文档视界 最新最全的文档下载
当前位置:文档视界 › 11数学基础知识与典型例题复习--函数极限与导数

11数学基础知识与典型例题复习--函数极限与导数

11数学基础知识与典型例题复习--函数极限与导数
11数学基础知识与典型例题复习--函数极限与导数

lim q =④首项为1a

(D)

]

g x ab

=

()

<a<1);

+∞例

[1,)

2

4

例24. 已知曲线S :y =3x -x 3

及点(2,2)P -,则过点P 可向S 引切线的条数为

数学基础知识与典型例题(第十一章函数极限与导数)答案

例10. [解](1)21n a n =-,∴11111112211

T b a ==+=+=?-

21221182(1)2(1)2213T b b a =?=?+

=+=?-,31233818116

(1)(1)332315

T b b b a =??=+=+=?- (2)由(1)中可猜想得T n >1+n a ; 只须证明对于*n N ∈111

(11)(1)(1)(1)3

5

21

n ++++

- 设n =1时,左=1+1=2,右=3,∵2>3,故原不等式成立; 假设n =k (k ≥1)时,原不等式成立,即12)121

1()511)(311)(11(+

>-+++

+k k ,

当n =k +1时,不等式左边为11111(11)(1)(1)

(1)[1])3

5

212(1)121

k k k ++++++-+-+ 1)2)21k k +

++,不等式的右边为32+k , 只须得出)22(1212+++k k k >32+k ,事实上2

2)

k ?+????

2

=22

484(483)21

k k k k k ++-+++=

121k +>0

,故)22(1

21

2+++k k k >32+k 成立,

从而1111

(11)(1)(1)

(1)[1]3

5

212(1)1

k k ++++

+-+->32+k 。 即n =k +1时不等式也成立,∴对于n ∈N ,则有111

(11)(1)(1)

(1)3

5

21

n ++++

-. 例20. 解:x =0是此分段函数的分界点,

而0

lim ()x f x →存在的充要条件是0

lim ()x f x -

→与0

lim ()x f x +→都存在且相等。 ∴0

lim ()x f x -→=0

lim (cos 1)x x -→+=2,0

lim ()x f x +→=0

lim (sin )x a x b b +

→+=, ∴当b =2,a 取任意实数时,0

lim ()x f x →存在,其值为2.

例21.D 例22.B 例23.D 例24. C 设S 上的切点00(,)x y 求导数得斜率,过点P 可求得:2

00(1)(2)0x x +-=.例25.B 例26.A 例27.B 例28. 90°例29. [ 1,3

5](写开区间也可以) 例30. 本题考查(1)导数的几何意义(2)恒成立问题中参数取值范围的求法.

(3)分析问题解决问题的能力.需要学生熟练掌握求最值的方法. 解:(1)依题意,由3

2

()f x x ax b =-++,则2

()32f x x ax '=-+.

又函数)(x f 图像上任意一点切线的斜率小于1,即2

()321f x x ax '=-+<

亦即23210x ax -+>对任意的x R ∈恒成立. 故2

4120a ?=-<,即a <(2)由题可知,原问题等价于2()321f x x ax '=-+≤对[]0,1x ∈恒成立.

当0x =时,显然有(0)01f '=≤,故当(0,1]x ∈时 21321x ax --+≤≤,从而11323x a x x

x

-+≤≤(※)

对(0,1]x ∈恒成立. 令11()3,()3u x x v x x x x =-=+.则可知1()3u x x x =-在(0,1]上递增,故

max ()(1)2u x u ==1()3v x x x =+≥(0,1]x ,故min ()v x =要使(※)恒成立只须max min ()2()u x a v x ≤≤,即1a ≤1k ≤在[]0,1x ∈的充要条件.

榜样的力量是无穷的!

Examples give unlimited power!

我一生有成千上万个英雄的榜样!

上中学时,我们班的一个女生,背诵的能力特别强,一次能默写五篇文章,只错了两个单词,我很羡慕她,于是,她成了我学习的榜样!

我在治疗鼻炎的时候,由于仪器漏电,电极烫伤我的面颊,在我最疼的时候,我脑子里出现的是黄继光、邱少云等这些英雄的形像,我就真咬牙没吭一声!

我自己专门建立了一个“榜样宝库”,里面储存了大量的优秀人物,每当我失意的时候,每当我孤独的时候,每当我想放弃的时候,我都会赶紧去吸收这些伟人的营养和氧气,顿时可以使自己信心百倍,力大无穷。

我坚信,榜样可以激励我,也可以激励你!

任何人要成功,都要从他人的知识和才干中,学习并受益。

Learn and benefit from the knowledge and talent of others.

任何人要成功,都要接受比自己更高、更强大的榜样所影响,才能够得以快速的进步。

People never improve unless they look to some standard or example higher o r better than themselves.

高中数学导数及微积分练习题

1.求 导:(1)函数 y= 2cos x x 的导数为 -------------------------------------------------------- (2)y =ln(x +2)-------------------------------------;(3)y =(1+sin x )2------------------------ ---------------------- (4)y =3x 2+x cos x ------------------------------------ ;(5)y =x 2cos(2x -π 3 )---------------------------------------- . (6)已知y =ln 3x e x ,则y ′|x =1=________. 2.设1ln )(2+=x x f ,则=)2('f ( ). (A).5 4 (B).5 2 (C).5 1 (D). 5 3 3.已知函数d cx bx ax x f +++=23)(的图象与x 轴有三个不同交点 )0,(),0,0(1x ,)0,(2x ,且)(x f 在1x =-,2=x 时取得极值,则21x x ?的值为 ( ) (A).4 (B).5 (C).-6 (D).不确定 34.()34([0,1])1()1 () ()0 ()1 2 f x x x x A B C D =-∈-函数的最大值是( ) 5.设底面为等边三角形的直棱柱的体积为V ,则其表面积最小时,

底面边长为( ). (A).3V (B).32V (C).34V (D).32V 6.由抛物线x y 22=与直线4-=x y 所围成的图形的面积是( ). (A).18 (B). 3 38 (C). 3 16 (D).16 7.曲线3x y =在点)0)(,(3≠a a a 处的切线与x 轴、直线a x =所围成的三角形的面积为6 1,则=a _________ 。 8.已知抛物线2y x bx c =++在点(12),处的切线与直线20x y ++=垂直,求函数2y x bx c =++的最值. 9.已知函数x bx ax x f 3)(23-+=在1±=x 处取得极值.(1)讨论)1(f 和 )1(-f 是函数)(x f 的极大值还是极小值;(2)过点)16,0(A 作曲线 )(x f y =的切线,求此切线方程.

知识讲解-导数的计算-基础(1)

导数的计算 【学习目标】 1. 牢记几个常用函数的导数公式,并掌握其推导过程。 2. 熟记八个基本初等函数的导数公式,并能准确运用。 3. 能熟练运用四则运算的求导法则, 4. 理解复合函数的结构规律,掌握求复合函数的求导法则:“由外及内,层层求导”. 【要点梳理】 知识点一:基本初等函数的导数公式 (1)()f x C =(C 为常数),'()0f x = (2)()n f x x =(n 为有理数),1'()n f x n x -=? (3)()sin f x x =,'()cos f x x = (4)()cos f x x =,'()sin f x x =- (5)()x f x e =,'()x f x e = (6)()x f x a =,'()ln x f x a a =? (7)()ln f x x =,1 '()f x x = (8)()log a f x x =,1 '()log a f x e x = 。 要点诠释: 1.常数函数的导数为0,即C '=0(C 为常数).其几何意义是曲线()f x C =(C 为常数)在任意点处的切线平行于x 轴. 2.有理数幂函数的导数等于幂指数n 与自变量的(n -1)次幂的乘积,即1()'n n x nx -=(n ∈Q ). 特别地 2 11'x x ?? =- ??? ,=。 3.正弦函数的导数等于余弦函数,即(sin x )'=cos x . 4.余弦函数的导数等于负的正弦函数,即(cos x )'=-sin x . 5.指数函数的导数:()'ln x x a a a =,()'x x e e =. 6.对数函数的导数:1(log )'log a a x e x = ,1 (ln )'x x =. 有时也把1(log )'log a a x e x = 记作:1 (log )'ln a x x a = 以上常见函数的求导公式不需要证明,只需记住公式即可.

高中数学导数经典习题

导数经典习题 选择题: 1.已知物体做自由落体运动的方程为21(),2 s s t gt ==若t ?无限趋近于0时, (1)(1)s t s t +?-?无限趋近于9.8/m s ,那么正确的说法是( ) A .9.8/m s 是在0~1s 这一段时间内的平均速度 B .9.8/m s 是在1~(1+t ?)s 这段时间内的速度 C .9.8/m s 是物体从1s 到(1+t ?)s 这段时间内的平均速度 D .9.8/m s 是物体在1t s =这一时刻的瞬时速度. 2.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒, 那么物体在3秒末的瞬时速度是( ) A .7米/秒 B .6米/秒 C .5米/秒 D .8米/秒 3. 若函数f(x)=x 2+b x +c 的图象的顶点在第四象限,则函数f /(x)的图象是( ) 4.函数)(x f y =在一点的导数值为0是函数)( x f y =在这点取极值的( ) A .充分条件 B .必要条件 C .充要条件 D .必要非充分条件 5.()f x 与()g x 是定义在R 上的两个可导函数,若()f x ,()g x 满足''()()f x g x =,则 ()f x 与()g x 满足( ) A .()f x =()g x B .()f x -()g x 为常数函数 C .()f x =()0g x = D .()f x +()g x 为常数函数 6.. 若()sin cos f x x α=-,则'()f α等于( ) A .sin α B .cos α C .sin cos αα+ D .2sin α 7. 已知函数1)(23--+-=x ax x x f 在),(+∞-∞上是单调函数,则实数a 的 取值范围是( ) A .),3[]3,(+∞--∞Y B .]3,3[- A x D C x B

导数基础知识专项练习

(((((((((( 导数专项练习 一、选择题(本大题共21小题,共105.0分) =1处的切线方程为( +)1.函数(在点)= 3xxfxx xyxyxyxy-2=0+++2=0 +2=0 B.4 -D.4-2=0 A.4C.4-yxylnxaa的值为(已知直线+=)+1与曲线)相切,则= (2.A.1 B.2 C.-1 D.-2 +1在点M处的瞬时变化率为-4,则点已知曲线M=2的坐标是() 3.A.(1,3) B.(1,2xy 4) C.(-1,3) D.(-1,-4) yfxyfxyfx)的图象可能(′((4.若函数)的图象如图所示,则=)(=)的导函数 =

D.C.A. B.23aaxxfxx的取值范-∞,+∞)上是单调递减函数,则实数5.已知函数-1(在()=--+ )围是( D.- )∪(]∪[,+∞),+∞)B.[-] C.(∞,A.(---∞,()- mxfx的取值(上是增函数,则实数)=,2]在区间6.已知函数[1 )范围为( mmmm D.≤4 C. ≤2 A.4≤≤5 B.2≤≤4 α处切线的倾斜角为α,则角上的任意一点,点7.设点PP是曲线)的取值范围是( ,)∪[,π)B.[0 D.C. A.xxfyf))的图象如图所示,则下列说法正确的是(()导函数(' 8.函数= xfy 0)上单调递增()在(-A.函数=∞,xfy 5,函数=)()的递减区间为(3B.((((((((((((.(((((((((( yfxx=0处取得极大值=)在( C.函数yfxx=5处取得极小值=)在(D.函数 bxyb的取值范围是()在R=+(上存在三个单调区间,则+6) 9.已知+3bbbbbb>3或D.< C.-2 <-2A.<≤-2或3 ≥3 B.-2≤≤3b范围为( R上不是单调增函数则)10. 函数在A.(-1,2) B.(-∞,-1]∪[2,+∞) C.[-1,2] D.(-∞,-1)∪(2,+∞) afxxabf,)的定义域为(′(,)在()11.已知函数,导函数(bxabf)上的极大值点)在()上的图象如图所示,则函数,()的个数为(

高中文科经典导数练习题及答案

高二数学导数单元练习 一、选择题 1. 一个物体的运动方程为S=1+t+t^2其中s 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时速度是( ) A 7米/秒 B 6米/秒 C 5米/秒 D 8米/秒 2. 已知函数f (x )=ax 2 +c ,且(1)f '=2,则a 的值为( ) A.1 B.2 C.-1 D. 0 3 ()f x 与()g x 是定义在R 上的两个可导函数,若()f x ,()g x 满足'' ()()f x g x =,则 ()f x 与()g x 满足( ) A ()f x =2()g x B ()f x -()g x 为常数函数 C ()f x =()0g x = D ()f x +()g x 为常数函数 4. 函数3 y x x 的递增区间是( ) A )1,(-∞ B )1,1(- C ),(+∞-∞ D ),1(+∞ 5.若函数f(x)在区间(a ,b )内函数的导数为正,且f(b)≤0,则函数f(x)在(a , b )内有( ) A. f(x) 〉0 B.f(x)〈 0 C.f(x) = 0 D.无法确定 6.0'()f x =0是可导函数y =f(x)在点x =x 0处有极值的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .非充分非必要条件 7.曲线3 () 2f x x x 在0p 处的切线平行于直线41y x ,则0p 点的坐标为( ) A (1,0) B (2,8) C (1,0)和(1,4)-- D (2,8)和(1,4)-- 8.函数3 13y x x =+- 有 ( ) A.极小值-1,极大值1 B. 极小值-2,极大值3 C.极小值-1,极大值3 D. 极小值-2,极大值2 9 对于R 上可导的任意函数()f x ,若满足' (1)()0x f x -≥,则必有( ) A (0)(2)2(1)f f f +< B (0)(2)2(1)f f f +≤ C (0)(2)2(1)f f f +≥ D (0)(2)2(1)f f f +> 二、填空题 11 . 函 数 32y x x x =--的单调区间为

(完整)高中数学导数典型例题

高中数学导数典型例题 题型一:利用导数研究函数的单调性、极值、最值 1. 已知函数32()f x x ax bx c =+++ 过曲线()y f x =上的点(1,(1))P f 的切线方程为y=3x +1 。 (1)若函数2)(-=x x f 在处有极值,求)(x f 的表达式; (2)在(1)的条件下,求函数)(x f y =在[-3,1]上的最大值; (3)若函数)(x f y =在区间[-2,1]上单调递增,求实数b 的取值范围 解:(1)极值的求法与极值的性质 (2)由导数求最值 (3)单调区间 零点 驻点 拐点————草图 2. 已知).(3232)(23R a x ax x x f ∈--= (1)当4 1||≤ a 时, 求证:)x (f 在)1,1( -内是减函数; (2)若)x (f y =在)1,1( -内有且只有一个极值点, 求a 的取值范围. 解:(1)单调区间 零点 驻点 拐点————草图 (2)草图——讨论 题型二:利用导数解决恒成立的问题 例1:已知322()69f x x ax a x =-+(a ∈R ). (Ⅰ)求函数()f x 的单调递减区间; (Ⅱ)当0a >时,若对[]0,3x ?∈有()4f x ≤恒成立,求实数a 的取值范围.

例2:已知函数222()2()21x x f x e t e x x t =-++++,1()()2 g x f x '=. (1)证明:当22t <时,()g x 在R 上是增函数; (2)对于给定的闭区间[]a b ,,试说明存在实数 k ,当t k >时,()g x 在闭区间[]a b , 上是减函数; (3)证明:3()2 f x ≥. 解:g(x)=2e^(2x)-te^x+1 令a=e^x 则g(x)=2a^2-ta+1 (a>0) (3)f(x)=(e^x-t)^2+(x-t)^2+1 讨论太难 分界线即1-t^2/8=0 做不出来问问别人,我也没做出来 例3:已知3)(,ln )(2-+-==ax x x g x x x f (1)求函数)(x f 在)0](2,[>+t t t 上的最小值 (2)对(0,),2()()x f x g x ?∈+∞≥恒成立,求实数a 的取值范围 解:讨论点x=1/e 1/e

导数基础知识

导数基础知识 1、函数4532)(23+-+=x x x x f 的导数=')(x f , 2. 函数y =cos x x 的导数是( ) A .-sin x x 2 B .-sin x C .-x sin x +cos x x 2 D .-x cos x +cos x x 2 3.函数y =(2+x 3)2的导数为( ) A .6x 5+12x 2 B .4+2x 3 C .2(2+x 3)2 D .2(2+x 3)·3x 4.函数y =3x (x 2+2)的导数是( ) A .3x 2+6 B .6x 2 C .9x 2+6 D .6x 2+6 5.若函数f (x )=1-sin x x ,则f ′(π)________________. 6、设,sin 2x e y x -=则y '等于( ) x e A x cos 2.- x e B x sin 2.- x e C x sin 2. )cos (sin 2.x x e D x +-2. 7. 已知f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值是( ) A.193 B.163 C.133 D.103 8.若y =ln x ,则其图象在x =2处的切线斜率是( ) A .1 B .0 9. 求下列函数的导数: (1)3ln )(2+?=x x x f (2)x e x x f ?=33)( (3)2312)(+-= x x x f (4))1)(52()(2+-=x x x f (5)x e x x f )12()(2-= (6)3()12(0)f x x x x =++> (7)x x x f cos 2)(+= (8)x x x f 3ln 2)(+=

高考文科数学专题复习导数训练题文

欢迎下载学习好资料 高考文科数学专题复习导数训练题(文)一、考点回顾导数的概念及其运算是导数应用的基础,是高考重点考查的内容。考查方式以客观题为主,主1. 要考查导数的基本公式和运算法则,以及导数的几何意义。导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工2.具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题。选择填空题侧重于利用导不等式、解答题侧重于导数的综合应用,即与函数、数确定函数的单调性、单调区间和最值问题,数列的综合应用。3.应用导数解决实际问题,关键是建立恰当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极大(小)值,而此时不用和端点值进行比较,也可以得知这就是最大(小)值。 二、经典例题剖析 考点一:求导公式。 13f(x)?x?2x?1??ff(?1)(x)3的值是的导函数,则。例1. 是 ????2?1?2?1?f'32x??xf'解析:,所以 答案:3 点评:本题考查多项式的求导法则。 考点二:导数的几何意义。 1x?y?2(1?(1))f(x)My,f2,点则图数2. 例已知函的象程的处切线方在是 ??(1)(f1?)f。 115???fk?'1M(1,f(1))222,所的纵坐标为,所以,由切线过点,可得点M 解析:因为5???f1?????3'f1?f12以,所以3 答案: 学习好资料欢迎下载 32?3)(1,2??4x?yx?2x例3. 。在点曲线处的切线方程是 2?3)(1,4??4xy'?3x5?k?3?4?4??解析:,所以设切线方程,处切线的斜率为点?3)(1, ?3)y??5x?b(1,2b?,将点处的切线为带入切线方程可得,所以,过曲线上点5x?y?2?0方程为:5x?y?2?0答案:点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 ??23x?,y0x l:y?kx x?3x?2y?xl与曲线C且直线相切于点,,例,4.已知曲线C:直线000l的方程及切点坐标。求直线y??00k??x??0x y,x?0在曲析解:线直线过原点,C则。由点上, ??00232x?2x?3xy?x yx,y'?3x?6x?2??0在,处,。又 则00y20?x?3x?2 000000??222x?3x?2?3x?6x?22x?'6x??3xk?f?,整曲线C,的切线斜率为 0000000331y???k??x03x??2x x?00082400。所以,(舍),此时,,解得:理得:,或033??1,???y??x82l??4的方程为,切点坐标是直线。 33??1,???y??x82l??4的方程为,切点坐标是答案:直线点评:本小题考查导数

(完整word)高中数学导数练习题

专题8:导数(文) 经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 。 解析:()2'2 +=x x f ,所以()3211'=+=-f 答案:3 考点二:导数的几何意义。 例 2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是1 22 y x = +,则(1)(1)f f '+= 。 解析:因为21= k ,所以()2 1 1'=f ,由切线过点(1(1))M f ,,可得点M 的纵坐标为25,所以()2 5 1=f ,所以()()31'1=+f f 答案:3 例3.曲线3 2 242y x x x =--+在点(13)-,处的切线方程是 。 解析:443'2 --=x x y ,∴点(13)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-,带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x 答案:025=-+y x 点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 例 4.已知曲线C :x x x y 232 3 +-=,直线kx y l =:,且直线l 与曲线C 相切于点 ()00,y x 00≠x ,求直线l 的方程及切点坐标。 解析:Θ直线过原点,则()000 ≠= x x y k 。由点()00,y x 在曲线C 上,则02030023x x x y +-=,∴ 2302 00 0+-=x x x y 。又263'2+-=x x y ,∴ 在 () 00,y x 处曲线C 的切线斜率为()263'02 00+-==x x x f k ,∴

函数极限与导数高中数学基础知识与典型例题

知识网 数学归纳法、数列的极限与运算1.数学归纳法: (1)由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法. 归纳法包含不完全归纳法和完全归纳法. ①不完全归纳法:根据事物的部分(而不是全部)特殊事例得出一般结论的推理方法. ②完全归纳法: 根据事物的所有特殊事例得出一般结论的推理方法 数学归纳法常与不完全归纳法结合起来使用,用不完全归纳法发现规律, 用数学归纳法证明结论. (2)数学归纳法步骤: ①验证当n取第一个 n时结论 () P n成立; ②由假设当n k =( , k N k n + ∈≥)时,结论() P k成立,证明当1 n k =+时,结论(1) P k+成立; 根据①②对一切自然数 n n ≥时,() P n都成立. 2.数列的极限 (1)数列的极限定义:如果当项数n无限增大时,无穷数列{}n a的项n a无限地趋近于某个常数a(即 n a a -无限地接近于),那么就说数列 {} n a以a为极限,或者说a是数列{} n a的极限.记为 lim n n a a →∞ =或当n→∞时, n a a →. (2)数列极限的运算法则: 如果{}n a、{}n b的极限存在,且lim,lim n n n n a a b b →∞→∞ ==, 那么lim() n n n a b a b →∞ ±=±;lim(); n n n a b a b →∞ ?=?lim(0) n n n a a b b b →∞ =≠ 特别地,如果C是常数,那么lim()lim lim n n n n n C a C a Ca →∞→∞→∞ ?=?=. ⑶几个常用极限: ①lim n C C →∞ =(C 为常数)②lim0 n a n →∞ = k (,a k 均为常数且N* ∈ k) ③ (1) 1 lim0(1) (1或1) 不存在 n n q q q q q ④首项为 1 a,公比为q(1 q<)的无穷等比数列的各项和为lim 1 n n a S q →∞ = - . 注:⑴并不是每一个无穷数列都有极限. ⑵四则运算法则可推广到任意有限个极限的情况,但不能推广到无限个情况. 数 学 归 纳 法 、数 列 的 极 限 与 运 算 例 1. 某个命题与正整数有关,若当) (* N k k n∈ =时该命题成立,那么可推得当 = n1 + k时该命题也成立,现已知当5 = n时该命题不成立,那么可推得() (A)当6 = n时,该命题不成立(B)当6 = n时,该命题成立 (C)当4 = n时,该命题成立(D)当4 = n时,该命题不成立 例2.用数学归纳法证明:“)1 ( 1 1 1 2 1 2≠ - - = + + + + + +a a a a a a n n ”在验证1 = n时,左端 计算所得的项为 ( ) (A)1 (B)a + 1 (C)2 1a a+ + (D)3 2 1a a a+ + + 例3.2 2 21 lim 2 n n n →∞ - + 等于( ) (A)2 (B)-2 (C)- 2 1 (D) 2 1 例4. 等差数列中,若 n n S Lim ∞ → 存在,则这样的数列( ) (A)有且仅有一个(B)有无数多个 (C)有一个或无穷多个(D)不存在 例5.lim(1) n n n n →∞ +-等于( ) (A) 1 3 (B)0 (C) 1 2 (D)不存在 例6.若2 012 (2)n n n x a a x a x a x +=++++, 12 n n A a a a =+++,则2 lim 83 n n n A A →∞ - = + ( ) (A) 3 1 -(B) 11 1(C) 4 1(D) 8 1 - 例7. 在二项式(13)n x +和(25)n x+的展开式中,各项系数之和记为,, n n a b n是正整 数,则 2 lim 34 n n n n n a b a b →∞ - - =. 例8. 已知无穷等比数列{}n a的首项N a∈ 1 ,公比为q,且 n n a a a S N q + + + = ∈ 2 1 , 1, 且3 lim= ∞ → n n S,则= + 2 1 a a_____ . 例9. 已知数列{ n a}前n项和1 1 (1) n n n S ba b =-+- + , 其中b是与n无关的常数,且0 <b<1,若lim n n S →∞ =存在,则lim n n S →∞ =________. 例10.若数列{ n a}的通项21 n a n =-,设数列{ n b}的通项 1 1 n n b a =+,又记 n T是数 列{ n b}的前n项的积. (Ⅰ)求 1 T, 2 T, 3 T的值;(Ⅱ)试比较 n T与 1+ n a的大小,并证明你的结论. 例 1.D 2.C 例 3.A 例 4.A例 5.C将分子局部有理化,原式 =11 lim lim 2 11 11 n n n n n n →∞→∞ == ++ ++ 例6.A例7. 1 2 例8. 3 8 例9.1 例10(见后面)

高考文科数学专题复习导数训练题(文)

高考文科数学专题复习导数训练题(文) 一、考点回顾 1.导数的概念及其运算是导数应用的基础,是高考重点考查的内容。考查方式以客观题为主,主要考查导数的基本公式和运算法则,以及导数的几何意义。 2.导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题。选择填空题侧重于利用导数确定函数的单调性、单调区间和最值问题,解答题侧重于导数的综合应用,即与函数、不等式、数列的综合应用。 3.应用导数解决实际问题,关键是建立恰当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极大(小)值,而此时不用和端点值进行比较,也可以得知这就是最大(小)值。 二、经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213f x x x =++的导函数,则(1)f '-的值是 。 解析: ()2'2+=x x f ,所以()3211'=+=-f 答案:3 点评:本题考查多项式的求导法则。 考点二:导数的几何意义。 例2. 已知函数()y f x =的图象在点(1 (1))M f ,处的切线方程是1 22y x = +,则 (1)(1)f f '+= 。 解析:因为 21= k ,所以()211'= f ,由切线过点(1(1))M f ,,可得点M 的纵坐标为25 ,所 以 ()25 1= f ,所以()()31'1=+f f 答案:3

例3.曲线 32 242y x x x =--+在点(13)-,处的切线方程是 。 解析: 443'2 --=x x y ,∴点(13)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-, 带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x 答案:025=-+y x 点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 例4.已知曲线C :x x x y 232 3+-=,直线kx y l =:,且直线l 与曲线C 相切于点()00,y x 00 ≠x ,求直线l 的方程及切点坐标。 解析: 直线过原点,则 ()000 ≠= x x y k 。由点 () 00,y x 在曲线C 上,则 02 30023x x x y +-=,∴?2302 00 0+-=x x x y 。又263'2 +-=x x y ,∴ 在 ()00,y x 处 曲线C 的切线斜率为 ()263'02 00+-==x x x f k ,∴?2632302 002 0+-=+-x x x x ,整理 得:0 3200=-x x ,解得: 230= x 或00=x (舍),此时,830-=y ,41 - =k 。所以,直线l 的方程为 x y 41 -=,切点坐标是??? ??-83,23。 答案:直线l 的方程为 x y 41 -=,切点坐标是??? ??-83,23 点评:本小题考查导数几何意义的应用。解决此类问题时应注意“切点既在曲线上又在切线上”这个条件的应用。函数在某点可导是相应曲线上过该点存在切线的充分条件,而不是必要条件。 考点四:函数的单调性。 例5.已知()132 3 +-+=x x ax x f 在R 上是减函数,求a 的取值范围。 解析:函数()x f 的导数为 ()163'2 -+=x ax x f 。对于R x ∈都有()0'

高二数学导数测试题(经典版)

一、选择题(每小题5分,共70分.每小题只有一项就是符合要求得) 1.设函数()y f x =可导,则0(1)(1) lim 3x f x f x ?→+?-?等于( ). A.'(1)f B.3'(1)f C.1 '(1)3f D.以上都不对 2.已知物体得运动方程就是4321 4164 S t t t =-+(t 表示时间,S 表示位移),则瞬时速度 为0得时刻就是( ). A.0秒、2秒或4秒 B.0秒、2秒或16秒 C.2秒、8秒或16秒 D.0秒、4秒或8秒 3.若曲线21y x =-与31y x =-在0x x =处得切线互相垂直,则0x 等于( ). C.23 D.23或0 4.若点P 在曲线323 3(34 y x x x =-++上移动,经过点P 得切线得倾斜角为α,则角α得取值范围就是( ). A.[0,]π B.2[0,)[,)23 ππ π C.2[,)3ππ D.2[0,)(,)223 πππ 5.设'()f x 就是函数()f x 得导数,'()y f x =得图像如图 所示,则()y f x =得图像最有可能得就是 3x ))-7.已知函数3 2 ()f x x px qx =--分别为( ). A.427 ,0 B.0,427 C.427- ,0 D.0,427 - 8.由直线21=x ,2=x ,曲线x y 1 =及x 轴所围图形得面积就是( ). A 、 415 B 、 417 C 、 2ln 21 D 、 2ln 2 9.函数3 ()33f x x bx b =-+在(0,1)内有极小值,则( ). A.01b << B.1b < C.0b > D.1 2 b < 10.21y ax =+得图像与直线y x =相切,则a 得值为( ). A.18 B.14 C.1 2 D.1

强大导数知识点各种题型归纳方法总结

导数的定义: 1.(1).函数y = f (x)在x =x °处的导数:f '(X 。)=y'|xm=怛口x ° %x) - f ( x °) 函数八f(x)的导数:f '(x) = y' = 1巩f (x 冈- f (x) 2?利用定义求导数的步骤 ①求函数的增量:.沖二f (X 。? Ax) - f(x 。):②求平均变化率:竺二f(x 。 :x )- f (X 0) L X L X ③取极限得导数:f '(x 。)二lim y 3 A x (下面内容必记) 导数的运算: (1) 基本初等函数的导数公式及常用导数运算公式 : m m i ① C ,O(C 为常数):②(x n )'= nx n ,;(丄)、(x 』)’一 nx 』」;(n x m )' =(x\' = m x_ x n ③(sinx)'=cosx ;④(cosx)' - -sin x ⑤(e x )'=e x ⑥(a x )'=a x |na(a 0,且a = 1); 1 1 ⑦(ln x)' ; ⑧(log a x)' (a 0,且 a =1) x xln a 法则1: [f(x) _g(x)]' = f '(x) _g'(x) ; (口诀:和与差的导数等于导数的和与差 ). 法则2: [f(x) g(x)]^ f '(x) g(x) f (x) g'(x)(口诀:前导后不导相乘,后导前不导相乘,中间是正号) 法则3: [f 阳」(X)嵌)二 2(X ) g '(X )(g(x)=0) g(x) [g(x)] (口诀:分母平方要记牢,上导下不导相乘,下导上不导相乘,中间是负号) (2)复合函数y 二f (g(x))的导数求法: ①换元,令u =g(x),则y = f(u)②分别求导再相乘y'=〔g(x) 】'」f (u)】'③回代u =g(x) 题型一、导数定义的理解 题型二:导数运算 1、已知 f x = x 2 ? 2x - sin 二,贝U f 0 二 __________ 1. 求瞬时速度:物体在时刻t 0时的瞬时速度 V 就是物体运动规律 即有 V ° 。 2. V = s /(t)表示即时速度。a=v /(t)表示加速度。 四. 导数的几何意义: 函数f x 在X 0处导数的几何意义,曲线y = f x 在点P x 0, f x °处切线的斜率是k =「x 0 。于是相应的切 线方程是:y - y ° = f X 0 x -x ° 。 题型三.用导数求曲线的切线 注意两种情况: (1 )曲线y 二f x 在点PX o ,fX o 处切线:性质:k 切线=f X o 。相应的切线方程是: y -y 。二 f X 。x -x 。 (2)曲线y = f x 过点P X o ,y 。处切线:先设切点,切点为Q(a,b),则斜率k= f'(a),切点Q(a,b)在曲线 y =f x 上,切点Q(a,b)在切线y-y o =「a x-x 。上,切点Q(a,b)坐标代入方程得关于 a,b 的方程组,解方 程组来确定切点,最后求斜率k= f'(a),确定切线方 程。 例题在曲线y=x 3+3x 2+6x-10的切线中,求斜率最小的切线方程; 解析:(1)k =y'|x 2。=3x 02 ? 6x 0 ?6=3(x 0 1)2 3 当 x o =-1 时,k 有最小值 3, 导数的基础知识 ⑵. A 10 B 13 三?导数的物理意义 C - 1 6 D.19 S 二f t 在t “0时的导数「t ° ,

导数基础知识专项练习.

导数专项练习 一、选择题(本大题共21小题,共105.0分) 1.函数f(x)=x3+x在点x=1处的切线方程为() A.4x-y+2=0 B.4x-y-2=0 C.4x+y+2=0 D.4x+y-2=0 2.已知直线y=x+1与曲线y=ln(x+a)相切,则a的值为() A.1 B.2 C.-1 D.-2 3.已知曲线y=2x2+1在点M处的瞬时变化率为-4,则点M的坐标是() A.(1,3) B.(1,4) C.(-1,3) D.(-1,-4) 4.若函数y=f(x)的导函数y=f′(x)的图象如图所示,则y=f(x)的图象可能() A. B. C. D. 5.已知函数f(x)=-x3+ax2-x-1在(-∞,+∞)上是单调递减函数,则实数a的取值范围是() A.(-∞,-]∪[,+∞) B.[-] C.(-∞,-)∪(,+∞) D.(-) 6.已知函数f(x)=x在区间[1,2]上是增函数,则实数m的取值 范围为() A.4≤m≤5 B.2≤m≤4 C.m≤2 D.m≤4 7.设点P是曲线上的任意一点,点P处切线的倾斜角为α,则角α 的取值范围是() A. B.[0,)∪[,π) C. D. 8.函数y=f(x)导函数f'(x)的图象如图所示,则下列说法正确的是() A.函数y=f(x)在(-∞,0)上单调递增 B.函数y=f(x)的递减区间为(3,5)

C.函数y=f(x)在x=0处取得极大值 D.函数y=f(x)在x=5处取得极小值 9.已知y=+(b+6)x+3在R上存在三个单调区间,则b的取值范围是() A.b≤-2或b≥3 B.-2≤b≤3 C.-2<b<3 D.b<-2或b>3 10.函数在R上不是单调增函数则b范围为() A.(-1,2) B.(-∞,-1]∪[2,+∞) C.[-1,2] D.(-∞,-1)∪(2,+∞) 11.已知函数f(x)的定义域为(a,b),导函数f′(x)在(a, b)上的图象如图所示,则函数f(x)在(a,b)上的极大值点 的个数为() A.1 B.2 C.3 D.4 12.已知曲线C:y=x3-x2-4x+1直线l:x+y+2k-1=0,当x∈[-3, 3]时,直线l恒在曲线C的上方,则实数k的取值范围是() A.k>- B. C. D. 13.曲线y=2lnx上的点到直线2x-y+3=0的最短距离为() A. B.2 C.3 D.2 14.已知函数f(x)=x-alnx,当x>1时,f(x)>0恒成立,则实数a的取值范围是() A.(1,+∞) B.(-∞,1) C.(e,+∞) D.(-∞,e) 二、填空题(本大题共4小题,共20.0分) 22.函数f(x)的图象在x=2处的切线方程为2x+y-3=0,则f(2)+f'(2)= ______ . 23.已知函数f(x)=x3-ax2+3ax+1在区间(-∞,+∞)内既有极大值,又有极小值,则实数a的取值范围是 ______ . 24.已知函数f(x)=ax3+x+1的图象在点(1,f(1))处的切线与直线x+4y=0垂直,则实数a= ______ . 25.曲线y=e-2x+1在点(0,2)处的切线与直线y=0和y=x围成的三角形的面积为 ______ . 三、解答题(本大题共6小题,共72.0分) 26.已知函数f(x)=x3+ax2+bx(a,b∈R).若函数f(x)在x=1处有极值-4. (1)求f(x)的单调递减区间; (2)求函数f(x)在[-1,2]上的最大值和最小值. 27.已知函数f(x)=x2+lnx-ax. (1)当a=3时,求f(x)的单调增区间; (2)若f(x)在(0,1)上是增函数,求a得取值范围.

高考文科导数考点汇总

高考导数文科考点总结 一、考试内容 导数的概念,导数的几何意义,几种常见函数的导数; 两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。 导数概念与运算知识清单 1.导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0), 比值x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+) ()(00。如果当0→?x 时,x y ??有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x ) 在点x 0处的导数,记作f’(x 0)或y’|0x x =。 即f (x 0)=0lim →?x x y ??=0lim →?x x x f x x f ?-?+)()(00。 说明: (1)函数f (x )在点x 0处可导,是指0→?x 时,x y ??有极限。如果x y ??不存在极限,就说函 数在点x 0处不可导,或说无导数。 (2)x ?是自变量x 在x 0处的改变量,0≠?x 时,而y ?是函数值的改变量,可以是零。 由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤(可由学生来归纳): (1)求函数的增量y ?=f (x 0+x ?)-f (x 0); (2)求平均变化率x y ??=x x f x x f ?-?+) ()(00; (3)取极限,得导数f’(x 0)=x y x ??→?0lim 。 2.导数的几何意义 函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。相应地,切线方程为y -y 0=f/(x 0)(x -x 0)。

人教A版高中数学选修《导数综合练习题》

导数练习题 1.(本题满分12分) 已知函数d x b a c bx ax x f +--++=)23()(23的图象如图所示. (I )求d c ,的值; (II )若函数)(x f 在2=x 处的切线方程为0113=-+y x ,求函数)(x f 的解析式; (III )在(II )的条件下,函数)(x f y =与m x x f y ++'=5)(3 1的图象有三个不同的交点,求m 的取值范围. 2.(本小题满分12分) 已知函数)(3ln )(R a ax x a x f ∈--=. (I )求函数)(x f 的单调区间; (II )函数)(x f 的图象的在4=x 处切线的斜率为 ,2 3 若函数]2 )('[31)(23m x f x x x g ++= 在区间(1,3)上不是单调函数,求m 的取值范围. 3.(本小题满分14分) 已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值. (I )求实数a 的取值范围; (II )若方程9 )32()(2 +-=a x f 恰好有两个不同的根,求)(x f 的解析式; (III )对于(II )中的函数)(x f ,对任意R ∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f . 4.(本小题满分12分) 已知常数0>a ,e 为自然对数的底数,函数x e x f x -=)(,x a x x g ln )(2-=. (I )写出)(x f 的单调递增区间,并证明a e a >; (II )讨论函数)(x g y =在区间),1(a e 上零点的个数. 5.(本小题满分14分) 已知函数()ln(1)(1)1f x x k x =---+. (I )当1k =时,求函数()f x 的最大值; (II )若函数()f x 没有零点,求实数k 的取值范围; 6.(本小题满分12分) 已知2x =是函数2()(23)x f x x ax a e =+--的一个极值点(???=718.2e ). (I )求实数a 的值; (II )求函数()f x 在]3,2 3[∈x 的最大值和最小值. 7.(本小题满分14分) 已知函数)0,(,ln )2(4)(2≠∈-+-=a R a x a x x x f

高考文科导数考点汇总精选文档

高考文科导数考点汇总 精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

高考导数文科考点总结 一、考试内容 导数的概念,导数的几何意义,几种常见函数的导数; 两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。 导数概念与运算知识清单 1.导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+)()(00。如果当0→?x 时,x y ??有极限,我们就说函数 y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。 即f (x 0)=0lim →?x x y ??=0lim →?x x x f x x f ?-?+)()(00。 说明:

(1)函数f (x )在点x 0处可导,是指0→?x 时,x y ??有极限。如果x y ??不存在极 限,就说函数在点x 0处不可导,或说无导数。 (2)x ?是自变量x 在x 0处的改变量,0≠?x 时,而y ?是函数值的改变量,可以是零。 由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤(可由学生来归纳): (1)求函数的增量y ?=f (x 0+x ?)-f (x 0); (2)求平均变化率x y ??=x x f x x f ?-?+) ()(00; (3)取极限,得导数f’(x 0)=x y x ??→?0lim 。 2.导数的几何意义 函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。相应地,切线方程为y -y 0=f/(x 0)(x -x 0)。 3.几种常见函数的导数: ①0;C '= ② ()1 ; n n x nx -'= ③(sin )cos x x '=; ④(cos )sin x x '=-;

相关文档
相关文档 最新文档