文档视界 最新最全的文档下载
当前位置:文档视界 › 材料力学

材料力学

材料力学
材料力学

?《材料力学》大纲

Ⅰ.性质

??????? 普通高等学校本科插班生招生考试是由专科毕业生参加的选拔性考试。高等学校根据考生的成绩,按已确定的招生计划,德、智、体全面衡量,择优录取。因此,本科插班生考试应有较高的信度、效度、必要的区分度和适当的难度。

Ⅱ.考试内容

总要求:《材料力学》是土木工程专业学生必修的一门专业基础课,是学习结构力学和其它专业课程的基础。要求学生掌握杆件变形的基本形式和研究方法,熟悉材料的力学性能和有关实验方法。具体要求掌握杆件拉伸(压缩)、扭转、剪切、弯曲的基本分析方法,学会各种情况下应力和变形的计算以及利用强度条件和刚度条件进行计算。

??? 各章具体要求如下:

一、?绪论

(一)知识范围

1、?材料力学的任务

2、?可变形固体的基本性质

3、?杆件变形的基本形式

(二)要求

1、明确材料力学的任务,掌握保证构件(杆件)正常工作必须满足强度、刚度、稳定性的要求

2、理解并掌握可变形固体的基本性质及其基本假设

3、掌握杆件的几何特征、杆件变形的基本形式:轴向拉伸(压缩)、剪切、扭转、弯曲

二、?轴向拉伸与压缩

(一)知识范围

1、?轴向拉伸与压缩的概念

2、?内力、截面法、轴力和轴力图

3、?横截面及斜截面上的应力

4、?拉(压)杆变形、胡克定律

5、?拉(压)应变能

6、?材料在拉(压)时的力学性能

7、?应力集中概念

(二)要求

1、理解轴向拉伸与压缩的概念

2、掌握内力的概念、用截面法求内力、轴力和轴力图的画法

3、掌握应力的概念、横截面上应力的计算公式以及通过横截面的应力求斜截面上的应力

4、掌握拉(压)杆变形的计算、胡克定律的两种表达形式,并会运用

5、了解能量守恒定律,理解拉(压)杆内应变能的计算公式

6、了解测量材料力学性能的基本实验方法,了解一些典型材料在拉(压)时的力学性能

7、了解应力集中的概念

三、?扭转

(一)知识范围

1、?薄壁筒的扭转

2、?力偶矩、扭矩和扭矩图

3、?等直圆杆的扭转

4、?等直非圆杆的扭转

(二)要求

1、理解等直杆扭转的基本概念,掌握薄壁筒扭转切应力、切应变计算公式、剪切胡克定律

2、掌握力偶矩、扭矩的计算,会画扭矩图

3、掌握等直圆杆扭转时横截面上应力的计算公式、切应力互等定理、扭转强度条件;掌握等直圆杆扭转时的扭转角变形计算以及刚度条件;理解等直圆杆扭转时的应变能计算方法

4、了解等直非圆杆扭转时应力的计算方法

四、?弯曲内力

(一)知识范围

1、?平面弯曲基本概念

2、?梁的剪力与弯矩

3、?剪力方程、弯矩方程、剪力图、弯矩图

4、?弯矩、剪力与分布荷载的关系及其应用

5、?用叠加法作弯矩图

6、?平面钢架和曲杆的内力图

(二)要求

1、理解平面弯曲的基本概念、梁的计算简图的三种基本形式

2、熟练掌握用截面法和简易法求梁任一横截面的剪力与弯矩

3、掌握列剪力方程、弯矩方程的方法,熟练绘制剪力图、弯矩图

4、掌握弯矩、剪力与分布荷载的关系及其应用

5、理解叠加原理,掌握使用叠加法作弯矩图

6、掌握平面钢架和曲杆的内力图的画法

五、?弯曲应力

(一)知识范围

1、?纯弯曲时梁上的正应力

2、?纯弯曲理论在横力弯曲中的推广、梁的正应力条件

3、?梁横截面上的剪应力、梁的件应力强度条件

4、?梁的合理设计

(二)要求

1、了解纯弯曲时梁上正应力计算公式的推导过程,掌握正应力的计算

2、理解纯弯曲理论在横力弯曲中的推广,熟记正应力的计算公式,掌握梁的正应力强度条件及其应用

3、掌握梁横截面上的切应力的计算公式及梁的切应力强度条件的应用

4、了解梁的合理设计常采用的几种措施

六、?弯曲位移

(一)知识范围

1、?梁的位移,梁的挠曲线近似微分方程及其积分

2、?按叠加原理计算梁的挠度和转角

3、?梁的刚度校核、提高梁的刚度的措施

4、?梁的弯曲应变能

(二)要求

1、理解梁的位移的基本概念,掌握梁的挠曲线近似微分方程及其积分求位移方程的方法

2、理解并掌握按叠加原理计算梁的挠度和转角的方法

3、掌握梁的刚度条件及应用,了解提高梁的刚度的措施

4、了解梁的弯曲应变能的计算

七、?简单超静定问题的解法

(一)知识范围

1、?简单超静定问题概述

2、?轴向拉(压)超静定

3、?扭转超静定

4、?简单超静定梁

(二)要求

1、掌握什么是超静定问题、会判断超静定次数

2、掌握简单轴向拉(压)超静定问题的求解

3、掌握简单扭转超静定问题的求解

4、掌握简单超静定梁的求解

Ⅲ.考试形式及试卷结构

1、考试形式为闭卷、笔试,试卷满分为100分,考试时间为120分钟,考生使用答题纸答题。

2、试卷内容比例:轴向拉伸(压缩)约20%,扭转约20%,弯曲约60%。

3、试卷题型均为计算题。

4、试卷难易比例:易、中、难分别约为40%、40%、20%。

Ⅳ.参考书目

1、孙训方、方孝淑、关来泰编:《材料力学(I)》第四版,高等教育出版社,2002。

2、袁海庆主编:《材料力学》,武汉工业大学出版社,2000。

3、其它版本《材料力学》均可。

Ⅴ.题型示例

材料力学重点总结

材料力学阶段总结 一、 材料力学得一些基本概念 1. 材料力学得任务: 解决安全可靠与经济适用得矛盾。 研究对象:杆件 强度:抵抗破坏得能力 刚度:抵抗变形得能力 稳定性:细长压杆不失稳。 2、 材料力学中得物性假设 连续性:物体内部得各物理量可用连续函数表示。 均匀性:构件内各处得力学性能相同。 各向同性:物体内各方向力学性能相同。 3、 材力与理力得关系, 内力、应力、位移、变形、应变得概念 材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体。 内力:附加内力。应指明作用位置、作用截面、作用方向、与符号规定。 应力:正应力、剪应力、一点处得应力。应了解作用截面、作用位置(点)、作用方向、与符号规定。 正应力 应变:反映杆件得变形程度 变形基本形式:拉伸或压缩、剪切、扭转、弯曲。 4、 物理关系、本构关系 虎克定律;剪切虎克定律: ???? ? ==?=Gr EA Pl l E τεσ夹角的变化。剪切虎克定律:两线段 ——拉伸或压缩。拉压虎克定律:线段的 适用条件:应力~应变就是线性关系:材料比例极限以内。 5、 材料得力学性能(拉压): 一张σ-ε图,两个塑性指标δ、ψ,三个应力特征点:,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。 拉压弹性模量E ,剪切弹性模量G ,泊松比v , 塑性材料与脆性材料得比较: 安全系数:大于1得系数,使用材料时确定安全性与经济性矛盾得关键。过小,使构件安全性下降;过大,浪费材料。 许用应力:极限应力除以安全系数。 塑性材料 脆性材料 7、 材料力学得研究方法

1)所用材料得力学性能:通过实验获得。 2)对构件得力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理论 应用得未来状态。 3)截面法:将内力转化成“外力”。运用力学原理分析计算。 8、材料力学中得平面假设 寻找应力得分布规律,通过对变形实验得观察、分析、推论确定理论根据。 1) 拉(压)杆得平面假设 实验:横截面各点变形相同,则内力均匀分布,即应力处处相等。 2) 圆轴扭转得平面假设 实验:圆轴横截面始终保持平面,但刚性地绕轴线转过一个角度。横截面上正应力为零。 3) 纯弯曲梁得平面假设 实验:梁横截面在变形后仍然保持为平面且垂直于梁得纵向纤维;正应力成线性分布规律。 9 小变形与叠加原理 小变形: ①梁绕曲线得近似微分方程 ②杆件变形前得平衡 ③切线位移近似表示曲线 ④力得独立作用原理 叠加原理: ①叠加法求内力 ②叠加法求变形。 10 材料力学中引入与使用得得工程名称及其意义(概念) 1) 荷载:恒载、活载、分布荷载、体积力,面布力,线布力,集中力,集中力偶,极限荷 载。 2) 单元体,应力单元体,主应力单元体。 3) 名义剪应力,名义挤压力,单剪切,双剪切。 4) 自由扭转,约束扭转,抗扭截面模量,剪力流。 5) 纯弯曲,平面弯曲,中性层,剪切中心(弯曲中心),主应力迹线,刚架,跨度, 斜弯 曲,截面核心,折算弯矩,抗弯截面模量。 6) 相当应力,广义虎克定律,应力圆,极限应力圆。 7) 欧拉临界力,稳定性,压杆稳定性。 8)动荷载,交变应力,疲劳破坏。 二、杆件四种基本变形得公式及应用 1、四种基本变形:

《材料力学》学习资料

00习题 要求: 1.将题目转化为Microsoft Word文档; 2.解题过程用Microsoft Word文档,公式用公式编辑器,只交电子文档作业; 3.期末考试前必须作对所有所给题目,否则不能参加期末考试,请于指定时间前交作业。第一题(2010年3月5日前交该题作业)星期五 1.21 Determine the smallest allowable cross-sectional areas of members BD, BE, and CE of the truss shown. The working stresses are 20 000 psi in tension and 12 000 psi in compression. (A reduced stress in compression is specified to reduce the danger of buckling.)

Solution The free-body diagram of homogeneous BC in Fig.(b). The equilibrium equation are 0243616,0=-?=∑Ay F P M , P=24(kips)=24000(lb) The free-body diagram of truss in Fig.(c). The equilibrium equation are 0368)16 648816 6448(316,0=?-+? ++?+?=∑BD Ay E P P M , P BD =-8.944(kips) (Compression) 088, 0=-=∑CE Ay B P P M P CE =24(kips) (Tension ) 016 64436707.0, 0=++ --=∑BD BE Ay y P P P F P BE =-11.32(kN) (Compression) The normal stress of a member CE, DE and DF is )./(1200089442in lb A lb A P BD BD BD BD ≤== σ (Compression) A BD =0.745(in.2) )./(12000113202in lb A lb A P BE BE BE BE ≤== σ (Compression)

材料力学重点总结-材料力学重点

材料力学阶段总结 一.材料力学的一些基本概念 1.材料力学的任务: 解决安全可靠与经济适用的矛盾。 研究对象:杆件 强度:抵抗破坏的能力 刚度:抵抗变形的能力 稳定性:细长压杆不失稳。 2.材料力学中的物性假设 连续性:物体内部的各物理量可用连续函数表示。 均匀性:构件内各处的力学性能相同。 各向同性:物体内各方向力学性能相同。 3.材力与理力的关系 , 内力、应力、位移、变形、应变的概念 材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体。 内力:附加内力。应指明作用位置、作用截面、作用方向、和符号规定。 应力:正应力、剪应力、一点处的应力。应了解作用截面、作用位置(点)、作用方向、 和符号规定。 压应力 正应力拉应力 线应变 应变:反映杆件的变形程度角应变 变形基本形式:拉伸或压缩、剪切、扭转、弯曲。 4.物理关系、本构关系虎 克定律;剪切虎克定律: 拉压虎克定律:线段的拉伸或压缩。 E —— Pl l EA 剪切虎克定律:两线段夹角的变化。Gr 适用条件:应力~应变是线性关系:材料比例极限以内。 5.材料的力学性能(拉压): 一张σ - ε图,两个塑性指标δ 、ψ ,三个应力特征点:p、s、b,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。 拉压弹性模量,剪切弹性模量,泊松比 v , G E (V) E G 2 1 塑性材料与脆性材料的比较: 变形强度抗冲击应力集中

塑性材料流动、断裂变形明显 较好地承受冲击、振动不敏感 拉压s 的基本相同 脆性无流动、脆断仅适用承压非常敏感 6.安全系数、许用应力、工作应力、应力集中系数 安全系数:大于 1的系数,使用材料时确定安全性与经济性矛盾的关键。过小,使 构件安全性下降;过大,浪费材料。 许用应力:极限应力除以安全系数。 s0 塑性材料 s n s b 脆性材料0b n b 7.材料力学的研究方法 1)所用材料的力学性能:通过实验获得。 2)对构件的力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理 论应用的未来状态。 3)截面法:将内力转化成“外力” 。运用力学原理分析计算。 8.材料力学中的平面假设 寻找应力的分布规律,通过对变形实验的观察、分析、推论确定理论根据。 1)拉(压)杆的平面假设 实验:横截面各点变形相同,则内力均匀分布,即应力处处相等。 2)圆轴扭转的平面假设 实验:圆轴横截面始终保持平面,但刚性地绕轴线转过一个角度。横截面上正应力 为零。 3)纯弯曲梁的平面假设 实验:梁横截面在变形后仍然保持为平面且垂直于梁的纵向纤维;正应力成线性分 布规律。 9小变形和叠加原理 小变形: ①梁绕曲线的近似微分方程 ② 杆件变形前的平衡 ③ 切线位移近似表示曲线 ④ 力的独立作用原理 叠加原理: ① 叠加法求内力 ② 叠加法求变形。 10材料力学中引入和使用的的工程名称及其意义(概念) 1)荷载:恒载、活载、分布荷载、体积力,面布力,线布力,集中力,集中力偶, 极限荷载。 2)单元体,应力单元体,主应力单元体。

生活中的材料力学

生活中的材料力学 罗晖淼 摘要:在我们身边的每一个角落都运用到了材料力学的原理。学完材料力学之后,用另一个角度去剖析生活中的材料力学现象,别有一番风味。 关键字:应力集中,动载荷,稳定性 一:应力集中 大家可能都有过类似的体验,那就是有些零食的外包装非常平整美观,可是却 不实用,它们经常因为撕不开而遭到我们的嫌弃。相反,有些小零食的包装袋上会有一排锯齿的形状,而当我们沿着锯齿的凹槽撕的时候,无论这个包装所用的材料多么特殊,都能轻松地撕开一个大口子。这是为什么呢?这其实运用到了圣维南原理。当我们沿着锯齿的凹槽撕的时候,手指所加的力是垂直于包装袋的,因此切应力都集中在了凹槽处,即产生应力集中现象。此时凹槽处的切应力会急剧增大,那么只要手指稍稍用力,就很容易从这个凹槽将包装袋撕开。

这种应用应力集中的现象生活中还有很多。比如掰黄瓜,有时候我们想把黄瓜

掰成两段时,往往会先用指甲在黄瓜中间掐一个小缝,然后双手用力一掰,黄瓜就很容易被掰成两段。同样的,因为在小缝处应力集中,黄瓜上作用的两个力矩使得缝隙处的切应力急剧增大,于是黄瓜中间截面发生脆断。再比如撕布条,如果一块完整的布条要将其撕成两半是很困难的,除非有很大的力把它拉断,而我们一般人是没有那么大的力气的,怎么办呢?通常我们会用剪刀在布条上剪出一个小缺口,然后沿着缺口撕开布条,其原理和食品包装袋是一样的。 既然应力集中给我们的生活带来了这么多的便利,那是不是应力集中越多越好呢?其实并不是,在工程上,基本都需要避免应力集中。像那些大桥,飞机,机床,建筑等大型工业结构,为了保证其坚固耐用寿命长,容易发生应力集中的地方如铆钉连接都需要特别地注意。所以工字钢并不是标准的工字型,在直角处都改造成了弧线形过度,就是为了防止工字钢因应力集中而断裂。 工程上的这些问题可比生活中的小问题严重得多,一个小问题都有可能导致重大的事故。曾经有一起飞行事故:飞机起落架里的一个小零件由于应力集中而发生断裂,卡在那里,导致起落架无法放下。不过还好,凭借飞行员高超的技术最终还是平安降落了。 二:动载荷 这里其实运用到了冲击载荷的知识。自由落体冲击是的动荷因数为:

本材料力学复习资料全

填空 1. 杆件的基本变形形式一般有 、剪切、 、弯曲四种,而应变只有线应变、 两种。 2.梁段上,只有弯矩没有剪力的弯曲形式称为 弯曲。 3.将圆轴的直径增大一倍,则圆轴的强度提高 倍 4.矩形截面梁截面宽b 高h ,弯曲时横截面上最大正应力 max σ出现在最大弯矩截面的 各点,=m ax σ 。 5.低碳钢试件受拉时,沿 方向出现滑移线;铸铁试件受拉时,沿 方向断裂。 6. 第三强度理论即 理论,其相当应力表达式为 。 7. 杆件的基本变形形式一般有拉压、 、扭转、 四种,而应变只有 、切应变两种。 8. 梁段上,既有弯矩又有剪力的弯曲形式称为 。 9. 将圆轴的直径增大一倍,则圆轴的刚度提高 倍。 10. 单元体中 的截面称为主平面,其上的正应力称为 。 11. 如下图所示的悬臂梁,长度m kN q m l /2,5==满跨均分布荷载,则A 端右邻截面上 弯矩是 ,要减小梁自由端的挠度,一般采取减小 的方法; 12. 工程上将延伸率≥δ 的材料称为塑性材料。 13. 所谓 ,是指材料件抵抗破坏的能材;所谓 ,是指构件抵抗变形的能力。 14. 圆截面梁,若直径d 增大一倍(其它条件不变),则梁的最大正应力降至原来的 。 15. 圆形截面的抗扭截面系数W p = 。 16. 矩形截面梁弯曲时横截面上最大切应力max τ出现在最大剪力截面的 各点,如果截面 面积为F S 截面面积为A ,则=τmax 。 17. 如图所示,1—1截面上的轴力为 ,2-2截面上的轴力为 。 18. 若要求校核工字形截面钢梁腹板与冀缘交接处一点的强度,则应该用 强度理论,其强度条件(用该点横截面上的正应力σ和剪应力τ来表示)表达式是 。 19.如下图示的圆截面杆受扭时,在其表面上一点处沿与杆轴成-45°角的斜面上将出现最大 的 应力,而在其横、纵截面上将出现最大的 应力。 20. 矩形截面梁在横力弯曲的情况下,横截面上的剪应力是沿截面高度按 规律变化的,在中性轴处的剪应力值等于 。 21. 低碳钢圆截面试件受扭时,沿 截面破坏;铸铁圆截面试件受扭时,沿 面破坏。 22. 轴向受力杆如图所示,1-1截面上的轴力为 。 23. 对图示梁进行剪应力强度计算时,最大剪力为 。

本材料力学复习资料全

填空 1.杆件的基本变形形式一般有 _、剪切、_______ 、弯曲四种,而应变只有线应变、_______ 两种。 2.梁段上,只有弯矩没有剪力的弯曲形式称为_______ 弯曲。 3?将圆轴的直径增大一倍,则圆轴的强度提高_________ 倍 4.矩形截面梁截面宽b高h,弯曲时横截面上最大正应力max出现在最大弯矩截面的各 点,m ax ______________ 。 5?低碳钢试件受拉时,沿________ 方向出现滑移线;铸铁试件受拉时,沿 _______ 方向断裂。 6.第三强度理论即_________ 理论,其相当应力表达式为 ________ 。 7.杆件的基本变形形式一般有拉压、______ 、扭转、____ 四种,而应变只有____ 、切应变两种。 8.梁段上,既有弯矩又有剪力的弯曲形式称为_______ 。 9.将圆轴的直径增大一倍,则圆轴的刚度提高_______ 倍。 10.单元体中_____ 的截面称为主平面,其上的正应力称为_________ 。 11.如下图所示的悬臂梁,长度| 5m,满跨均分布荷载q 2kN/m ,则A端右邻截面上 弯矩是______ ,要减小梁自由端的挠度,一般采取减小______ 的方法; 12.工程上将延伸率____________ 的材料称为塑性材料。 13.所谓______ ,是指材料件抵抗破坏的能材;所谓__________ ,是指构件抵抗变形的能力。 14.圆截面梁,若直径d增大一倍(其它条件不变),则梁的最大正应力降至原来的_。 15.圆形截面的抗扭截面系数VP= _________ 。 16.矩形截面梁弯曲时横截面上最大切应力max出现在最大剪力截面的______ 各点,如果截面 面积为F s截面面积为A,则max ________________ 。 17.______________________________________ 如图所示,1 —1截面上的轴力为,2-2截面上的轴力为 18.若要求校核工字形截面钢梁腹板与冀缘交接处一点的强度,则应该用____________ 强度理 论,其强度条件(用该点横截面上的正应力b和剪应力T来表示)表达式是__________ 。19.如下图示的圆截面杆受扭时,在其表面上一点处沿与杆轴成-45 °角的斜面上将出现最大 的_______ 应力,而在其横、纵截面上将出现最大的_________ 应力。 20.矩形截面梁在横力弯曲的情况下,横截面上的剪应力是沿截面高度按_______ 规律变化的,在中性轴处的剪应力值等于 _。 21.低碳钢圆截面试件受扭时,沿 _截面破坏;铸铁圆截面试件受扭时,沿_面破坏。 22.轴向受力杆如图所示,1 —1截面上的轴力为_______ 。

材料力学主要知识点归纳

材料力学主要知识点 一、基本概念 1、构件正常工作的要求:强度、刚度、稳定性。 2、可变形固体的两个基本假设:连续性假设、均匀性假设。另外对于常用工程材料(如钢材),还有各向同性假设。 3、什么是应力、正应力、切应力、线应变、切应变。 杆件截面上的分布内力集度,称为应力。应力的法向分量σ称为正应力,切向分量τ称为切应力。 杆件单位长度的伸长(或缩短),称为线应变;单元体直角的改变量称为切应变。 4、低碳钢工作段的伸长量与荷载间的关系可分为以下四个阶段:弹性阶段、屈服阶段、强化阶段、局部变形阶段。 5、应力集中:由于杆件截面骤然变化(或几何外形局部不规则)而引起的局部应力骤增现象,称为应力集中。 6、强度理论及其相当应力(详见材料力学ⅠP229)。 7、截面几何性质 A 、截面的静矩及形心 ①对x 轴静矩?=A x ydA S ,对y 轴静矩?=A y xdA S ②截面对于某一轴的静矩为0,则该轴必通过截面的形心;反之亦然。 B 、极惯性矩、惯性矩、惯性积、惯性半径 ① 极惯性矩:?=A P dA I 2ρ ② 对x 轴惯性矩:?= A x dA y I 2,对y 轴惯性矩:?=A y dA x I 2 ③ 惯性积:?=A xy xydA I ④ 惯性半径:A I i x x =,A I i y y =。 C 、平行移轴公式: ① 基本公式:A a aS I I xc xc x 22++=;A b bS I I yc yc y 22++= ;a 为x c 轴距x 轴距离,b 为y c 距y 轴距离。 ② 原坐标系通过截面形心时A a I I xc x 2+=;A b I I yc y 2+=;a 为截面形心距x 轴距离, b 为截面形心距y 轴距离。 二、杆件变形的基本形式 1、轴向拉伸或轴向压缩: A 、应力公式 A F = σ B 、杆件伸长量EA F N l l =?,E 为弹性模量。

材料力学总结Ⅱ(乱序,建议最后阶段复习)

材料力学阶段总结 一.材料力学的一些基本概念 1. 材料力学的任务: 解决安全可靠与经济适用的矛盾。 研究对象:杆件 强度:抵抗破坏的能力 刚度:抵抗变形的能力 稳定性:细长压杆不失稳。 2. 材料力学中的物性假设 连续性:物体内部的各物理量可用连续函数表示。 均匀性:构件内各处的力学性能相同。 各向同性:物体内各方向力学性能相同。 3. 材力与理力的关系,内力、应力、位移、变形、应变的概念 材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体。 内力:附加内力。应指明作用位置、作用截面、作用方向、和符号规定。 应力:正应力、剪应力、一点处的应力。应了解作用截面、作用位置(点)、 作用方向、和符号规定。 变形基本形式:拉伸或压缩、剪切、扭转、弯曲。 4. 物理关系、本构关系 虎克定律;剪切虎克定律: 拉压虎克定律:线段的拉伸或压缩。 E ——I 巴 EA 剪切虎克定律:两线段 夹角的变化。 Gr 适用条件:应力?应变是线性关系:材料比例极限以内。 5. 材料的力学性能(拉压): 一张C - &图,两个塑性指标3、书,三个应力特征点: p 、 s 、 b ,四个 变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。 拉压弹性模量E ,剪切弹性模量G,泊松比v , G E 2(1 V ) 正应力 压应力 拉应力 应变:反映杆件的变形程度 线应变 角应变

6. 安全系数、 许用应力、工作应力、应力集中系数 安全系数:大于1的系数,使用材料时确定安全性与经济性矛盾的关键。 过小,使构件安全性下降;过大,浪费材料。 许用应力:极限应力除以安全系数。 脆性材料 7. 材料力学的研究方法 1) 所用材料的力学性能:通过实验获得。 2) 对构件的力学要求:以实验为基础,运用力学及数学分析方法建立理 论,预测理论应用的 未来状态。 3) 截面法:将内力转化成“外力”。运用力学原理分析计算。 8. 材料力学中的平面假设 寻找应力的分布规律,通过对变形实验的观察、分析、推论确定理论根据。 1) 拉(压)杆的平面假设 实验:横截面各点变形相同,则内力均匀分布,即应力处处相等。 2) 圆轴扭转的平面假设 实验:圆轴横截面始终保持平面,但刚性地绕轴线转过一个角度。横截面 上正应力为零。 3) 纯弯曲梁的平面假设 实验:梁横截面在变形后仍然保持为平面且垂直于梁的纵向纤维; 正应力 成线性分布规律。 9小变形和叠加原理 小变形: ① 梁绕曲线的近似微分方程 ② 杆件变形前的平衡 ③ 切线位移近似表示曲线 ④ 力的独立作用原理 叠加原理: ① 叠加法求内力 ② 叠加法求变形。 10材料力学中引入和使用的的工程名称及其意义(概念) 1) 荷载:恒载、活载、分布荷载、体积力,面布力,线布力,集中力, 集中力偶,极限荷载。 2) 单元体,应力单元体,主应力单元体。 3) 名义剪应力,名义挤压力,单剪切,双剪切。 4) 自由扭转,约束扭转,抗扭截面模量,剪力流。 塑性材料 n s n b

材料力学复习资料(同名5782)

材料力学复习资料 一、填空题 1、为了保证机器或结构物正常地工作,要求每个构件都有足够的抵抗破坏的能力,即要求它们有足够的强度;同时要求他们有足够的抵抗变形的能力,即要求它们有足够的刚度;另外,对于受压的细长直杆,还要求它们工作时能保持原有的平衡状态,即要求其有足够的 稳定性。 2、材料力学是研究构件强度、刚度、稳定性的学科。 3、强度是指构件抵抗破坏的能力;刚度是指构件抵抗变形的能力;稳定性是指构件维持其原有的平衡状态的能力。 4、在材料力学中,对变形固体的基本假设是连续性假设、均匀性假设、各向同性假设。 5、随外力解除而消失的变形叫弹性变形;外力解除后不能消失的变形叫塑性变形。 6、截面法是计算内力的基本方法。 7、应力是分析构件强度问题的重要依据。 8、线应变和切应变是分析构件变形程度的基本量。 9、轴向尺寸远大于横向尺寸,称此构件为杆。 10、构件每单位长度的伸长或缩短,称为线应变。 11、单元体上相互垂直的两根棱边夹角的改变量,称为切应变。 12、轴向拉伸与压缩时直杆横截面上的内力,称为轴力。 13、应力与应变保持线性关系时的最大应力,称为比例极限。 14、材料只产生弹性变形的最大应力,称为弹性极根;材料能承受的最大应力,称为强度极限。 15、弹性模量E是衡量材料抵抗弹性变形能力的指标。 16、延伸率δ是衡量材料的塑性指标。δ≥5%的材料称为塑性材料;δ<5%的材料称为脆性材料。 17、应力变化不大,而应变显著增加的现象,称为屈服或流动。 18、材料在卸载过程中,应力与应变成线性关系。 19、在常温下把材料冷拉到强化阶段,然后卸载,当再次加载时,材料的比例极限提高,而塑性降低,这种现象称为冷作硬化。 20、使材料丧失正常工作能力的应力,称为极限应力。 21、在工程计算中允许材料承受的最大应力,称为许用应力。 22、当应力不超过比例极限时,横向应变与纵向应变之比的绝对值,称为泊松比。 23、胡克定律的应力适用范围是应力不超过材料的比例极限。 24、杆件的弹性模量E表征了杆件材料抵抗弹性变形的能力,这说明在相同力作用下,杆件材料的弹性模量E值越大,其变形就越小。 25、在国际单位制中,弹性模量E的单位为GPa。 26、低碳钢试样拉伸时,在初始阶段应力和应变成线性关系,变形是弹性的,而这种弹性变形在卸载后能完全消失的特征一直要维持到应力为弹性极限的时候。 27、在低碳钢的应力—应变图上,开始的一段直线与横坐标夹角为,由此可知其正切tg在数值上相当于低碳钢拉压弹性模量E的值。 28、金属拉伸试样在进入屈服阶段后,其光滑表面将出现与轴线成45o角的系统条纹,此条纹称为滑移线。 29、使材料试样受拉达到强化阶段,然后卸载,再重新加载时,其在弹性范围内所能达到的最大荷载将提高,而且断裂后的延伸率会降低,此即材料的冷作硬化现象。30、铸铁试样压缩时,其破坏断面的法线与轴线大致成45o的倾角。 31、铸铁材料具有抗压强度高的力学性能,而且耐磨,价廉,故常用于制造机器底座,床身和缸体等。 32、铸铁压缩时的延伸率值比拉伸时大。 33、混凝土这种脆性材料常通过加钢筋来提高混凝土构件的抗拉能力。 34、混凝土,石料等脆性材料的抗压强度远高于它的抗拉强度。 35、为了保证构件安全,可靠地工作,在工程设计时通常把许用应力作为构件实际工作应力的最高限度。 36、安全系数取值大于1的目的是为了使工程构件具有足够的强度储备。 37、设计构件时,若片面地强调安全而采用过大的安全系数,则不仅浪费材料而且会使所设计的结构物笨重。38、约束反力和轴力都能通过静力平衡方程求出,称这类问题为静定问题;反之则称为超静定问题;未知力多于平衡方程的数目称为几次超静定。 39、构件因强行装配而引起的内力称为装配内力,与之相应的应力称为装配应力。 40、材料力学中研究的杆件基本变形的形式有拉伸或压缩、剪切、扭转和弯曲。 41、吊车起吊重物时,钢丝绳的变形是拉伸变形;汽车行驶时,传动轴的变形是扭转变形;教室中大梁的变形是弯曲变形;建筑物的立柱受压缩变形;铰制孔螺栓连接中的螺杆受剪切变形。 42、通常把应力分解成垂直于截面和切于截面的两个分量,其中垂直于截面的分量称为正应力,用符号σ表示,切于截面的分量称为剪应力,用符号τ表示。 43、杆件轴向拉伸或压缩时,其受力特点是:作用于杆件外力的合力的作用线与杆件轴线相重合。 44、杆件轴向拉伸或压缩时,其横截面上的正应力是均匀分布的。 45、轴向拉伸或压缩杆件的轴力垂直于杆件横截面,并通过截面形心。 46、在轴向拉伸或压缩杆件的横截面上的正应力相等是由平面假设认为杆件各纵向纤维的变形大小都相等而推断的。 47、正方形截而的低碳钢直拉杆,其轴向向拉力3600N,若许用应力为100Mp a,由此拉杆横截面边长至少应为 6mm。 48、求解截面上内力的截面法可以归纳为“截代平”,其中“截”是指沿某一平面假想将杆 截断分成两部分;“代”是指用内力代替去除部分对保留部分的作用;“平”是指对保留部分建立平衡方程。 49、剪切的实用计算中,假设了剪应力在剪切面上是均匀分布的。 50、钢板厚为t,冲床冲头直径为d,今在钢板上冲出一个直径d为的圆孔,其剪切面面积为πdt。 51、用剪子剪断钢丝时,钢丝发生剪切变形的同时还会发

材料力学知识点总结教学内容

材料力学总结一、基本变形

二、还有: (1)外力偶矩:)(9549 m N n N m ?= N —千瓦;n —转/分 (2)薄壁圆管扭转剪应力:t r T 22πτ= (3)矩形截面杆扭转剪应力:h b G T h b T 32max ;β?ατ= =

三、截面几何性质 (1)平行移轴公式:;2A a I I ZC Z += abA I I c c Y Z YZ += (2)组合截面: 1.形 心:∑∑=== n i i n i ci i c A y A y 1 1 ; ∑∑=== n i i n i ci i c A z A z 1 1 2.静 矩:∑=ci i Z y A S ; ∑=ci i y z A S 3. 惯性矩:∑=i Z Z I I )( ;∑=i y y I I )( 四、应力分析: (1)二向应力状态(解析法、图解法) a . 解析法: b.应力圆: σ:拉为“+”,压为“-” τ:使单元体顺时针转动为“+” α:从x 轴逆时针转到截面的 法线为“+” ατασσσσσα2sin 2cos 2 2 x y x y x --+ += ατασστα2cos 2sin 2 x y x +-= y x x tg σστα-- =220 22 min max 22 x y x y x τσσσσσ+??? ? ? ?-±+= c :适用条件:平衡状态 (2)三向应力圆: 1max σσ=; 3min σσ=;2 3 1max σστ-= x

(3)广义虎克定律: [])(13211σσνσε+-=E [] )(1 z y x x E σσνσε+-= [])(11322σσνσε+-=E [] )(1 x z y y E σσνσε+-= [])(12133σσνσε+-=E [] )(1 y x z z E σσνσε+-= *适用条件:各向同性材料;材料服从虎克定律 (4)常用的二向应力状态 1.纯剪切应力状态: τσ=1 ,02=σ,τσ-=3 2.一种常见的二向应力状态: 22 3122τσσ σ+?? ? ??±= 2234τσσ+=r 2243τσσ+=r 五、强度理论 *相当应力:r σ 11σσ=r ,313σσσ-=r ,()()()][2 12 132322214σσσσσσσ-+-+-= r σx σ

材料力学复习资料

材料力学复习题 绪 论 1.各向同性假设认为,材料内部各点的(A )是相同的。 (A ) 力学性质; (B )外力; (C )变形; (D )位移。 2.根据小变形条件,可以认为 (D )。 (A )构件不变形; (B )构件不变形; (C )构件仅发生弹性变形; (D )构件的变形远小于其原始尺寸。 3.在一截面的任意点处,正应力σ与切应力τ的夹角(A )。 (A) α=900 ;(B )α=450;(C )α=00;(D )α为任意角。 4. 5. 6.构件的强度、刚度和稳定性(A )。 (A )只与材料的力学性质有关;(B )只与构件的形状尺寸关 (C )与二者都有关; (D )与二者都无关。 7.用截面法求一水平杆某截面的内力时,是对(C )建立平衡方程求解的。 (A) 该截面左段; (B) 该截面右段; (C) 该截面左段或右段; (D) 整个杆。 8.如图所示,设虚线表示单元体变形后的形状,则该单元体 的剪应变为( C)。 (A) α; (B) π/2-α; (C) 2α; (D) π/2-2α。 答案 1(A )2(D )3(A )4 均匀性假设,连续性假设及各向同性假设。5 强度、刚度和稳定性。6(A )7(C )8(C ) 拉 压 1. 轴向拉伸杆,正应力最大的截面和切应力最大的截面(A )。 (A )分别是横截面、45°斜截面; (B )都是横截面, (C )分别是45°斜截面、横截面; (D )都是45°斜截面。 2. 轴向拉压杆,在与其轴线平行的纵向截面上(D )。 (A ) 正应力为零,切应力不为零; (B ) 正应力不为零,切应力为零; (C ) 正应力和切应力均不为零; (D ) 正应力和切应力均为零。 3. 应力-应变曲线的纵、横坐标分别为σ=F N /A ,ε=△L / L ,其中(A )。 (A )A 和L 均为初始值; (B )A 和L 均为瞬时值; (C )A 为初始值,L 为瞬时值; (D )A 为瞬时值,L 均为初始值。 4. 进入屈服阶段以后,材料发生(C )变形。 (A ) 弹性; (B )线弹性; (C )塑性; (D )弹塑性。 5. 钢材经过冷作硬化处理后,其( A )基本不变。 (A) 弹性模量;(B )比例极限;(C )延伸率;(D )截面收缩率。 6. 设一阶梯形杆的轴力沿杆轴是变化的,则发生破坏的截面上 ( D )。 (A )外力一定最大,且面积一定最小; (B )轴力一定最大,且面积一定最小; (C )轴力不一定最大,但面积一定最小; (D )轴力与面积之比一定最大。 7. 一个结构中有三根拉压杆,设由这三根杆的强度条件确定的结构许用载荷分别为F 1、F 2、F 3,且F 1 > F 2 > F 3,则该结构的实际许可载荷[ F ]为(C )。 (A ) F 1 ; (B )F 2; (C )F 3; (D ) (F 1+F 3)/2。 8. 图示桁架,受铅垂载荷F =50kN 作用,杆1、2的横截面均为圆形,其直径分别为d 1=15mm 、d 2=20mm ,材料的许用应力均为[σ]=150MPa 。试校核桁架的强度。

材料力学知识点总结.doc

一、基本变形 轴向拉压材料力学总结 扭转弯曲 外外力合力作用线沿杆轴 力线 内轴力: N 规定: 力拉为“ +” 压为“-” 几 变形现象: 何 平面假设: 应 方应变规律: 面 d l 常数 dx 力 应 力 N 公 A 式 力偶作用在垂直于轴 的平面内 扭转: T 规定: 矩矢离开截面为“ +” 反之为“ - ” 变形现象: 平面假设: 应变规律: d dx T T I P max W t 外力作用线垂直杆轴,或外力偶作用 在杆轴平面 剪力: Q 规定:左上右下为“ +” 弯矩: M 规定:左顺右逆为“ +” 微分关系: dQ ; dM q Q dx dx 弯曲正应力 变形现象: 平面假设:弯曲剪应力 应变规律: y My QS*z I Z I z b M QS max max max W Z I z b

应 力 分 布 应 等直杆 用 外力合力作用条 线沿杆轴线 件 应力-应 E 变 (单向应力状态)关系 强N max 度 A max u 条 n 件塑材:u s 脆材:u b 圆轴平面弯曲 应力在比例极限内应力在比例极限内 G (纯剪应力状态) 弯曲正应力 T 1.t c max 弯曲剪应力W t max max 2. t c Q max S max max I z b t max t cmac c 轴向拉压扭转弯曲刚 度T 180 0 y max y max GI P 条注意:单位统一max 件 d l N ; L NL d T 1 M ( x) EA 变dx EA dx GI Z ( x) EI TL y '' M (x) GI P EI EA—抗拉压刚度GI p—抗扭刚度EI —抗弯刚度

复合材料力学讲义

复合材料力学讲义 第一部分简单层板宏观力学性能 1.1各向异性材料的应力—应变关系 应力—应变的广义虎克定律可以用简写符号写成为: (1—1) 其中σi为应力分量,C ij为刚度矩阵εj为应变分量.对于应力和应变张量对称的情形(即不存在体积力的情况),上述简写符号和常用的三维应力—应变张量符号的对照列于表1—1。 按表1—l,用简写符号表示的应变定义为: 表1—1 应力——应变的张量符号与简写符号的对照 注:γij(i≠j)代表工程剪应变,而εij(i≠j)代表张量剪应变 (1—2)

其中u,v,w是在x,y,z方向的位移。 在方程(1—2)中,刚度矩阵C ij有30个常数.但是当考虑应变能时可以证明弹性材料的实际独立常数是少于36个的.存在有弹性位能或应变能密度函数的弹性材料当应力σi作用于应变dεj时,单位体积的功的增量为: (1—3) 由应力—应变关系式(1—1),功的增量为: (1—4) 沿整个应变积分,单位体积的功为: (1—5) 虎克定律关系式(1—1)可由方程(1—5)导出: (1—6) 于是 (1—7) 同样 (1—8) 因W的微分与次序无,所以: (1—9) 这样刚度矩阵是对称的且只有21个常数是独立的。 用同样的方法我们可以证明: (1—10)

其中S ij是柔度矩阵,可由反演应力—变关系式来确定应变应力关系式为 (1—11) 同理 (1—12)即柔度矩阵是对称的,也只有21个独立常数.刚度和柔度分量可认为是弹性常数。 在线性弹性范围内,应力—应变关系的一般表达式为: (1—13)实际上,关系式(1—13)是表征各向异性材料的,因为材料性能没有对称平面.这种各向异性材料的别名是全不对称材料.比各向异性材料有更多的性能对称性的材料将在下面几段中叙述.各种材料性能对称的应力—应变关系式的证明由蔡(Tais)等给出。 如果材料有一个性能对称平面应力—应变关系式可简化为 (1—14)

材料力学复习总结

1、 应力 全应力正应力切应力线应变 外力偶矩 当功率P 单位为千瓦(kW ),转速为n (r/min )时,外力偶矩为 m).(N 9549e n P M = 当功率P 单位为马力(PS ),转速为n (r/min )时,外力偶矩为 m).(N 7024e n P M = 拉(压)杆横截面上的正应力 拉压杆件横截面上只有正应力σ,且为平均分布,其计算公式为 N F A σ= (3-1) 式中N F 为该横截面的轴力,A 为横截面面积。 正负号规定 拉应力为正,压应力为负。 公式(3-1)的适用条件: (1)杆端外力的合力作用线与杆轴线重合,即只适于轴向拉(压)杆件; (2)适用于离杆件受力区域稍远处的横截面; (3)杆件上有孔洞或凹槽时,该处将产生局部应力集中现象,横截面上应力分布很不均匀; (4)截面连续变化的直杆,杆件两侧棱边的夹角0 20α≤时 拉压杆件任意斜截面(a 图)上的应力为平均分布,其计算公式为 全应力 cos p ασα= (3-2) 正应力 2cos ασσα=(3-3) 切应力1 sin 22 ατα= (3-4) 式中σ为横截面上的应力。 正负号规定: α 由横截面外法线转至斜截面的外法线,逆时针转向为正,反之为负。 ασ 拉应力为正,压应力为负。 ατ 对脱离体内一点产生顺时针力矩的ατ为正,反之为负。

两点结论: (1)当0 0α=时,即横截面上,ασ达到最大值,即()max ασσ=。当α=0 90时,即纵截面上,ασ=0 90=0。 (2)当0 45α=时,即与杆轴成045的斜截面上,ατ达到最大值,即max ()2αα τ= 1.2 拉(压)杆的应变和胡克定律 (1)变形及应变 杆件受到轴向拉力时,轴向伸长,横向缩短;受到轴向压力时,轴向缩短,横向伸长。如图3-2。 图3-2 轴向变形 1l l l ?=- 轴向线应变 l l ε?= 横向变形 1b b b ?=- 横向线应变 b b ε?'= 正负号规定 伸长为正,缩短为负。 (2)胡克定律 当应力不超过材料的比例极限时,应力与应变成正比。即 E σε= (3-5) 或用轴力及杆件的变形量表示为 N F l l EA ?= (3-6) 式中EA 称为杆件的抗拉(压)刚度,是表征杆件抵抗拉压弹性变形能力的量。 公式(3-6)的适用条件: (a)材料在线弹性范围内工作,即p σσ?; (b)在计算l ?时,l 长度内其N 、E 、A 均应为常量。如杆件上各段不同,则应分段计算,求其代数和得总变形。即 1 n i i i i i N l l E A =?=∑ (3-7) (3)泊松比 当应力不超过材料的比例极限时,横向应变与轴向应变之比的绝对值。即 ενε ' = (3-8) 表1-1 低碳钢拉伸过程的四个阶段

材料力学习题册答案-第13章_能量法

第 十三 章 能 量 法 一、选择题 1.一圆轴在图1所示两种受扭情况下,其( A )。 A 应变能相同,自由端扭转角不同; B 应变能不同,自由端扭转角相同; C 应变能和自由端扭转角均相同; D 应变能和自由端扭转角均不同。 (图1) 2.图2所示悬臂梁,当单独作用力F 时,截面B 的转角为θ,若先加力偶M ,后加F ,则在加F 的过程中,力偶M ( C )。 A 不做功; B 做正功; C 做负功,其值为θM ; D 做负功,其值为 θM 2 1 。 3.图2所示悬臂梁,加载次序有下述三种方式:第一种为F 、M 同时按比例施加;第二种为先加F ,后加M ;第三种为先加M ,后加F 。在线弹性范围内,它们的变形能应为( D )。 A 第一种大; B 第二种大; C 第三种大; D 一样大。 4.图3所示等截面直杆,受一对大小相等,方向相反的力F 作用。若已知杆的拉压刚度为EA ,材料的泊松比为μ,则由功的互等定理可知,该杆的轴向变形为EA Fl μ,l 为杆件长度。(提示:在杆的轴向施加另一组拉力F 。) A 0; B EA Fb ; C EA Fb μ; D 无法确定。 (图2) (图3)

二、计算题 1.图示静定桁架,各杆的拉压刚度均为EA 相等。试求节点C 的水平位移。 解:解法1-功能原理,因为要求的水平位移与P 力方向一致,所以可以用这种方法。 由静力学知识可简单地求出各杆的内力,如下表所示。 ( )() EA a P EA Pa EA Pa P C 22222212 2 2 2++=? 可得出:() EA Pa C 122+= ? 解法2-卡氏定理或莫尔积分,这两种方法一致了。 则C 点水平位移为:() EA Pa C 122+= ? 2.图示刚架,已知各段的拉压刚度均为EA ,抗弯刚度均为EI 。试求A 截面的铅直位移。

材料力学复习总结

《材料力学》第五版 刘鸿文 主编 第一章 绪论 一、材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性要求。 二、强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够的抵抗变形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能 力。 三、材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假设和各向同性假设。 第二章 轴向拉压 一、轴力图:注意要标明轴力的大小、单位和正负号。 二、轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。注意此规定只适用于轴力,轴力是内力,不适用于外力。 三、轴向拉压时横截面上正应力的计算公式:N F A σ= 注意正应力有正负号,拉伸时的正应力为正,压缩时的正应力为负。 四、斜截面上的正应力及切应力的计算公式:2cos ασσα=,sin 22 αστα= 注意角度α是指斜截面与横截面的夹角。 五、轴向拉压时横截面上正应力的强度条件[],max max N F A σσ=≤ 六、利用正应力强度条件可解决的三种问题:1.强度校核[],max max N F A σσ=≤ 一定要有结论 2.设计截面[],max N F A σ≥ 3.确定许可荷载[],max N F A σ≤ 七、线应变l l ε?=没有量纲、泊松比'εμε=没有量纲且只与材料有关、 胡克定律的两种表达形式:E σε=,N F l l EA ?= 注意当杆件伸长时l ?为正,缩短时l ?为负。 八、低碳钢的轴向拉伸实验:会画过程的应力-应变曲线,知道四个阶段及相应的四个极限应力:弹性阶段(比例极限p σ,弹性极限e σ)、屈服阶段(屈服

材料力学复习资料

判断10分,选择30分,分析10分,作图20分,计算30分 1 .现代工程中常用的固体材料种类繁多,物理力学性能各异。所以,在研究受力后物体(构件)内部的力学影响时,除非有特别提示,一般将材料看成由连续性、均匀性、各向同性的介质组成。 2 .构件所受的外力可以是各式各样的,有时是很复杂的。材料力学根据构件的典型受力情况及截面上的内力分量可分为拉伸或压缩、剪切、扭转、弯曲四种基本变形。 3.弹性模量E 、切变模量G 、和泊松比μ均为材料固有的弹性常数, 且三者之间满足以下公式: 。 4.EA ——抗拉(压)刚度,GIp ——抗扭刚度,W ——抗弯截面系数,Wt ——抗扭截面系数。 5.圆轴扭转时,横截面上任意一点的切应力大小与该点到圆心的距离成正比,方向与该点的半径垂直。 6.矩形杆受扭时,最大切应力在矩形截面的长边中点处,且为整个截面的最大切应力。 7.应用公式 计算扭转切应力的基本条件是等截面直圆杆,最大切应力不超过材料的剪切比例极限。 8.拉压杆的内力是轴力,用F N 表示;扭转构件的内力是扭矩,用T 表示;弯曲构件的内力是剪力和弯矩,分别用F S ,M 表示;平面曲杆的内力是轴力,剪力,弯矩,分别用F N ,F S ,M 表示。 9.q (x )=0, F s(x ) =常数, 剪力图为水平直线; M (x ) 为 x 的一次函数,弯矩图为斜直线。 () 21E G μ=+p T I ρρ τ=

10.q(x )=常数,F s (x ) 为 x 的一次函数,剪力图为斜直线; M (x ) 为 x 的二次函数,弯矩图为抛物线。 11. 剪力F s(x ) =0处,弯矩取极值。 12.剪力之差=分布载荷图的面积;弯矩之差=剪力图的面积。 13.在弯矩图中,当M 有突变时,不一定出现极值。 14. ——挠曲线近似微分方程 ——转角方程 ——挠曲线方程 15.在三向应力状态中,平行于σ1的斜截面上的应力与σ1无关,只受σ2和σ3的影响。 16.广义胡克定律只适用于各向同性的线弹性材料。 17.与最大切应力强度理论相比,莫尔强度理论考虑了材料抗拉和抗压强度不相等的情况。 18.各侧面只有正应力而无切应力的单元体,称为主单元体。 19.已知两向等拉应力状态的正应力σ,则σ1=σ,σ2=σ,σ3 =0;τmax=σ/2 20.关于轴力有如下几种说法:拉压杆的内力只有轴力;轴力的作用线与杆轴重合;轴力是沿杆轴作用的内力;轴力与杆的横截面和材料无关。 21.图示结构中,AB 为钢材,BC 为铝,在力P 的作用下两段轴力一样大。 ()()(d )d M x w x x x Cx D EI =++?? () ()d M x w x x C EI '=+?()()M x w x EI '' =

相关文档