策的大环境下,国内某些电厂成功地设计安装了余热回收利用装置,给电厂带来很好的经济效益。 对火力发电厂讲,锅炉热损失中最大的是排烟热损失。对小型锅炉,燃用高硫分煤时,排烟温度比较高,可以达到180~220℃左右;中型锅炉排烟温度在110~180℃。一般来说,排烟温度每升高15~20℃,锅炉热效率大约降低1. 0%。

因此,锅炉排烟是一个潜力很大的余热资源。 二、烟气余热的利用方向 烟气余热的利用方向主要可分为预热并干燥燃料、预热助燃空气、加热热网水、凝结水等。 1.用水水换热的暖风器替代常规蒸汽暖风器,即以一次循环水为热媒,将在烟气侧吸收的热量释放给一、二次冷风,将进入预热器前的冷风预加热,以减少常规蒸汽暖风器辅助蒸汽用量。 2.利用烟气余热干燥褐煤。其核心设备(干燥机滚筒)是稍微倾斜并可回转的圆筒体,湿物料从一端上部加入,干物料在另一端下部进行收集。约150℃的热烟气由进料端或出料端进入,从另一端的上部排出,热烟气和物料以逆流或顺流的方式接触,出口烟气温度约降至120℃左右。 3.安装防腐蚀管式换热器,用来加热厂房或是厂区的水暖系统热网循环水,以替代或部分替代常规的热网加热器,从而节省了热网加热器的加热蒸汽量,增加了发电量。 4.利用烟气的余热加热凝结水,用来提高全厂的热效率,降低煤耗,增加电厂发电量。加热的方式主要有两个:一是直接加热方式,即安装烟气回热加热器,使烟气与凝结水直接进行热交换;二是间接加热方式,即安装烟气回热加热器及水水换热器,使烟气在闭式水和烟气回热加热器内进行热交换;吸收烟气余热后的闭式水进入水水换热器内与凝

余热回收设计方案

恒昌焦化 焦炉烟气余热回收项目 设计方案 唐山德业环保设备有限公司

二〇一二年三月 一、焦化工艺概述: 备煤车间送来的配合煤装入煤塔,装煤车按作业计划从煤塔取煤,经计量后装入炭化室内。煤料在炭化室内经过一个结焦周期的高温干馏制成焦炭并产生荒煤气。 炭化室内的焦炭成熟后,用推焦车推出,经拦焦车导入熄焦车内,并由电机车牵引熄焦车到熄焦塔内进行喷水熄焦。熄焦后的焦炭卸至凉焦台上,冷却一定时间后送往筛焦工段,经筛分按级别贮存待运。 煤在炭化室干馏过程中产生的荒煤气汇集到炭化室顶部空间,经过上升管、桥管进入集气管。约800℃左右的荒煤气在桥管内被氨水喷洒冷却至84℃左右。荒煤气中的焦油等同时被冷凝下来。煤气和冷凝下来的焦油等同氨水一起经过吸煤气管送入煤气净化车间。 焦炉加热用的焦炉煤气,由外部管道架空引入。焦炉煤气经预热后送到焦炉地下室,通过下喷管把煤气送入燃烧室立火道底部与由废气交换开闭器进入的空气汇合燃烧。燃烧后的废气经过立火道顶部跨越孔进入下降气流的立火道,再

经蓄热室,又格子赚把废气的部分显热回收后,经过小烟道、废气交换开闭器、分烟道、总烟道、烟囱排入大气。 对于其中经总烟道进入烟囱热烟气的仍有较大的余热回收价值。 二、余热回收工艺流程图 技术方案如下:该系统由热管蒸气发生器、软水预热器、汽包、上升管、下降管、外连管路和控制仪表等组成,并且互相独立。 主要技术特点: 1、地下烟道开孔技术:如何实现地下主烟道在焦炉正常行产情况下在线开孔,是本项目成功实施的第一关键。我公司根据多次地下烟道的开孔经验,成功总结出一套行之有效施工方案。

地下烟道路截面尺寸如上图所示。

相关文档
相关文档 最新文档