文档视界 最新最全的文档下载
当前位置:文档视界 › 光电探测器综述(PD)

光电探测器综述(PD)

光电探测器综述(PD)
光电探测器综述(PD)

光电探测器综述

摘要:近年来,围绕着光电系统开展了各种关键技术研究,以实现具有高集成

度、高性能、低功耗和低成本的光电探测器(Photodetector)及光电集

成电路(OEIC)已成为新的重大挑战。尤其是具有高响应速度,高量

子效率和低暗电流的高性能光电探测器,不仅是光通信技术发展的需

要,也是实现硅基光电集成的需要,具有很高的研究价值。本文综述了

近十年来光电探测器在不同特性方向的研究进展及未来几年的发展方

向,对其的结构、相关工艺和制造的研究具有很重要的现实意义。

关键词:光电探测器,Si ,CMOS

Abstrac t: In recent years, around the photoelectric system to carry out the study of all kinds of key technologies, in order to realize high integration, high

performance, low power consumption and low cost of photoelectric

detector (Photodetector) and optoelectronic integrated circuit (OEIC) has

become a major new challenge. Especially high response speed ,high

quantum efficiency, and low dark current high-performance photodetector,

is not only the needs for development of optical communication technology,

but also realize the needs for silicon-based optoelectronic integrated,has the

very high research value.This paper reviews the development of different

characteristics and results of photodetector for the past decade, and discusses the

photodetector development direction in the next few years,the study of high

performance photoelectric detector, the structure, and related technology,

manufacturing, has very important practical significance.

Key Word: photodetector, Si ,CMOS

一、光电探测器

1.1概念

光电探测器在光通信系统中实现将光转变成电的作用,这主要是基于半导体材料的光生伏特效应,所谓的光生伏特效应是指光照使不均匀半导体或半导体与金属结合的不同部位之间产生电位差的现象。(光电导效应是指在光线作用下,电子吸收光子能量从键合状态过度到自由状态,而引起材料电导率的变化的象。即当光照射到光电导体上时,若这个光电导体为本征半导体材料,且光辐射能量又足够强,光电材料价带上的电子将被激发到导带上去,使光导体的电导率变大是指由辐射引起被照射材料电导率改变的一种物理现象,光子作用于光电导材料,形成本征吸收或杂质吸收,产生附加的光生载流子,从而使半导体的电导率发生变化,产生光电导效应。)

1.2分类

根据器件对辐射响应的方式不同或者说器件工作的机理不同,光电探测器可分为两大类[1]:一类是光子探测器;另一类是热探测器。根据形态也可分为两大类:一是真空光电器件;另一类是固体光电器件。固体光电器件又包括光敏电阻、光电池、光电二极管、光电三极管等。

1.3工作原理

光电探测器的基本工作机理包括三个过程:(1)光生载流子在光照下产生;(2)载流子扩散或漂移形成电流;(3)光电流在放大电路中放大并转换为电压信号。当探测器表面有光照射时,如果材料禁带宽度小于入射光光子的能量即Eg

当光在半导体中传输时,光波的能量随着传播会逐渐衰减,其原因是光子

在半导体中产生了吸收。半导体对光子的吸收最主要的吸收为本征吸收,本征吸收分为直接跃迁和间接跃迁。通过测试半导体的本征吸收光谱除了可以得到半导体的禁带宽度等信息外,还可以用来分辨直接带隙半导体和间接带隙半导体。本征吸收导致材料的吸收系数通常比较高,由于半导体的能带结构所以半导体具有连续的吸收谱。从吸收谱可以看出,当本征吸收开始时,半导体的吸收谱有一明显的吸收边。但是对于硅材料,由于其是间接带隙材料,与三五族材料相比跃迁几率较低,因而只有非常小的吸收系数,同时导致在相同能量的光子照射下在硅材料中的光的吸收深度更大。直接带隙材料的吸收边比间接带隙材料陡峭很多,图1-1 画出了几种常用半导体材料(如GaAs、InP、InAs、Si、Ge、GaP 等材料)的入射光波长和光吸收系数、渗透深度的关系[2]。

图 1 -1半导体材料光吸收系数与波长的关系

1.4 光电探测器的性能指标

光电探测器的性能指标主要由量子效率、响应度、响应速度和本征带宽、光

电流,暗电流和噪声等指标组成:

1.量子效率:

%100-?=入射光子数空穴对个数生成的电子η ○1

)1(a

s e ωαη--= ○2 (wa 表示吸收层的厚度,αs 表示光吸收系数,入射波长 λ、材料消光系数 k 决定吸收系数 αs=4πk/λ。)考虑实际情况,入射光在探测器表面会被反射。

同时探测器表面存在一定宽度的接触掺杂区域,其中也会产生光子的消耗,考虑以上两种因素的量子效率的表达式:

)1()1(a

s s w d f e e R ααη---??-= ○3

其中 d 表示接触层厚度,Rf 表示光电探测器表面的反射率。反射率与界面

的折射率 nsc 和吸收层的消光系数 κ 有关,Rf 可以表示成下式:

2

222)1()1(κκ+++-=sc sc f n n R ○4

2.响应度:

定义为光电探测器产生光电流与入射光功率比,单位通常为 A/W 。响应度

与量子效率的大小有关,为量子效率的外在体现。响应度 R :

r p P I R =

或 r p P V R = ○5

p I 表示光电探测器产生的光电流,Pr 代表入射光功率。则量子效率可变为

下式表示:

hv P q I r p //=

η ○

6 进而可得响应度的公式为:

hv q R ?=η ○7

可知响应度与量子效率成正比,由于硅材料本身为间接带隙,所以材料的量子效率较低,硅基光电探测器的响应度也较小。

3、响应速度与本征带宽

响应速度可以用光生载流子的渡越时间表示,载流子的渡越时间外在的频率响应的表现就是探测器的带宽。光生载流子的渡越时间在光生电流变化中表现为两部分:上升时间和下降时间。通常取上升时间和下降时间中的较大者衡量探测器的响应速度。决定探测器响应速度的因素主要有:

⑴、耗尽区载流子渡越时间:载流子的渡越时间是影响探测器响应速度的最重要因素,当耗尽区电场强度达到最大时, d V 表示载流子的最大漂移速度,W 表示耗尽区宽度,那么载流子的渡越时间为:d V W t = ○8

⑵耗尽区外载流子扩散时间:载流子扩散的速度较慢,同时大多数产生于耗尽区之外的载流子的寿命非常短,复合发生速度快。所以扩散运动只对距离耗尽区范围较近的载流子才能通过扩散运动达到耗尽区中,并在电场中漂移产生光电流。Dc 表示载流子的扩散系数,d 表示扩散距离,则扩散时间如下式:

c d i f f D d t 22

= ○9

⑶光电二极管耗尽区电容:越大,响应速度就越慢。

为了达到最优的探测器的响应速度,需要在探测器的吸收层厚度和光电探测器的面积中折衷。如增大探测器材料的吸收层厚度可以有效减小耗尽区平板电容,同时可增大吸收层厚度可以提高探测器的量子效率。但是吸收层厚度的增加导致耗尽区宽度的变大,是光生载流子渡越时间变长而有可能降低探测器的响应速度。

⑷暗电流和噪声

光电流指在入射光照射下光电探测器所产生的光生电流,暗电流可以定义为没有光入射的情况下探测器存在的漏电流。其大小影响着光接收机的灵敏度大小,是探测器的主要指标之一。暗电流主要包括以下几种:①耗尽区中边界的少子扩散电流;②载流子的产生-复合电流,通过在加工中消除硅材料的晶格缺陷,可以有效减小载流子的产生-复合电流,通常对于高纯度的单晶硅产生-复合电流可以降低到 211/102mm A -?以下;③表面泄漏电流,在制造工艺结束时,

对芯片表面进行钝化处理,可以将表面漏电流降低到211/10mm A -量级。当

然,暗电流也受探测器工作温度和偏置电压的影响。探测器的暗电流与噪声是分

不开的,通常光电探测器的噪声主要分为暗电流噪声、散粒噪声和热噪声:a 暗电流噪声:对于一个光电探测器来讲,可接收的最小光功率是由探测器的暗电流决定的,所以减小探测器的暗电流能提高光接收机的灵敏度;b 散粒噪声:当探测器接收入射光时,散粒噪声就产生于光子的产生-复合过程中。由于光生载流子的数量变化规律服从泊松统计分部,所以光生载流子的产生过程存在散粒噪声;c 热噪声:由于导体中电子的随机运动会产生导体两端电压的波动,因此就会产生热噪声。光电探测器的电路模型中包含的电阻为其热噪声的主要来源。

4、噪声等效功率NEP :单位信噪比时的入射光功率。

n s V V P N E P /= ○10

5、探测度D : N E P D 1= ○11

6、线性度:

12max I I -?=δ ○12

1.5 光电探测器的选择与主要应用

1.5.1光电探测器的应用选择

光电探测器件的应用选择,实际上是应用时的一些事项或要点。在很多要求不太严格的应用中,可采用任何一种光电探测器件。不过在某些情况下,选用某种器件会更合适些。例如,当需要比较大的光敏面积时,可选用真空光电管,因其光谱响应范围比较宽[3],故真空光电管普遍应用于分光光度计中。当被测辐射信号微弱、要求响应速度较高时,采用光电倍增管最合适,因为其放大倍数可达100以上,这样高的增益可使其信号超过输出和放大线路内的噪声分量[4],使得对探测器的限制只剩下光阴极电流中的统计变化。因此,在天文学、光谱学、激光测距和闪烁计数等方面,光电倍增管得到广泛应用。

目前,固体光电探测器用途非常广。CdS 光敏电阻因其成本低而在光亮面积

的器件,它除用做探测器件外,还可作太阳能变换器;硅光电二极管体积小、响应快、可靠性高,而且在可见光与近红外波段内有较高的量子效率,困而在各种工业控制中获得应用。硅雪崩管由于增益高、响应快、噪声小,因而在激光测距与光纤通信中普遍采用[4]。

<1>、光电探测器必须和辐射信号源及光学系统在光谱特性上相匹配。如果测量波长是紫外波段,则选用光电倍增管或专门的紫外光电半导体器件;如果信号是可见光,则可选用光电倍增管、光敏电阻和Si 光电器件;如果是红外信号,则选用光敏电阻,近红外选用Si 光电器件或光电倍增管。

<2>、光电探测器的光电转换特性必须和入射辐射能量相匹配。其中首先要注意器件的感光面要和照射光匹配好,因光源必须照到器件的有效位置,如光照位置发生变化,则光电灵敏度将发生变化。如光敏电阻是一个可变电阻,有光照的部分电阻就降低,必须使光线照在两电极间的全部电阻体上,以便有效地利用全部感光面。光电二极管、光电三极管的感光面只是结附近的一个极小的面积,故一般把透镜作为光的入射窗,要把透镜的焦点与感光的灵敏点对准。一股要使入射通量的变化中心处于检测器件光电特性的线性范围内[5],以确保获得良好的线性输出。对微弱的光信号,器件必须有合适的灵敏度,以确保一定的信噪比和输出足够强的电信号。

1.5.2光电探测器的主要应用

photodetector 利用半导体材料的光电导效应制成的一种光探测器件。所谓光电导效应,是指由辐射引起被照射材料电导率改变的一种物理现象。光电导探测器在军事和国民经济的各个领域有广泛用途。在可见光或近红外波段主要用于射线测量和探测、工业自动控制、光度计量等;在红外波段主要用于导弹制导、红外热成像、红外遥感等方面。光电导体的另一应用是用它做摄像管靶面。为了避免光生载流子扩散引起图像模糊,连续薄膜靶面都用高阻多晶材料,如PbS-PbO、Sb2S3等。其他材料可采取镶嵌靶面的方法,整个靶面由约10万个单独探测器组成。

1873年,英国W.史密斯发现硒的光电导效应,但是这种效应长期处于探索研究阶段,未获实际应用。第二次世界大战以后,随着半导体的发展,各种新的光电导材料不断出现。在可见光波段方面,到50年代中期,性能良好的硫化镉、硒化镉光敏电阻和红外波段的硫化铅光电探测器都已投入使用。60年代初,中远红外波段灵敏的Ge、Si掺杂光电导探测器研制成功,典型的例子是工作在3~5微米和8~14微米波段的Ge:Au(锗掺金)和Ge:Hg光电导探测器。工作原理和特性光电导效应是内光电效应的一种。当照射的光子能量hv等于或大于半导体的禁带宽度Eg时,光子能够将价带中的电子激发到导带,从而产生导电的电子、空穴对,这就是本征光电导效应。这里h是普朗克常数,v是光子频率,Eg是材料的禁带宽度(单位为电子伏)。因此,本征光电导体的响应长波限λc为λc=hc/Eg=1.24/Eg (μm) 式中c为光速。本征光电导材料的长波限受禁带宽度的限制。

通常,凡禁带宽度或杂质离化能合适的半导体材料都具有光电效应。常用的光电导探测器材料在射线和可见光波段有:Si、Ge等;在近红外波段有:PbS、PbSe等;在长于8微米波段有: Te、Si掺杂、Ge掺杂等;CdS、CdSe、PbS等材料可以由多晶薄膜形式制成光电导探测器。可见光波段的光电导探测器CdS、CdSe、CdTe 的响应波段都在可见光或近红外区域,通常称为光敏电阻。

器件灵敏度用一定偏压下每流明辐照所产生的光电流的大小来表示。例如一种CdS光敏电阻,当偏压为70伏时,暗电流为10e-6~10e-8安,光照灵敏度为3~10安/流明。CdSe光敏电阻的灵敏度一般比CdS高[6]。光敏电阻另一个重要参数是时间常数τ,它表示器件对光照反应速度的大小。光照突然去除以后,光电流下降到最大值的1/e(约为37%)所需的时间为时间常数τ。也有按光电流下降到最大值的10%计算τ的;各种光敏电阻的时间常数差别很大。CdS的时间常数比较大(ms级),响应波长越长的光,电导体这种情况越显著,其中1~3微米波段的探测器可以在室温工作。

红外探测器有时要探测非常微弱的辐射信号,例如10-14 瓦;输出的电信号也非常小,因此要有专门的前置放大器。

二、光电探测器的发展历程

近年来光电探测器的研究引起人们的重视,在标准CMOS工艺下的Si 光电探测器的发展更是取得了瞩目的结果。经过一年看过的相关文献得出结论:2005年到2015年是CMOS发表的量较大的时期,同时在这一阶段的光电探测器的发展也呈现逐年上升趋势,光电探测器的的应用范围也在逐步的扩大,为我们以后的研究开发奠定了一定的发展空间。在现在这个注重创新与节能的时代,光电探测器的有着不可替代的作用,在工业及军事等各个领域都有着广阔的发展前景。

2000年到2015年间,以CMOS&PHOTODECTOR为关键字的文献共359篇,其中发表的Conference Publications会议文献有242篇,发表在Journal&Magazines的报纸杂志上共有115篇,Early Access Articles早期访问文章有2篇。

2.1硅基光电探测器

本节介绍PIN 光电探测器、N 阱/P 衬底光电探测器、P+/N 阱/P 衬底双光电探测器和空间调制探测器。其中,响应度高响应速度快的PIN 光电探测器虽然是硅基光电探测器,但是由于其中加入了本征层,不能与标准CMOS 工艺兼容。

1、PIN 光电探测器

在光电探测器的P型区域和N型区域之间加入一层本征层就形成了PIN光电探测器,由于本征层的加入耗尽区的宽度大大提高,进而提高了PIN 光电探测器的性能,下面介绍的PIN 光电探测器的PN 结是横向的,所以称为横向PIN光电探测器。横向PIN 光电探测器结构图如图2-1 所示,制作横向PIN 光电探测器的Si衬底是未掺杂的,所以衬底电阻率较高。耗尽区在本征Si 衬底形成,由于本征衬底是未掺杂的,所以PIN 光电探测器具有比较宽的耗尽区,因而具有比较大的量子效率和较高的响应度。然而,在横向结构的PIN 探测器中,电场强度由表面到内部迅速减小,也就是说探测器的表面集中了大部分的电场强度。在低频下,横向PIN 探

测器的响应度是比较高的,但只有在表面处生成的光生载流子才是快速载流子,可以工作在高速率下。而在衬底中产生的载流子因为通过扩散运动到达电极,从而很大程度上削弱了PIN 光电探测器的性能。此外,由于标准CMOS 工艺中的衬底材料通常为P 型的,所以采用本征衬底的横向PIN光电探测器与标准的CMOS 工艺不兼容。

图2-1 横向PIN 光电探测器结构图

2、N 阱/P 衬底光电探测器

N 阱/P 衬底结构的光电探测器是利用N 阱与P 衬底形成的PN 结二极管来形成光生电流信号。在入射光照射下,该光电探测器的光生电流主要由P 衬底扩散电流、N 阱扩散电流和PN 结耗尽区漂移电流所构成。对于波长为850 nm的入射光,硅衬底的吸收深度约为二十微米,这导致P 衬底扩散电流占据了总光生电流的较大比例,由于衬底深处的载流子扩散时间过长,因而P 衬底扩散电流的响应速度比较慢。对于N 阱扩散电流来说,由于在亚微米CMOS 工艺中N 阱的阱深通常不到 1 μm,所以N 阱区域产生的光生载流子在到达耗尽区之前扩散距离端扩散时间少。通常来讲,N 阱扩散电流的本征带宽可达到数百兆赫兹。但与吸收深度相比,N 阱的阱深太浅,产生的光生载流子较少,因而响应度比较低。N 阱扩散电流带宽与漂移电流相比,N 阱扩散电流的本征带宽仍相对较低。下面举例说明通常情况下各种电流的速度,如在0.18 μm 标准CMOS 工艺下,入射光波长为850nm,低掺杂的P 衬底所形成的扩散电流的本征带宽大约3.5 MHz,在高掺杂的P 衬底中形成的扩散电流带宽约为 5 MHz,比低掺杂衬底速度稍快。与衬底扩散电流相比,宽N 阱的扩散电流的本征带宽大约在450 MHz 左右,窄N 阱的扩散电流相对较快,带宽约为900 MHz,但由于N 阱/P 衬底光电探测器的带宽由P 衬底的扩散电流的本征带宽决定,所以该光电探测器整体带宽非常低。

3、叉指型P+/N 阱/P 衬底双光电探测器

由上一小节的叙述,由于CMOS 工艺中P 衬底中产生的载流子通过扩散运动达到电极,其扩散速度和本征带宽都非常差,因此要想提高光电探测器的本征带宽必须将P 衬底产生的光生载流子消除。为了避免漂移区外衬底产生的扩散光生载流子的对探测器速度的影响,并且在标准CMOS

下不增加工艺的复杂度,文献[7,8]提出了一种叉指型双光电二极管(DPD),其结构如图2-2 所示。

图2-2 叉指型P+/N 阱/P 衬底双光电探测器在叉指型双光电探测器中,N 阱区域的面积定义为探测器的工作面积,P+保护环包围在N 阱周围。在N 阱中,并排的长条形P+扩散区作为叉指型探测器的阳极,这种拓扑结构有利于形成尽可能多的PN 结耗尽区,从而能够收集更多的光生载流子。在叉指型双光电二极管中,叉指P+区域和N 阱构成一个叉指二极管,称为工作二极管;N 阱区域和P 衬底构成一个二极管,叫做屏蔽二极管。在标准CMOS 工艺中,不需要做任何修改就可以实现该光电探测器。当双光电探测器工作时,N 阱接到接收机接收的电源电压,P+区域和接收机的输入端连接,而P 衬底和接收机的“地”连接。由于屏蔽二极管的两个电极与接收机的电源电压和地连接,所以产生在P 衬底的扩散载流子流进了接收机的电源,没有对光接收机的输入光电流产生贡献。而由P+和N 阱构成的二极管的本身响应速度比较高,它产生的光电流输入光接收机,形成光响应。由于P+区域使用叉指形状,能够增加耗尽区的面积,提高工作二极管的响应度[8]。

4、空间调制光电探测器

由于CMOS 工艺衬底深处的慢载流子的影响,光电探测器的响应速度不能提高,为了提高光电探测器的响应速度,必须抑制或去除衬底深处的慢载流子。在标准CMOS 工艺下,空间调制光电探测器便使用了这种原理从而提高了探测器的工作速度。空间调制光电探测器由一个受光光电探测器和一个非受光光电探测器组成,由于衬底产生的低速载流子被探测器通过光电流之差消除,所以空间调制探测器的工作速度得到了明显的提高[9,10]。其结构如图2-3 所示,空间调制光电探测器的结构能够兼容与商用CMOS 工艺。

图2-3 空间调制探测器结构图

空间调制光电探测器包括一个收集快载流子和慢载流子的受光探测器(immediate detector)和一个只收集慢载流子的非受光探测器(deferreddetector)。非受光探测器通过覆盖金属2(选择金属 2 一直到金属 5 更佳)使入射光屏蔽。当入射光照射到探测器时,被金属覆盖的探测器不能接受光照,只产生扩散光生载流子,即慢载流子。受光探测器吸收光照,同时产生快光生载流子和慢光生载流子,即载流子的分布被空间调制探测器表面的金属调制了。如果我们将受光探测器产生的光电流和非受光探测器产生的光电流相减,那么就能消除扩散成分所导致的影响,去除因扩散成分产生的光电流的托尾而提高了整体的响应速度。但这样相减的前提是载流子的调制实际要远远小于载流子的消失时间,也就是说只有在光照入射的很短的一段时间内载流子分布才是被调制的,其他的时间载流子在这两个区域是分布均匀的。分析表明,衬底掺杂浓度越小,叉指周期长度越小,空间调制光电探测器的带宽越宽。空间调制光电探测器具有两个缺点:一、通过差分相减的方式消除了来自衬底的慢载流子,虽然提高了探测器的速度,但对于N 阱/P 衬底光电二极管来说,也损失了非常大的响应度;二、在空间调制光电探测器中,非受光探测器和受光探测器的面积相等,所以只有一半探测器的面积用来产生快载流子,几乎损失了一半的响应度[11]。

2.2常见的标准CMOS 光电探测器

常见的光电探测器均是基于PN 结来构造的,其原理是利用N型半导体区域和P 型半导体区域形成的PN 结耗尽区(即光电二极管)来进行光信号探测。

1、N+/PWELL 光电探测器

常见的标准CMOS光电探测器如图2-4所示的N+/PWELL 光电探测器,其

原理是减小P-SUB 区慢扩散光生载流子的影响,利用N+和PWELL 形成的PN 结耗尽区来形成具有较高本征带宽的光生电流信号,但由于是制作在P-SUB 上,而PWELL 与P-SUB 都是P 型半导体区域,这将导致N+/PWELL 光电探测器不能实现与P-SUB 有效隔离,即P-SUB 区的慢光生载流子仍能以一定的几率扩散至N+与PWELL 形成的PN 结耗尽区并形成光生电流,因而本征带宽不是很高。

图2-4 N+/PWELL 光电探测器

2、P+/NWELL/P-SUB CMOS双光电探测器

N+/PWELL 光电探测器结构改进为如图2-5所示的P+/NWELL/P-SUB 双光电探测器结构。在结构中构造出两个二极管,其中的工作二极管由P+和NWELL 形成,屏蔽二极管则由NWELL 和P-SUB 形成。当该双光电探测器处于工作状态时,P+区的引出电极为输出端,NWELL 的引出电极连接电源(VDD),P-SUB 的引出电极则连接至地(GND)。此时两个二极管均处于反偏状态。由于电源和地均等效为交流地,故在交流状态下NWELL/P-SUB 屏蔽二极管完全被短路至交流地。由于P-SUB 区光生载流子完全被屏蔽二极管所吸收,不能扩散到工作二极管区域,因而P-SUB区光生载流子形成的扩散电流完全被短路至交流地,从而彻底消除了P-SUB 区慢扩散载流子对光电探测器响应速度的限制。此外,该双光电探测器还利用插指型P+区使工作二极管的PN 结耗尽区最大化,从而可迅速地收集工作二极管区域内的光生载流子,使光电探测器的响应度和本征带宽得到了进一步提高。

图2-5 P+/NWELL/P-SUB CMOS双光电探测器

3、差分光电探测器

基于 P+/NWELL 型 PN 结的全差分光电探测器,其结构图见2-6。该全

差分光电探测器由两个形状和尺寸完全相同且对称的方形 P+/NWELL/P-SUB 双光电二极管组成,且每个双光电二极管的受光区域面积为总受光区域面积的一半。由P +/NWELL/P-SUB CMOS 双光电探测器的工作原理可得该结构的优点是避免慢光生载流子大大降低光电探测器的本征带宽和光信号探测速度。提高了响应度。但不足之处是设计较为简单,不能达到较好的全差分特性。

图2-6基于

P+/NWELL 型 PN 结的全差分光电探测器

2.3谐振腔增强型光电探测器

(1)、PIN RCE 光电探测器

该类型的探测器能够成为高速光电探测的首要选择的器件[12],主要基于其

噪声小、暗电流特性好。工作波长在 1.55μm 左右,由Dentai 等人报道了的InGaAs / InGaAs / InP 结构的RCE PIN 光电探测器[13]。器件如图 2-7 所示,入射光垂直进入器件,上下反射镜都是由Brag 反射镜构成,合理的优化设计反射镜的堆栈结构,调整顶部反射镜、底部反射镜的反射率,以及谐振腔腔体的尺寸厚度,使得器件的量子效率达到最大值。、Rt 表示顶部反射镜的反射率,Rb 表示底部反射镜的反射率,当Rt=0.7,Rb=0.95,吸收层的厚度为200nm 时,器件的最大量子效率为82%。

图2-7 谐振腔增强型PIN 光电探测器的结构图

(2)、RCE肖特基(Schottky)光电探测器

RCE Schottky光电探测器是首批被报道的RCE 器件之一[14]。光从顶层入射时金属层的透光较差,所以顶层应换成半透明层Schottky接触。近年来谐振腔增强结构的光电探测器是光电子器件的主要新种类,它很好的解决了普通光电二极管量子效率和带宽间相互约束的关系,所以RCE光电探测器对肖特基型光电检测器具有很大的影响力。

现已报道光电二极管的3dB响应带宽可做到l00GHz[37],其采用的谐振腔结构。采用分子束外延法MBE(molecular beam epitaxy)来生长反射镜结构,顶层反射镜为Au接触层,在Au接触层上再淀积一层Si3N4增透膜来增加透光,底层反射镜是由AlAs-GaAs材料组成DBR反射镜结构。并通过合理的优化设计InGaAs吸收层在谐振腔腔体中的位置,使得光生载流子的输运时间最短,从而提高探测器的响应速率。

(3)、金属/半导体/金属(MSM)结构的RCE光探测器

MSM结构基于其平面配置结构电极,本身电容较小,极易获得高的响应带宽(20~50GHz)[15,16],谐振微腔的引入,进一步缩小了器件的响应光谱宽(<1nm)。虽然响应带宽较高,但量子效率仍然不高。若入射光光照是mw级的照射,其生成的响应电流仅有nA级别。

(4)、RCE雪崩光电二极管(APD)

RCE雪崩光电二极管的结构也得到很大的关注和研究,并有相应的成果展示[18,19]。电子在跃迁的过程中得到足够多的能量,同时在电场的作用力下加速,形成碰撞电离,形成的电子-空穴对在电场的作用下加速,进而产生更多的电子-空穴对,这就是二极管的雪崩倍增效应,使得光电二极管在低压下即可获得较大增益,增益区电场强度得到了增强,器件可在小功率下工作。

现在,已报道的实际测得的RCE光电探测器最好的性能指标为:量子效率73%,光谱响应半峰宽为1.7nm,接近理论上的极值,很难在保持量子效率很高的同时获得窄的谱线宽。另外,由于驻波效应的影响,吸收层的位置也会对量子效率造成影响[20]。当吸收层非常薄时(<200nm),可采用改变谐振腔的腔长或者材料来进行调谐时,吸收层位置的微小移动将会影响吸收层中的光电场分布在最值的之间波动,影响器件的量子效率。

(5)SOI基CMOS RCE光电探测器

普通的RCE光电探测器利用VCSEL激光器提供光源,其入射光方式都是垂直入射,在衬底上依次生长底层DBR层、吸收层、顶层DBR。为了结构的简单,有些顶层DBR直接利用空气与半导体界面的反射,其反射率约为34%。

图2-8 基于SOI CMOS工艺的RCE光电探测器的基本结构

图2-9 SOI基CMOS RCE光电探测器的结构

SOI 基CMOS RCE光探测器的DBR顶镜反射镜采用Si-SiO2组成,底部反射镜由材料本身的埋氧化层厚度决定,PN结的耗尽区作为器件的吸收层,来设计850nm通信波段的RCE光探测器,器件结构如图2-8、2-9所示。入射光透过顶部反射镜进入谐振腔,在上下反射镜构成的谐振腔作用下光在其中来回的行进,若腔体设计合理,可使得光波得到谐振增强,耗尽层中吸收的光能量转化为电信号输出。

三、光电探测器的现状评述及未来预测

目前,随着光纤通信、红外遥感和军事应用需求的不断增长促进了半导体光电器件及其光电路的发展。围绕着光电系统开展各种关键技术研究,以实现具有

高集成度、高性能、低功耗和低成本的光电探测器。光电探测器作为光纤通信中解复用接受技术的关键器件之一,未来应该具有一些鲜明的特点:信道中心波长位置可以调谐、高速、单片集成,相应的其他一些特点也应该具有:信道波长的分辨能力强、调谐时间短、温度稳定性高、结构密集,成本低等。响应度与量子效率之间相互约束的问题不仅在RCE光电探测器这种结构的器件上得以解决,同时还使其具有量子效率高、响应度高以及波长选择等特性,成就了谐振腔型光电探测器的在WDM系统中的解复用接受应用的理想选择。不过,还有部分需要改进,如可调谐、较好的通带性能、易于集成等。所以,还是需要进一步的研究RCE光电探测器的性能,以期这些特性的实现。

四、参考文献

[1] Mao Luhong, Simulation and Design of a CMOS-Process-Compatible High-Speed Si-Photodetector,

CHINESE JOURNAL OF SEMICONDUCTORS Feb., 2002

[2] Daniel Durini ,Photodetector Structures for Standard CMOS Imaging Applications,2007,12

[3] Sunil S. Konanki and Fred R. Beyette Jr,“Characterization and Performance Evaluation of CMOS

Based Photodetectors ”, Submitted to IEEE,at 2000

[4] 胡红光一种光电探测器电路的设计2000.6

[5] G. N Lu, P. Pittet, G. Carrillo andA. El Mourabit, On-Chip Synchronous Detection for CMOS

Photodetector,2002,

[6] LEI Xiao quan , Simulation and Measurement of MS/RF CMOS2Compatible Photodetectors,

Journal of Optoelectronics·Laser,Vol.17 No.12 Dec.2006

[7] H. Zimmermann, Integrated High-Speed, High-Sensitivity Photodiodes andOptoelectronic Integrated

Circuits, Sensors and Materials, 2001, 13(4):189~206

[8] 毛陆虹,陈弘达,吴荣汉等,与CMOS 工艺兼容的硅高速光电探测器模拟与设计,半导体学报,

2002,23(2): 193~197

[9] Coppee, D., Pan, W., Vounchx, R., et al. The spatially modulated light detector,Optical Fiber

Communication Conference and Exhibit, OFC '98., Technical Digest,1998: 315~316

[10] J. Genoe, D. Coppee, J.H.Stiens, et al. Caculation of the current response ofthe spatially modulated

light CMOS detectors, IEEE Trans. Electron Device, 2001,48(9):1892~1902

[11] 余长亮,毛陆虹,肖新东,一种新颖全差分光电集成接收机的标准CMOS实现,光电子?激光,

2009,20(4):432~435 [EI: 20092112091214]

[12] 刘凯,黄永清,任晓敏. 考虑不同层材料折射率差时的谐振腔增强型光电探测器分析[J].光电

子·激光,1998,9(5): 360-371.

[13] B. M. Onat, M. Gokkavas, et al. 100GHz resonant cavity enhanced schottky photodiodes [J].

Photonics Technol. Lett, 1998, 10(5):707-709.

[14] U. Prank, et al. MSM photodetector with integrated fabry-perot resonantor for wavelength

demultiplexing high bandwidth receivers [J]. Appl. Phys. Lett, 1993, 62(2):129-130.

[15] S. L. Zhou, D. P. Peng, Y. L. Qin, et al. On the performance analysis and design of a novel

shared-layer integrated device using RCE p-i-n PD/SHBT [J]. Proc. of SPIE, 2007, 6782: 0J1-0J8. [16] S. S. Murt, K. A. Anselm, et al. Resonant-cavity-enhanced (RCE) separate absorption and

multiplication (SAM) avalanche photodetector (APD) [J]. Photonics Technol. Lett. 1995,

7(12):1486-1488.

[17] E. Mao, D. R. Yankelevich, et al. Wavelength-selective semiconductor in-line fiber photodetectors [J].

Electronics Letters, 2000, 36(6):515-516.

[18] A. K. Ganguly, A. Ganguly, M. Bhoumic, et al. High-speed metal-semiconductor-metal

photodiode[C]. ICIIS, 2008:1-4.

[19] M. S. Unlü. Resonant cavity enhanced photonic devices [J]. Appl. Phys. 1995, 78(2):607-639.

[20] J. A. Jervase, H. Bourdoucen.Design of resonant-cavity-enhanced photodetectors using genetic

algorithms [J]. Quantum Electron, 2000, 36(3):325-332.

光电探测器原理

光电探测器原理

光电探测器原理及应用 光电探测器种类繁多,原则上讲,只要受到光照后其物理性质发生变化的任何材料都可以用来制作光电探测器。现在广泛使用的光电探测器是利用光电效应工作的,是变光信号为电信号的元件。 光电效应分两类,内光电效应和外光电效应。他们的区别在于,内光电效应的入射光子并不直接将光电子从光电材料 内部轰击出来,而只是将光电材料内部的光 电子从低能态激发到高能态。于是在低能态 留下一个空位——空穴,而高能态产生一个 自由移动的电子,如图二所示。 硅光电探测器是利用内光电效应的。 由入射光子所激发产生的电子空穴对,称为光生电子空穴对,光生电子空穴对虽然仍在材料内部,但它改变了半导体光电材料的导电性能,如果设法检测出这种性能的改变,就可以探测出光信号的变化。 无论外光电效应或是内光电效应,它们的产生并不取决于入射光强,而取决于入射光波的波长λ或频率ν,这是因为光子能量E只和ν有关: E=hν(1) 式中h为普朗克常数,要产生光电效应,每个光子的能量必须足够大,光波波长越短,频率越高,每个光子所具有的能量hν也就越大。光强只反映了光子数量的多少,并不反映每个光子的能量大小。 目前普遍使用的光电探测器有耗尽层光电二极管和雪崩光电二极管,是由半导体材料制作的。 半导体光电探测器是很好的固体元件,主要有光导型,热电型和P—N结型。但在许多应用中,特别是在近几年发展的光纤系统中,光导型探测器处理弱信号时噪声性能很差;热电型探测器不能获得很高的灵敏度。而硅光电探测器在从可见光到近红外光区能有效地满足上述条件,是该波长区理想的光接收器件。 一、耗尽层光电二极管 在半导体中,电子并不处于单个的分裂 能级中,而是处于能带中,一个能带有许多

中远红外探测器发展动态

中远红外探测器发展动态 1 红外光电探测器的的历史 红外探测成像具有作用距离远、抗干扰性好、穿透烟尘雾霾能力强、可全天候、全天时工作等优点在军用和民用领域都得到了极为广泛的应用按照探测过程的物理机理,红外探测器可分为两类即热探测器和光电探测器。光电探测器的工作原理是目标红外辐射的光子流与探测器材料相互作用,并在灵敏区域产生内光电效应。因具有灵敏度高、响应速度快的优点,光电探测器在预警、精确制导、火控和侦察等红外探测系统中得到广泛应用。 红外焦平面阵列可探测目标的红外辐射,通过光电转换、电信号处理等手段,可将目标物体的温度分布图像转换成视频图像,是集光、机、电等尖端技术于一体的红外光电探测器H。目前许多国家,尤其是美国等西方军事发达国家,都花费大量的人力、物力和财力进行此方面的研究与开发,并获得了成功。红外光电探测器研究从第一代开始至今已有40余年历史,按照其特点可分为三代。第一代(1970s~1980s)主要是以单元、多元器件进行光机串/并扫描成像,以及以4×288为代表的时间延迟积分(TDI,time delay integration)类扫描型(scanning)红外焦平面列阵。单元、多元探测器扫描成像需要复杂笨重的二维、一维扫描系统结构,且灵敏度低。第二代红外光电探测器是小、中规格的凝视型(staring)红外焦平面列阵。M×N凝视型红外焦平面探测元数从1元、N元变成M×N元,灵敏度也分别从l与N1/2增长M×N1/2倍和M1/2。而且,大规模凝视焦平面阵列,不再需要光机扫描,大大简化整机系统。 目前,正在发展第三代红外光电探测器。探测器具有大面阵、小型化、低成本、双色(two-color)与多色(multi-color)、智能型系统级灵巧芯片等特点,并集成有高性能数字信号处理功能,可实现单片多波段融合高分辨率探测与识别。因此,本文将重点综述三代红外光电探测器的材料体系及其研究现状,并分析未来红外光电探测器的材料选择及发展趋势。 2 三代探测器的材料体系与发展现状 红外光电探测器的材料很多,但真正适于发展三代红外光电探测器,即响应波段灵活可调的双色与多色红外焦平面列阵器件的材料则很少。目前,主要有传统的HgCdTe和QWIPs,以及新型的二类SLs和QDIPs,共四个材料体系。作为

光电传感器及原理

《光电传感器及原理》课程设计报告 设计名称 :光电式转速测量传感器 专业: 成员姓名: 成员学号: 指导老师: 光电式转速测量传感器 一、光电式转速传感器工作原理框图: 二、光电式转速传感器工作原理 <一 >直射式是在待测转速轴上固定一带孔的调制盘, 在调制盘一边有激光器产生一恒定光源, 透过盘上的小孔到达光敏二极管组成的光电转换器上, 转换成相应的电脉冲信号, 经过放大整形电路输出整齐的脉冲信号, 脉冲信号由计数装置计数, 则通过计算可知该转速轴的转速。 光电直射数字式转数表原理图 <二 >反射式是在待测转速的轴上固定一个涂有黑白相间条纹的圆盘,他们具有较大的反射率差,当轴转动时,反光与不反光交替出现,光敏间断的接受反射信号,转换成脉冲信号,经过放大整形电路输出整齐的脉冲信号, 脉冲信号由计数装置计数, 则通过计算可知该转速轴的转速。 光电反射数字式转数表原理图

每分钟转速 n 与脉冲频率 f 的关系如下: n=60*f / N 式中N为转盘上的空数或白条纹数例如:空数 N=60 ,光电转换器的输出脉冲号频率为 4.8KHZ , 则 n=60*f / N=4800r/min

四、光电转速传感器优点 1、光电转速传感器为非接触式转速表 光电转速传感器采用光学原理制造,属于非接触式转速测量仪表,它的测量距离一般可达 200mm 左右。光电转速传感器的测量无需与被测量对象接触,不会对被测量轴形成额外的负载,因此光电转速传感器的测量误差更小,精度更高。 2、光电转速传感器的结构紧凑 光电转速传感器的结构紧凑, 主要由投射光线部件、接收光线部件也就是光敏元件和放大元件等组成,因此光电转速传感器的体积设计小巧、内部结构精致,一般重量不会超过 200g , 非常便于使用者的携带、安装和使用。 3、光电转速传感器的抗干扰性好 光电转速传感器多采用 LED 作为光线投射部件,极少会出现光线停顿的情况,也不会存在灯泡烧毁等故障危险。另外, 光电转速传感器的光源都是经过特殊方式调制的, 有极强的抗干扰能力,不会受普通光线的干扰。 4、光电转速传感器的测量能力好 光电转速传感器的可采用光纤封装, 可于测量微小的物体, 特别是微小旋转体的测量, 特别适用于高精密、小元件的机械设备测量。光电转速传感器的运行稳定, 有良 好的可靠性, 测量的精度较高,能满足使用者的测量要求。

光电化学生物传感器的研究与应用

光电化学生物传感器的研究与应用 陈洪渊* 南京大学,南京,210093 *Email: hychen@https://www.docsj.com/doc/a32700364.html, 光电化学过程是指分子、离子以及固体物质在光的作用下,因吸收光子而使电子处于激发态继而产生电荷传递的过程。光电化学传感是基于物质的光电转化特性而建立起来的一种新兴的检测技术。待测物与光电化学活性物质之间的直接/间接相互作用,或者生物识别过程前后所产生的光电流(或光电压)的变化与待测物浓度之间的关系, 是光电化学传感定量的基础。在光电化学检测中,与电化学发光检测恰好相反,光被用作激发源来激发光活性物质,通过光激发所产生的电信号作为检测信号。由于采用不同能量形式的激发与检测信号,和电化学发光检测相同的是,光电化学传感的背景信号要比传统的电化学方法低。研究表明,在采用相同或类似的流程对同一种物质进行检测时,光电化学方法获得的检测限通常要比电化学方法低一个数量级。此外,由于利用电信号响应, 同传统的光学方法相比, 光电化学检测仪器设备简单、价格低廉且易于微型化。因此,这种方法在生物分析领域具有广阔的应用前景,近年发展十分迅速。随着研究的不断深入,可以预期,光电化学传感将在生物分子测定、环境监测、食品安全、新药研究和医学卫生等诸多领域发挥重要作用。目前,光电化学应用于生物传感器的各个主要研究方向,如DNA传感器、免疫传感器以及酶催化型传感器等方面都取得了迅速的发展。 本文将以本研究组现有相关工作为例,对光电化学生物传感的基本概念、原理与应用及当前的发展趋势作一扼要的评述,以期为光电化学生物传感器的进一步发展提供一定的启示。 参考文献 [1] Zhao W W, Yu P P, Xu J J, Chen H Y. Electrochem. Commun., 2011, 13, 495—497 [2] Zhao W W, Wang J, Xu J J, Chen H Y. Chem. Commun., 2011, 47, 10990—10992 [3] Zhao W W, Tian C Y, Xu J J, Chen H Y. Chem. Commun., 2012, 48, 895—897 [4] Zhao W W, Dong X Y, Wang J, Kong F Y, Xu J J, Chen H Y. Chem. Commun., 2012, 48, doi: 10.1039/C2CC17942C [5] Zhao W W, Ma Z Y, Yu P P, Dong X Y, Xu J J, Chen H Y. Anal. Chem., 2012, 84, 917—923

InGaAs PIN 光电探测器

SHINE-YOU TECHNOLOGY CO., LTD Addr: 3F,Bld.5,Shangsha Innovative Science & Tech Park,Futian,Shenzhen,China,518048 Tel: +86-755-29812573 Email: info@https://www.docsj.com/doc/a32700364.html, https://www.docsj.com/doc/a32700364.html, 微型封装(MINI CAN )InGaAs PIN 光电探测器 特点: 微型封装,封装尺寸≤2.41 mm 高响应 工作电压 5V 超低暗电流 单针脚密封 工作温度 -40~+85℃ 应用: 光纤通信 数据/图像传输 光纤传感 光测量仪器仪表 最大额定值: 工作温度(℃) -40~+125 存储温度(℃) -50~+125 正向电流(mA ) 4/8 反向电压(V ) ≥20 光电特性(T = 25℃,Vr = 5 V ) 参数 指标 测 试 条 件 光敏面直径(μm ) 75/300 带宽(GHz ) 1.5/0.5 RL = 50 Ω λ= 1310 nm 0.85/0.80 响应度(A/W ) λ= 1550 nm 0.90/0.85 暗电流(nA ) 0.3 / 1 总电容(pF ) 0.6/6.0 f = 1 MHz 响应度一致性(dB ) ±0.2 λ = 1530~1620 nm, T = -10~+85℃ 注意事项 (1)静电对器件有极大伤害,使用中要保证人体、测试仪表、检验装置及工作台接地良好。 (2)电源需有稳压装置,且不可在开关电源过程中产生冲击电压损害器件。 (3)焊接时烙铁应接地良好,温度控制在260℃±5℃,时间不超过5 秒。 (4)测试正向电压时要监控正向电流,不超过100 μA ,否则会击穿器件而失效。

探测器暗电流综述报告

暗电流形成及其稳定性分析 综述报告 目录 光电探测器基本原理 (2) 1.1 PIN光探测器的工作原理 (2) 1.2雪崩光电二极管工作原理 (3) 暗电流的形成及其影响因素 (4) 2.1暗电流掺杂浓度的影响 (4) 2.1.2复合电流特性 (5) 2.1.3表面复合电流特性 (5) 2.1.4欧姆电流特性 (5) 2.1.5隧道电流特性 (6) 2.2结面积和压焊区尺寸对探测器暗电流的影响 (8) 2.3腐蚀速率和表面钝化工艺对探测器暗电流的影响 (10) 2.4温度特性对暗电流影响 (11) 暗电流稳定性分析小结 (12) 参考文献 (13)

光探测器芯片处于反向偏置时,在没有光照的条件下也会有微弱的光电流,被称为暗电流,产生暗电流的机制有很多,主要包括表面漏电流、反向扩散电流、产生复合电流、隧穿电流和欧姆电流。。本文就将介绍光电探测器暗电流形成及其稳定性分析,并介绍了一些提高稳定性的方案,讨论它们的优势与存在的问题。 光电探测器基本原理 光电检测是将检测的物理信息用光辐射信号承载,检测光信号的变化,通过信号处理变换,得到检测信息。光学检测主要应用在高分辨率测量、非破坏性分析、高速检测、精密分析等领域,在非接触式、非破坏、高速、精密检测方面具有其他方法无比拟的。因此,光电检测技术是现代检测技术最重要的手段和方法之一,是计量检测技术的一个重要发展方向。 1.1 PIN光探测器的工作原理 在PD的PN结间加入一层本征(或轻掺杂)半导体材料(I区),就可增大耗尽区的宽度,减小扩散作用的影响,提高响应速度。由于I区的材料近似为本征半导体,因此这种结构称为PIN光探测器。图(a)给出了PIN光探测器的结构和反向偏压时的场分布图。I区的材料具有高阻抗特性,使电压基本落在该区,从而在PIN 光探测器内部存在一个高电场区,即将耗尽层扩展到了整个I区控制 I 区的宽度可以控制耗尽层的宽度。 PIN光探测器通过加入中间层,减小了扩散分量对其响应速度的影响,但过大的耗尽区宽度将使载流子通过耗尽区的漂移时间过长,导致响应速度变慢,因此要根据实际情况折中选取I层的材料厚度。

雪崩光电探测器

雪崩光电探测器 雪崩光电探测器光电探测器是将光信号转变为电信号的器件,雪崩光电探测器采用的即是雪崩光电二极管(APD) ,能够具有更大的响应度。APD将主要应用于长距离或接收光功率受到其它限制而较小的光纤通信系统。目前很多光器件专家对APD 的前景十分看好,认为APD 的研究对于增强相关领域的国际竞争力,是十分必要的。雪崩光电探测器的材料1)Si Si 材料技术是一种成熟技术,广泛应用于微电子领域,但并不适合制备目前光通信领域普遍接受的 1.31mm,1.55mm 波长范围的器件。 2)Ge Ge APD 虽然光谱响应适合光纤传输低损耗、低色散的要求,但在制备工艺中存在很大的困难。而且,Ge的电子和空穴的 离化率比率( )接近1,因此很难制备出高性能的APD 器件。 3)In0.53Ga0.47As/InP 选择In0.53Ga0.47As 作为APD 的光吸收层,InP 作为倍增层,是一种比较有效的方法[2] 。In0.53Ga0.47As 材料的吸收峰值在 1.65mm, 在 1.31mm,1.55mm 波长有约为104cm-1 高吸收系数,是目前光探测器吸收层首选材料。In0.53Ga0.47As 光电二极管比起Ge 光电二极管,有如下优点:(1) In0.53Ga0.47As 是直接带隙半导体,吸收系数高;(2) In0.53Ga0.47As 介电常数比Ge 小,要得到与Ge 光电二极管相

同的量子效率和电容,可以减少In0.53Ga0.47As 耗尽层的厚度,因此可以预期In0.53Ga0.47As/InP 光二极管具有高的效应和响应;(3)电子和空穴的离化率比率()不是1,也就是说In0.53Ga0.47As/InP APD 噪声较低;(4) In0.53Ga0.47As 与InP 晶格完全匹配,用MOCVD 方法在InP 衬底上可以生长出高质量的In0.53Ga0.47As 外延层,可以显着的降低通过p-n 结的暗电流。(5)In0.53Ga0.47As/InP 异质结构外延技术,很容易在吸收区生长较高带隙的窗口层,由此可以消除表面复合对量子效率的影响。 4)InGaAsP/InP 选择InGaAsP 作为光吸收层,InP 作为倍增层,可以制备响应波长在1-1.4mm ,高量子效率,低暗电流,高雪崩增益得的APD 。通过选择不同的合金组分,满足对特定波长的最佳性能。 )InGaAs/InAlAs ln0.52AI0.48As 材料带隙宽(1.47 eV),在 1.55 mm 波长范围不吸收,有证据显示,薄In0.52Al0.48As 外延层在纯电子注入的条件下,作为倍增层材料,可以获得比lnP 更好的增益特性。 6)InGaAs/InGaAs(P)/InAlAs 和InGaAs/In(Al )GaAs/InAlAs 材料的碰撞离化率是影响APD 性能的重要因素。研究表明[6] ,可以通过引入InGaAs(P)/InAlAs 和In(Al )GaAs/InAlAs 超晶格结构提高倍增层的碰撞离化率。应用超晶格结构这一能带工程可以人为控制导带和价带值间的非对称性带边不连续性,并保证

光电化学综述

光电化学传感器的应用研究进展 摘要:光电化学传感器是基于物质的光电转换特性确定待测物浓度的一类检测装置。光电化学检测方法灵敏度高、设备简单、易于微型化,已经成为一种极具应用潜力的分析方法。本文主要介绍光电化学传感器的工作机理、特点和应用,并对有代表性的实验进行了一定的讲述和总结。 关键词:光电化学;传感器 一、引言 20世纪70年代,人们就开始研究光照下半导体电极的电化学行为,并逐渐发展成为一门新学科——光电化学。目前,光电化学是当前电化学领域中十分活跃的一个研究方向,它是光伏打电池、光电催化、光解和光电合成等实际应用的基础。光电化学过程即光作用下的电化学过程,在光照射条件下,物质中电子从基态跃迁到激发态,进而产生电荷传递。与电化学反应相类似,在光电化学反应体系中也会产生电流的流动。因此,利用光电化学反应可以把光能转变成化学能或电能,通过其逆过程则可以把化学能或电能转换为光能。 待测物与光电化学活性物质之间的物理、化学相互作用产生的光电流或光电压的变化与待测物的浓度间的关系,是传感器定量的基础。以光电化学原理建立起来的这种分析方法,其检测过程和电致化学发光正好相反,用光信号作为激发源,检测的是电化学信号。和电化学发光的检测过程类似,都是采用不同形式的激发和检测信号,背景信号较低,因此,光电化学可能达到与电致化学发光相当的高灵敏度。由于采用电化学检测,同光学检测相比,其设备价廉。 二、光电化学的概述 1、光电化学的工作机理 要了解光电化学的工作原理,首先得研究光催化技术。光催化反应的本质是指在受光的激发后,催化剂表面产生的电子空穴对分别与氧化性物质和还原性物质相互作用的电化学过程。这里以半导体二氧化钛(TiO )为例介绍一下光电化 2 学的工作原理。 半导体TiO 具有由价带和导带所构成的带隙,价带由一系列填满电子的轨道构 2 成,而导带是由一系列未填充电子的轨道所构成。当半导体近表面区在受到能量

光电探测器

一`光电探测器 第一节 光辐射探测器的主要指标 光信号的探测是光谱测量中的重要一环,在不同的场合和针对不同的目的所采用的探测器也不同,最重要的考虑是探测器的应用波长范围、探测灵敏度以及响应时间。光探测器是将光辐射能转变为另一种便于测量的物理量的器件,它的门类繁多,一般来说可以按照在探测器上所产生的物理效应,分成光热探测器、光电探测器和光压探测器,光压探测器使用得很少。本章将着重介绍光谱学测量中常用的探测器。 光热探测器是探测元件吸收光辐射后引起温度的变化,例如光能被固体晶格振动吸收引起固体的温度升高,因此对光能的测量可以转变为对温度变化的测量。这种探测器的主要特点是:具有较宽的光波长响应范围,但时间响应较慢,测量灵敏度相对也低一些,经常用于光功率或光能量的测量。 光电探测器是将光辐射能转变为电流或电压信号进行测量,是最常使用的光信号探测器。它的主要特点是:探测灵敏度高,时间响应快,可以对光辐射功率的瞬时变化进行测量,但它具有明显的光波长选择特性。光电探测器又分内光电效应器件和外光电效应器件,内光电效应是通过光与探测器靶面固体材料的相互作用,引起材料内电子运动状态的变化,进而引起材料电学性质的变化。例如半导体材料吸收光辐射产生光生载流子,引起半导体的电导率发生变化,这种现象称为光电导效应,所对应的器件称为光导器件;又如半导体PN 结在光辐照下,产生光生电动势,称为光生伏特效应,利用这种效应制成的器件称为光伏效应器件。 外光电效应器件是依据爱因斯坦的光电效应定律,探测器材料吸收辐射光能使材料内的束縛电子克服逸出功成为自由电子发射出来。 P k E h E -=ν ---------------------------------- (2.1-1) 上式中 νh 是入射光子的能量,E p 是探测器材料的功函数,即光电子的逸出功,E k 是光电子离开探测器表面的动能。这种探测器有一个截止频率和截止波长C ν和C λ: h p E c = ν , () ()nm eV E E hC p p C 1240= = λ --------(2.1-2)

光电显示技术论文

光电显示技术的现状和发展趋势的分析 姓名:娄展卿学号:院系:新闻传播院 摘要:光电显示技术的简介。分析中国光电显示市场现状以及发展趋势。介绍光电显示技术的类型及其主流产品。介绍一些有较好发展前景的未成熟技术。 关键字:光电显示;显像管技术;液晶显示技术;等离子显示技术;发展现状;前景。 一光电显示技术简介:光电显示技术是多学科的交叉综合技术,主要有: 1、阴极射线管(Cathode Ray Tube-CRT)。是传统的光电信息显示器件,它显示质量优良,制作和驱动比较简单,有很好的性能价格比,但同时它也有一些严重的缺点,如有电压高、软x-射线、体积大、笨重、可靠性不高等。 2、液晶显示(Liquid Crystal-LC)。液晶是一种介于固体于液态之间的有机化合物,兼有液体的流动性与固体的光学性质,即现在的液晶显示器LCD。 3、等离子体显示(Plasma Display Panel-PDP)。等离子体显示是利用气体放电发光进行显示的平面显示板,可以看成是有大量小型日光灯排列构成的。等离子体显示技术成为近年来人们看好的未来大屏幕平板显示的主流。 4、电致发光(Electro Luminescnce Diode-ELD)等。或场致发光显示-Field Emitting Tube,FET,是另一种很有发展前途的平板显示器件,它是将电能直接转换成光能的一种物理现象。 1.1阴极射线管(CRT) 阴极射线管的关键部件是连在荧光屏后部成为一体的电子枪。电子枪发射出一束经过图像信号调制的窄电子流,经过加速、聚焦、偏转后打在荧光屏的荧光粉上使之发光。电子枪以一个相当快的速度发射电子流,同时偏转线圈控制电子束方向,逐行在屏幕上扫过,达到显示图像的目的。CRT显示图像是是不断连续刷新着的,因此此类显示器看上去给眼睛一种“闪烁”的感觉。容易引起眼睛疲劳损坏视力。 CRT有黑白和彩色两种,黑白的显像管构造相对简单。图1.为黑白显像管的构造示意图。

光电传感器介绍

光电式传感器 1.概述 光电传感器是采用光电元件作为检测元件的传感器。它首先把被测量的变化转换成光信号的变化,然后借助光电元件进一步将光信号转换成电信号。光电传感器一般由光源、光学通路和光电元件三部分组成。光电检测方法具有精度高、反应快、非接触等优点,而且可测参数多,传感器的结构简单,形式灵活多样,因此,光电式传感器在检测和控制中应用非常广泛。光电传感器是各种光电检测系统中实现光电转换的关键元件,它是把光信号(红外、可见及紫外光辐射)转变成为电信号的器件。 光电式传感器是以光电器件作为转换元件的传感器。它可用于检测直接引起光量变化的非电量,如光强、光照度、辐射测温、气体成分分析等;也可用来检测能转换成光量变化的其他非电量,如零件直径、表面粗糙度、应变、位移、振动、速度、加速度,以及物体的形状、工作状态的识别等。光电式传感器具有非接触、响应快、性能可靠等特点,因此在工业自动化装置和机器人中获得广泛应用。近年来,新的光电器件不断涌现,特别是CCD图像传感器的诞生,为光电传感器的进一步应用开创了新的一页。 2.物理特性 2.1外光电效应 2.1.1光子假设 1887年,赫兹发现光电效应,爱因斯坦第一个成功解释光电效应。爱因斯坦根据普朗克量子假说而进一步提出的光量子,即光子概念,对光电效应研究做出了决定性的贡献。爱因斯坦光子假说的核心思想是:表面上看起来连续的光波是量子化的。单色光由大量不连续的光子组成。若单色光频率为n,那么每个 光子的能量为E=hv, 动量为。 由爱因斯坦光子假说发展成现代光子论(photon theory)的两个基本点是:

(1) 光是由一颗一颗的光子组成的光子流。每个光子的能量为E = hv,动量 为。由N个光子组成的光子流,能量为N hv。 (2) 光与物质相互作用,即是每个光子与物质中的微观粒子相互作用。 根据能量守恒定律,约束得最不紧的电子在离开金属面时具有最大的初动 能,所以对于电子应有: 2.2 内光电效应 光电传感器通常是指能敏感到由紫外线到红外线光的光能量,并能将光能转化成电信号的器件。其工作原理是基于一些物质的光电效应。 光电效应:当具有一定能量E的光子投射到某些物质的表面时,具有辐射能量的微粒将透过受光的表面层,赋予这些物质的电子以附加能量,或者改变物质的电阻大小,或者使其产生电动势,导致与其相连接的闭合回路中电流的变化,从而实现了光—电转换过程。在光线作用下能使物体电阻率改变的称为内光电效应。属于内光电效应的光电转换元件有光敏电阻以及由光敏电阻制成的光导管等。 2.2.1光电导效应 光照变化引起半导体材料电导变化的现象称光电导效应(又称为光电效应、光敏效应),即光电导效应是光照射到某些物体上后,引起其电性能变化的一类光致电改变现象的总称。当光照射到半导体材料时,材料吸收光子的能量,使非传导态电子变为传导态电子,引起载流子浓度增大,因而导致材料电导率增大。在光线作用下,对于半导体材料吸收了入射光子能量,若光子能量大于或等于半导体材料的禁带宽度,就激发出电子-空穴对,使载流子浓度增加,半导体的导电性增加,阻值减低,这种现象称为光电导效应。光敏电阻就是基于这种效应的光电器件。

光电化学传感器的研究进展_王光丽

中国科学B辑:化学 2009年 第39卷 第11期: 1336~1347 https://www.docsj.com/doc/a32700364.html, https://www.docsj.com/doc/a32700364.html, 1336 《中国科学》杂志社SCIENCE IN CHINA PRESS 光电化学传感器的研究进展 王光丽, 徐静娟, 陈洪渊* 生命分析化学教育部重点实验室, 南京大学化学化工学院, 南京210093 * 通讯作者, E-mail: hychen@https://www.docsj.com/doc/a32700364.html, 收稿日期: 2009-08-11; 接受日期: 2009-09-03 摘要光电化学传感器是基于物质的光电转换特性确定待测物浓度的一类检测装置. 光电化学检测方法灵敏度高、设备简单、易于微型化, 已经成为一种极具应用潜力的分析方法. 本文主要介绍光电化学传感器的基本原理、特点、分类, 并对有代表性的研究和发展前景做了总结和评述. 关键词光电化学传感器综述 1引言 光电化学过程是指分子、离子或半导体材料等因吸收光子而使电子受激发产生的电荷传递, 从而实现光能向电能的转化过程. 具有光电化学活性的物质受光激发后发生电荷分离或电荷传递过程, 从而形成光电压或者光电流. 具有光电转换性质的材料主要分为4类. (1)无机光电材料: 这类材料主要指无机化合物构成的半导体光电材料, 如Si、TiO2、CdS、CuInSe2等[1]. (2)有机光电材料: 常用的有机类光电材料主要是有机小分子光电材料和高分子聚合物材料. 小分子材料如卟啉类、酞菁类、偶氮类、叶绿素、噬菌调理素等[2~4]; 高分子聚合物材料主要有聚对苯撑乙烯(PPV)衍生物、聚噻吩(PT)衍生物等[5]. (3)复合材料: 复合材料主要是由有机光电材料或者配合物光电材料与无机光电材料复合形成, 也可以是两种禁带宽度不同的无机半导体材料复合形成的材料. 复合材料比单一材料具有更高的光电转换效率. 常见的复合材料体系有C dS-TiO2、ZnS- TiO2[1]、联吡啶钌类配合物-TiO2[6~9]等. 基于TiO2的复合材料是目前研究最多的一种, 也有用ZnO[10~12]、SnO2[13]、Nb2O5[14]、Al2O3[15]等其它宽禁带的半导体氧化物进行复合的. 后来, 利用金纳米粒子或者碳纳米结构的导电性, 人们发展了基于金纳米粒子或者碳纳米结构-半导体复合物以提高半导体光生电子的捕获和传输能力. 富勒烯/CdSe[16,17]、碳纳米管/CdS[18~21]、碳纳米管/ CdSe[22,23]、卟啉/富勒烯/金纳米粒子[24]、CdS/金纳米粒子[25]等体系具有较高的光电转换效率. 另外, 某些生物大分子如细胞、DNA等也具有光电化学活性, 可以通过它们自身的光电流变化研究生物分子及其它物质与它们的相互作用. 待测物与光电化学活性物质之间的物理、化学相互作用产生的光电流或光电压的变化与待测物的浓度间的关系, 是传感器定量的基础. 以光电化学原理建立起来的这种分析方法, 其检测过程和电致化学发光正好相反, 用光信号作为激发源, 检测的是电化学信号. 和电化学发光的检测过程类似, 都是采用不同形式的激发和检测信号, 背景信号较低, 因此, 光电化学可能达到与电致化学发光相当的高灵敏度. 由于采用电化学检测, 同光学检测相比, 其设备价廉. 根据测量参数的不同, 光电化学传感器可分为电位型和电流型两种. 2光寻址电位型传感器 电位型光电化学传感器主要指光寻址电位传感器(light addressable potentiometric sensor , LAPS), 它

最新光电显示技术实验讲义

光电显示技术实验讲 义

实验一有机发光器件(OLED)参数测量 一、实验目的: 1.了解有机发光显示器件的工作原理及相关特性; 2.掌握OLED性能参数的测量方法; 二、实验原理简介: 1979年,柯达公司华裔科学家邓青云(Dr. C. W. Tang)博士发现黑暗中的有机蓄电池在发光,对有机发光器件的研究由此开始,邓博士被誉为OLED之父。 OLED (Organic Light Emitting Display,中文名有机发光显示器)是指有机半导体材料和发光材料在电场驱动下,通过载流子注入和复合导致发光的现象。OLED用ITO透明电极和金属电极分别作为器件的阳极和阴极,在一定电压驱动下,电子和空穴分别从阴极和阳极注入到电子和空穴传输层,电子和空穴分别经过电子和空穴传输层迁移到发光层,并在发光层中相遇,形成激子并使发光分子激发,后者经过辐射弛豫而发出可见光。辐射光可从ITO一侧观察到,金属电极膜同时也起了反射层的作用。

图1:OLED结构示意图 与LCD相比,OLED具有主动发光,无视角问题,重量轻,厚度小,高亮度,高发光效率,发光材料丰富,易实现彩色显示,响应速度快,动态画面质量高,使用温度范围广,可实现柔软显示,工艺简单,成本低,抗震能力强等一系列的优点。 如果一个有机层用两个不同的有机层来代替,就可以取得更好的效果:当正极的边界层供应载流子时,负极一侧非常适合输送电子,载流子在两个有机层中间通过时,会受到阻隔,直至会出现反方向运动的载流子,这样,效率就明显提高了。很薄的边界层重新结合后,产生细小的亮点,就能发光。如果有三个有机层,分别用于输送电子、输送载流子和发光,效率就会更高。 为提高电子的注入效率,OLED阴极材料的功函数需尽可能的低,功函数越低,发光亮度越高,使用寿命越长。可以使用Ag 、Al 、Li 、Mg 、Ca 、In等单层金属阴极,也可以将性质活泼的低功函数金属和化学性能较稳定的高功函数金属一起蒸发形成合金阴极。如Mg: Ag(10: 1),Li:Al (0.6%Li),功函数分别

光电显示技术

光电显示技术复习 第一章绪论 一、显示的概念:对信息的表示。 二、名词翻译: LED 发光二极管(light emitting diode) LCD 液晶显示器(liquid crystal display) CRT 阴极射线管(cathode ray tube) ITO纳米铟锡氧化物(Indium Tin Oxide ) TFT-LCD薄膜晶体管液晶显示器(Thin Film Transistor-Liquid Crystal Display) OLED有机发光二极管(Organic Light Emitting Diode) PDP等离子显示器(Plasma display panel) 三、光电显示器件分类: (1)直观型:把显示设备上出现的视觉信息直接观看的方式称为直观型 电子束型:采用适当的电路控制真空管内的电子束,使其在荧光屏上激发荧光粉发光形成图像或文字。CRT 平板型:厚度小于显示屏对角线尺寸的1/4,如LCD,PDP。优点是使用上方便,大型、小型、微型都很适用可在有限面积上容纳最大信息 量,且适于大批量生产。 数码显示器件:小型电子设备中显示0~9或A~Z的显示器件。LED,体 积小,耗电少。 (2)投影型:由显示设备或者光控装置所产生的比较小的光信息经过一定的光学系统放大投射到大屏幕后收看的方式称为投影型。

前投式:类似电影,用于公共场合。 背投式:从投射光反方向观看屏幕透射光,适于家用。 (3)空间成像型:采用某种光学手段在空间形成可供观看的方式。 主动发光型 被动显示型LCD 四、光的基本特性 (1)光通量:Φ(lm)单位时间发出的光量。 (2)光照度:E(lx=lm/m2)单位受光面积上所接受的光通量。 E=dΦ/dS (3)发光强度:I(cd=lm/sr)光源在给定方向的单位立体角辐射的光通量。 I=dΦ/dω (4)亮度:L(cd/m2)垂直于传播方向单位面积上的发光强度。 L=dΦ/(dS*cosθ*dω) 五、三基色原理 三基色:红绿蓝 混合:红+绿=黄;绿+蓝=青;红+蓝=紫;红+绿+蓝=白 六、显示器的主要性能指标 (1)像素:构成图像的最小面积。 (2)亮度:从给定方向上观察的任意表面的单位投影面积上的发光强度。 (3)亮度均匀性:反映显示器件在不同展示区域所产生的亮度的均匀性。 (4)对比度和灰度 对比度:画面上最大亮度和最小亮度之比。 灰度:画面上亮度的等级差别。 (5)分辨率:单位面积像素的数量。 (6)清晰度和分辨力 清晰度:人眼能察觉到的图像细节清晰的程度。用光栅高度(帧高)范围内能

光电探测器综述(PD)分解

光电探测器综述 摘要:近年来,围绕着光电系统开展了各种关键技术研究,以实现具有高集成 度、高性能、低功耗和低成本的光电探测器(Photodetector)及光电集 成电路(OEIC)已成为新的重大挑战。尤其是具有高响应速度,高量子 效率和低暗电流的高性能光电探测器,不仅是光通信技术发展的需要, 也是实现硅基光电集成的需要,具有很高的研究价值。本文综述了近十 年来光电探测器在不同特性方向的研究进展及未来几年的发展方向,对 其的结构、相关工艺和制造的研究具有很重要的现实意义。 关键词:光电探测器,Si ,CMOS Abstrac t: In recent years, around the photoelectric system to carry out the study of all kinds of key technologies, in order to realize high integration, high performance, low power consumption and low cost of photoelectric detector (Photodetector) and optoelectronic integrated circuit (OEIC) has become a major new challenge. Especially high response speed ,high quantum efficiency, and low dark current high-performance photodetector, is not only the needs for development of optical communication technology, but also realize the needs for silicon-based optoelectronic integrated,has the very high research value.This paper reviews the development of different characteristics and results of photodetector for the past decade, and discusses the photodetector development direction in the next few years,the study of high performance photoelectric detector, the structure, and related technology, manufacturing, has very important practical significance. : Key Word: photodetector, Si ,CMOS 一、光电探测器 概念 光电探测器在光通信系统中实现将光转变成电的作用,这主要是基于半导体材料的光生伏特效应,所谓的光生伏特效应是指光照使不均匀半导体或半导体与金属结合的不同部位之间产生电位差的现象。(光电导效应是指在光线作用下,电子吸收光子能量从键合状态过度到自由状态,而引起材料电导率的变化的象。即当光照射到光电导体上时,若这个光电导体为本征半导体材料,且光辐射能量又足够强,光电材料价带上的电子将被激发到导带上去,使光导体的电导率变大是指由辐射引起被照射材料电导率改变的一种物理现象,光子作用于光电导材

光电显示技术专业简介

光电显示技术专业简介 专业代码610118 专业名称光电显示技术 基本修业年限三年 培养目标 本专业培养德、智、体、美全面发展,具有良好职业道德和人文素养,掌握LCD、LED 显示与照明的基本原理和控制方法,熟悉光电显示系统与半导体照明产品、照明工程设计等相关知识,具备光电显示与照明器件、产品的制造与检测能力,具备室内外大屏幕显示系统、城市景观照明亮化工程设计与施工能力,从事 LCD、LED 显示与照明产品的生产测试、质量管理、技术服务、工程实施等工作的高素质技术技能人才。 就业面向 主要面向光电显示与照明行业、企业,在光电显示器件、半导体照明产品设计制造、生产工艺技术指导与生产现场管理、产品检测与质量管理等岗位群,从事 LCD、LED 制造与测试,光电显示与半导体照明产品设计、工程施工等工作。主要职业能力 1.具备对新知识、新技能的学习能力和创新创业能力; 2.具备光电显示屏、电源驱动器、智能照明产品的辅助设计、制造、测试、品管、营销、拆卸、安装及检修能力; 3.具备制定光电显示与照明产品生产工艺规程的能力; 4.具备光电显示和照明工程的设计与工程施工管理能力; 5.掌握一定的产品市场营销和企业的技术管理技能; 6.掌握光电显示与半导体照明产品生产企业,以及亮化、显示工程施工单位相关设备管理的基本知识;

7.掌握设备的操作规程及日常维护方法和步骤。 核心课程与实习实训 1.核心课程 光学技术基础、光电显示技术基础、单片机原理及应用技术、液晶器件制造技术、LED 照明设计与工程应用、大屏幕显示技术、光电检测技术等。 2.实习实训 在校内进行电子工艺、电工、电路板设计与制作、光电显示技术等实训。在显示面板生产、电子广告、照明工程等企业进行实习。 职业资格证书举例 嵌入式技术工程师 CETTIC 电子工程师液晶显示器件制造工电子设备装接工电子产品制版工 衔接中职专业举例 电子与信息技术电子技术应用 接续本科专业举例 电子信息工程光电信息科学与工程光源与照明

电化学传感器的应用及发展前景

苏州大学研究生考试答卷封面 考试科目:仪器分析考试得分:________________ 院别:材料与化学化工学部专业:分析化学 学生姓名:饶海英学号:20114209033 授课教师: 考试日期:2012 年 1 月10 日

电化学传感器的应用研究 摘要:随着电分析技术的发展,电化学传感技术越来越成为生命科学、临床诊断和药学研究的重要手段之一。本文主要介绍了电化学发光免疫传感器,电化学DNA 传感器、电化学氧传感器、纳米材料电化学传感器的基本概念、原理,以及这些传感器在各领域的应用。 关键词:电化学传感器免疫传感器传感器 电化学传感技术的核心是传感器。传感器能感受(或响应)规定的被测量并按照一定规律转换成可用信号输出的器件或装置。传感器通常由直接响应于被测量的敏感元件和产生可用信号输出的转换元件以及相应的电子线路所组成,是将一种信息能转换成可测量信号(一般指电学信号)的器件。传感器可分为物理传感器、化学传感器和生物传感器三大类。本文以化学传感器尤其是电化学传感器进行研究。 电致化学发光(Electrogenerated chemiluminescence),也称电化学发光(Electrochemiluminescence),简称ECL,是通过电极对含有化学发光物质的体系施加一定的电压或通过一定的电流,电极氧化还原产物之间或电极氧化还原产物与体系其它共存物质之间发生化学反应并生成某种不稳定的中间态物质,该物质分解而产生的化学发光现象。电致化学发光技术是电化学与化学发光相结合的检测技术,该技术既集成了发光与电化学分析技术的优点,又具有二者结合产生的可控性、选择性、重现性好、灵敏度高、检测限低及动力学响应范围宽等新优势[ 1~3 ]。 电化学传感器可分为以下几个类型。①吸附型:通过吸附方式将修饰物质结合在电极表面得到的修饰电极为吸附型化学修饰电极。可以制备单分子层和多分子层。根据吸附作用力的不同,又可分为平衡吸附型、静电吸附型、LB膜型、SA膜型、涂层型。②共价键合型:在电极的表面通过键合反应把预定功能团接在电极表面而得到的化学修饰电极为共价型化学修饰电极。常用基体电极有碳电极、玻碳电极、金属和金属氧化物电极。③聚合物型:利用聚合反应在电极表面形成修饰膜的电极。制备方式有氧化还原沉积、有机硅烷缩合、等离子聚合、电化学聚合等。④其他类型:无机物修饰电极,如普鲁士蓝修饰电极、粘土修饰电

《光电传感器介绍》(参考Word)

光电式传感器 1.概述 2.物理特性 2.1外光电效应 2.1.1光子假设 2.2 内光电效应 2.2.1光电导效应 2.2.2光电转换元件 3.光电式传感器 3.1工作原理 3.2光电传感器分类 4.光电传感器应用 4.1光电传感器优点 4.1.1光电式带材跑偏检测器 4.1.2包装充填物高度检测 4.1.3光电色质检测 4.1.4烟尘浊度监测仪 4.1.5其他方面的应用 5.光纤传感器 5.1基本工作原理 5.2光纤的种类与特性 5.3光纤传感器的应用 6.常用光电传感器及生产厂家和参数 光电式传感器

1.概述 光电传感器是采用光电元件作为检测元件的传感器。它首先把被测量的变化转换成光信号的变化,然后借助光电元件进一步将光信号转换成电信号。光电传感器一般由光源、光学通路和光电元件三部分组成。光电检测方法具有精度高、反应快、非接触等优点,而且可测参数多,传感器的结构简单,形式灵活多样,因此,光电式传感器在检测和控制中应用非常广泛。光电传感器是各种光电检测系统中实现光电转换的关键元件,它是把光信号(红外、可见及紫外光辐射)转变成为电信号的器件。 光电式传感器是以光电器件作为转换元件的传感器。它可用于检测直接引起光量变化的非电量,如光强、光照度、辐射测温、气体成分分析等;也可用来检测能转换成光量变化的其他非电量,如零件直径、表面粗糙度、应变、位移、振动、速度、加速度,以及物体的形状、工作状态的识别等。光电式传感器具有非接触、响应快、性能可靠等特点,因此在工业自动化装置和机器人中获得广泛应用。近年来,新的光电器件不断涌现,特别是CCD图像传感器的诞生,为光电传感器的进一步应用开创了新的一页。 2.物理特性 2.1外光电效应 2.1.1光子假设 1887年,赫兹发现光电效应,爱因斯坦第一个成功解释光电效应。爱因斯坦根据普朗克量子假说而进一步提出的光量子,即光子概念,对光电效应研究做出了决定性的贡献。爱因斯坦光子假说的核心思想是:表面上看起来连续的光波是量子化的。单色光由大量不连续的光子组成。若单色光频率为n,那么每个 光子的能量为E=hv, 动量为。 由爱因斯坦光子假说发展成现代光子论(photon theory)的两个基本点是: (1) 光是由一颗一颗的光子组成的光子流。每个光子的能量为E = hv, 动量为。由N个光子组成的光子流,能量为N hv。 (2) 光与物质相互作用,即是每个光子与物质中的微观粒子相互作用。 根据能量守恒定律,约束得最不紧的电子在离开金属面时具有最大的初动能,所以对于电子应有:

相关文档