文档视界 最新最全的文档下载
当前位置:文档视界 › 秦山核电厂二回路系统水化学的改进

秦山核电厂二回路系统水化学的改进

秦山核电厂二回路系统水化学的改进
秦山核电厂二回路系统水化学的改进

秦山核电厂二回路系统水化学的改进

陶钧,孔德萍

(秦山核电公司, 浙江海盐 314300 )

[摘要]核电厂二回路系统的水质控制与关键重要设备蒸汽发生器的运行寿命有着密切的关系,秦山核电厂运行16年来,随着秦山核电厂二回路系统水化学管理的不断改进,二回路系统的水质不断改善。这些管理改进主要体现在管理理念的改变,二回路系统高A VT(全会法处理方式)处理、对凝结水精处理装置的优化运行以及大修及启动过程的严格控制等。通过这些改进措施的实施,电厂的WANO(世界核营运者协会)化学性能指标从1997年的1.66下降到2006年的1.00,达到了世界先进水平。二回路水化学的改善确保了蒸汽发生器传热管的结构完整性。

[关键词]二回路;水化学;WANO化学性能指标

[中图分类号]TM623.8[文献标识码]A[文章编号]1009-1742(2008)01-0091-06

1 引言

秦山核电厂是我国自行设计、建造和运行的第一座压水堆核电厂,装机容量为310 MW。1991年12月15日正式并网发电,至今已经安全稳定运行近16年。特别是近几年,电厂的各项性能指标都有了较大的提高,W ANO(世界核营运者协会)十项技术性能指标基本达到世界中值水平,有几项已经进入世界先进水平。秦山核电厂良好运行业绩的取得,是和核电厂管理水平不断提高以及在设备改造上的投入分不开的。W ANO化学性能指标也随着二回路系统水化学管理理念的更新和水质控制的改进和而不断改善,通过改变运行方式及增加除铁装置减少二回路系统的腐蚀和腐蚀产物的转移、对凝结水精处理装置的优化运行以及大修及启动过程的水质的严格控制等措施,使电厂的W ANO化学性能指标不断进步,到2006年已经达到世界先进水平。图1列出了1997年以来秦山核电厂W ANO化学性能指标的变化情况。

2 二回路系统水化学的改进

2.1管理理念的更新

压水堆核电站二回路系统化学控制的主要目的是减少二回路系统的腐蚀,保证二回路系统设备特别是蒸汽发生器结构材料的完整性,提高核电站的运行安全性和可利用率。WANO化学性能指标的计算选取的参数就是二回路系统的六个控制参数,由此也可以看出二回路系统化学控制的重要性。秦山核电厂设计上二回路系统的主要水质控制规范如表1所示。针对秦山核电厂所采取的蒸汽发生器传热管为Incoloy800材料的核电厂,WANO 化学性能指标计算参数的世界中值也列在表1中,从表中可以看出,世界中值和控制指标相比有数量级的差别。

图1WANO化学性能指标变化趋势图Fig.1 Trend of WANO chemistry performance index

秦山核电厂早期的化学管理的理念主要是保证关键水质不超标运行,也没有过多地考虑WANO 化学性能指标的问题。随着秦山核电厂管理水平的

[收稿日期]2007-08-18

[作者简介]陶 钧(1981-),男,江西南昌市人,高级工程师,主要从事电厂化学、材料、老化等技术管理工作

提高,对水化学的认识也不断加深,对水质的控制也越来越严格。秦山核电厂化学管理的理念也不是仅仅保证水质不超标,而是要求杂质离子的含量越低越好。因为只有在使杂质离子控制在尽量低的水平,才能有效地降低二回路系统的腐蚀,防止蒸汽发生器传热管的腐蚀开裂。秦山核电厂二回路水化学的管理目标转变成以达到世界先进电厂的水化学管理水平为目标,即WANO化学性能指标达1.00,也就要求参与WANO化学性能指标计算的所有6个控制参数的运行值就必须小于世界中值。

表1二回路系统主要控制参数设计指标及WANO

化学性能指标计算世界中值

Table 1 The main design specifications of water quality in secondary system and medium value for WANO CPI

系统控制参数指标WANO化学性能指标计算世界中值

pH值(25 °C)9.0~9.5

阳离子电导率

/ μS?cm-1(25 °C)

≤1 0.2

钠/μg?L-1≤100 2

氯/μg?L-1≤100 5

SG

硫酸根*/μg?L-1 5 凝结水溶解氧/μg?L-1≤10 5

pH值(25 °C)9.3~9.6

给水

总铁/μg?L-1≤10 3

*注:设计时无该控制参数指标要求

只控制水质不超标是容易的,而要使控制参数

低于世界中值就比较难了。为此,秦山核电厂在实

践中不断总结经验,对二回路系统水质控制的各个

环节进行认真分析,总结出水质控制的环节从过程

上看包括以下几个方面:

1) 大修过程控制,为下一燃料循环水质控制打

好基础;

2) 启机过程中二回路完全冲洗、净化;

3) 运行期间水质的调节和控制,及时调整水质

偏差。

从控制杂质的来源看包括以下几个方面:

1) 补给水的质量控制,减少由补给水带进的杂

质含量;

2) 化学品的控制,包括化学添加剂及使用于现

场的一些辅助材料;

3) 防止凝汽器泄漏;

4) 优化凝结水精处理装置的运行,减少其带来

的负面影响。从改善二回路系统运行环境来看包括:

1) 选择适当的二回路系统的pH值;

2) 针对电厂的具体情况选择更适当的pH值调

节剂;

3) 控制适当的联氨浓度;

4) 阴阳离子摩尔比的控制。

通过观念上的更新,秦山核电厂开始注重对水质控制的每个环节都进行考虑,对于薄弱环节采取改进措施。通过加强对以上各个环节的控制,秦山核电厂WANO化学性能指标不断改善,不过离世界先进水平还有点差距。为了进一步实现达到世界先进水平的目标,秦山核电厂于2004年专门成立了改善WANO化学性能指标小组,重点解决影响WANO化学性能指标的给水铁及蒸汽发生器排污水中钠含量偏高问题。该小组在改善二回路系统运行环境重点进行高A VT处理;在控制杂质来源重点进行凝结水精处理装置的优化运行;在水质控制的过程中重点完善大修启动过程中的化学控制。通过对这些薄弱环节的改进,使二回路系统的水质不断改善,WANO化学性能指标也不断进步,并最终达到世界先进水平。图2是2004年到2005年WANO 化学性能指标及影响水质变化月趋势图。

图2WANO化学性能指标及影响水质变化月趋势图Fig. 2 Trend of month average value of control

parameters and WANO CPI

2.2减少二回路系统腐蚀及腐蚀产物转移

2.2.1 二回路系统采取高A VT 秦山核电厂由于凝汽器出现泄漏的次数比较多,故以前一直采取的运行方式是维持凝结水全流量处理,这样即使二回路属于无铜系统,其pH值也无法控制在较高的水平。秦山核电厂二回路系统主要是碳钢材料,由于pH值无法控制在比较高的范围,随着设备的老化,二回路系统的腐蚀比较严重,反映在给水中铁含量相对较高,这些腐蚀产物转移到蒸汽发生器,对于蒸汽发生器传热管会造成不利的腐蚀环境,有可能影响蒸汽发生器结构材料的完整性。为解决秦山核

电站给水中铁含量相对较高的问题,从化学控制上可以采取变更pH 值调节剂(如从高挥发性的氨改为挥发性较低的乙醇胺)和高A VT 处理两种方式进行纠正。高A VT 处理主要采取的是提高二回路系统pH 值的方法,以减少二回路系统的腐蚀。由图3[1]可以看出,对于碳钢和低合金钢,其腐蚀速率随pH 值的升高而降低。所以采取高pH 值运行可以有效地控制二回路系统的腐蚀。另外高pH 值还可以有效地降低腐蚀产物向蒸汽发生器的转移。图4[2]是Fe 3O 4的溶解度与溶液pH 值和温度的关系,从图中可以看出,在酸性和弱碱性溶液中,Fe 3O 4在77℃显示了最大溶解度,而且随温度上升,Fe 3O 4溶解度迅速降低。这表明在低pH 值的给水中,腐蚀产物中铁会从给水设备或管道上溶解,并随着给水最终进入蒸发器,给水进入蒸发器后给水温度的升高,溶解度降低,腐蚀产物就沉积在蒸发器中,从而对蒸发器的运行造成不利影响。因此,提高给水的pH 值,能有效的防止腐蚀产物向蒸发器转移。

图3 pH 值和金属材料腐蚀速率关系图

Fig. 3 Relationship between metal corrosion

rate and pH value

图4 温度和pH 值对Fe 3O 4溶解度的影响 Fig.4 Influence of temperature and pH on

solubility of Fe 3O 4

秦山核电厂在采取增加循环海水二次滤网、对海水旋转滤网进行改造、加强对凝汽器钛管的在役检查、采取预防性堵管等措施后,目前凝汽器泄漏的次数和以前相比明显降低。所以秦山核电厂2004年开始决定采取提高二回路系统的pH 值的方法来降低给水中铁的含量,即把给水的pH 值由9.4提高到9.7,而与此同时,凝结水精处理装置的处理流量由100 %下降到30 %。从整个二回路系统腐蚀产物的变化情况来看,在提高二回路系统的pH 值以后,腐蚀产物含量都有明显下降。具体铁含量变化情况如下:a. MSR (汽水分离再热器)疏水的铁含量由30 μg/L 左右下降到目前的10 μg/L 左右,试验期间约为试验前的1/3。b. 高加疏水中铁含量约降低40 %。c. 给水中铁含量由5 μg/L 降到3 μg/L 左右,降幅约为40 %。d. 蒸发器炉水中的铁含量降低到原来的50 %左右。e. 汽中的铁含量变化不大,但凝混出口的铁含量由于处理流量的下降而有所升高。图5是提高pH 值试验2004年4月两周的给水及MSR 疏水铁含量变化趋势图(4月12日开始提高二回路系统的pH 值):

图5 给水及MSR 疏水铁含量变化图

Fig.5 Trend of iron concentration in feedwater and MSR

2.2.2 凝汽器热井中加装磁力过滤器 秦山核电厂凝结水中的腐蚀产物也是给水以及蒸汽发生器中腐蚀产物的重要来源之一。在对凝结水进行全流量处理时,凝结水精处理装置兼做除铁过滤器,给凝结水精处理装置带来不少负担,同时容易造成树脂的污染。在二回路系统进行高A VT 处理后,凝结水只能进行部分流量处理,凝结水中的大部分腐蚀产物又有可能旁路凝结水精处理装置而直接进入给水系统,并最终进入蒸汽发生器。根据这个情况,秦山核电厂在第7燃料循环运行试验的基础上,从R8开始在1#、2#凝汽器热井底部共安装了56片磁栅,每片磁栅覆盖的面积约0.5 m 2。在二回路系统启动过程中进行小循环冲洗后,这56片磁栅上就

吸附了很多的腐蚀产物,循环冲洗结束后磁栅取出进行了清洗,清洗干净后重新放入凝汽器,运行一个燃料周期后再取出清洗。二回路系统启动前的小循环冲洗过程中,磁栅能吸附20 kg左右的腐蚀产物,而一个燃料循环,约能吸附近70 kg的腐蚀产物。由此可以看出磁栅在吸附凝结水中的腐蚀产物方面具有良好的效果。图6为磁栅吸附腐蚀产物的效果图。

图6磁栅吸附腐蚀产物的情况

Fig. 6Corrosion products absorbed on

magnetic bar assembly

2.3凝结水精处理装置的优化运行

2.3.1消除树脂性能下降对水质的影响秦山核电厂从开始运行至现在,凝结水精处理装置中的树脂进行过两次更换。一次是1998年,另外一次是2003年。秦山核电厂根据对1997年蒸汽发生器炉水中的阳离子电导率、硫酸根离子含量以及树脂物理性能的分析,判断引起蒸汽发生器二次侧硫酸根及阳离子电导率的升高的原因是有碎树脂进入二回路系统,于是决定于1998年对所有凝结水精处理装置的树脂进行更换。从表2中列出的1998年以后的数据来看,蒸汽发生器二次侧中硫酸根离子和阳离子电导率在树脂更换后明显下降。

2003年对于凝结水精处理装置的树脂的更换,主要是考虑到树脂的交叉污染已造成蒸汽发生器二次侧钠含量的升高。更换的新树脂更强调了阴、阳树脂的分离性能,对于其粒径范围及均一系数都提出了严格的要求。

2.3.2新树脂处理新树脂在投运初期有一个过渡期,过渡期采取和平时一样的再生及处理工艺不能够很好地控制混床出水的水质,对二回路系统的钠离子含量会造成明显的影响。所以在新树脂的过渡期内,

应采取不同的再生及处理工艺,以降低树脂过渡期内树脂床对二回路系统钠的影响。秦山核电厂对于新树脂的处理措施是失效树脂再生前,对树脂进行碱浸泡(2~16 h)处理,然后对阳树脂用倍量酸再生。再生完后阴阳树脂分别在阴再生塔和阳再生塔中增加擦洗、淋洗次数3~4次。经上述处理后,混床投运后的出水电导能稳定在(0.054~0.056 μS/cm),初期投运的出水钠基本能保持在小于0.3 μg/L以下运行。

表2蒸汽发生器硫酸根离子、钠离子及阳离子

电导年平均值

Table 2Annual average value of sulfate, sodium

and cation conductivity in SG blowdown 年份SG硫酸根

/μg?L-1

SG钠

/μg?L-1

SG阳离子电导

率/μS?cm-1 1997 10.4 3.5 0.486 1998 8.2 1.4 0.260 1999 3.7 1.4 0.168 2000 2.5 2.2 0.134 2001 2.9 4.4 0.093 2002 1.9 2.7 0.097 2003 1.5 2.4 0.100 2004 2.8 1.6 0.142 2005 2.7 0.7 0.118 2006 2.9 0.6 0.107 2.3.3树脂床正常运行期间的规范管理树脂床在投运初期及运行末期,对蒸汽发生器排污水中的钠离子含量都会造成或多或少的影响,所以加强对投运前树脂的处理和严格控制树脂失效的标准,对减少凝结水树脂床运行对蒸汽发生器排污水中的钠离子的影响是非常必要的。秦山核电厂在混床投运前采取增加树脂的正洗次数与正洗时间的措施,在确保混床出水电导率小于0.056 μS/cm以后才投入运行。对于树脂的失效也采取严格的控制标准,目前主要控制的是周期制水量和出水电导率。为了降低凝结水精处理装置对二回路系统水质的负面影响,出水电导率的失效指标已从最初的0.2 μS/cm 降低到目前的0.060 μS/cm。如果周期制水量达到控制指标,即使出水电导率还未超过0.060 μS/cm,树脂床也必须退出再生。

2.3.4消除阴树脂再生液对混床出水中Na的影响影响凝结水混床出水钠含量的因素除常见的树脂的交叉污染外,还有一个重要因素就是阴树脂再生液的淋洗不干净。秦山核电厂采取降低阴树脂

的再生频度以有效地降低钠的来源,从而降低树脂床投运时出水钠对二回路系统的影响。从对树脂再生度分析的结果来看,阴树脂在一到二个失效周期不再生并继续使用到下一失效周期时,其再生度仍然保持在较高的水平,阴树脂的再生度一般维持在90 %到95 %之间。这样即使凝汽器发生泄漏,混床中阴树脂的使用也不会存在什么问题。

2.3.5 凝汽器泄漏时的管理鉴于凝汽器仍存在泄漏的可能性,对于凝汽器泄漏时,使凝结水精处理装置快速投入全流量处理,减少凝汽器泄漏对SG 水质的影响相当重要。秦山核电厂采取的措施是即使部分流量处理(约30 %),仍投入三台混床对凝结水进行处理。当发现凝结水阳离子电导率快速上升或超过0.18 μS/cm时,凝结水精处理装置立即投入全流量处理。由于只需要调节一下阀门的开度,所以响应的时间很短,能够很好地防止凝汽器泄漏对蒸汽发生器的影响。

通过凝结水精处理装置的优化运行,秦山核电厂很好地解决了蒸汽发生器中钠离子含量偏高的问题,从表2中蒸汽发生器钠离子含量的变化情况可以看出,近年来其含量已经控制在0.8 μg/L以下。

2.4严格控制大修及启动过程的水质

2.4.1制定启、停堆期间的化学控制规程秦山核电厂于1998年开始制定了启、停堆期间的化学控制规程,规定了启堆前各个系统的水质控制要求和处理措施,并在第5燃料循环周期正式开始执行。由于启、停堆期间水质受到检修的影响及工况的变化最容易波动,加强对这一阶段的化学控制对于改善功率运行期间的水质相当重要。表3列出了第4燃料周期开始第1月和第5燃料周期执行启、停堆期间化学控制规程后第1月二回路系统的水质比较,可以看出改善是相当明显的。

2.4.2 加强启动过程中的系统清洗大修结束后如果系统冲洗不干净,启动后污染物受热分解,可能造成功率运行期间二回路系统水质较长时间的劣化。秦山核电厂1997年3#高加更换后,由于冲洗不彻底,造成启动后蒸汽发生器炉水的阳离子电导率高达1.02 μS/cm,高加疏水、给水和蒸汽发生器炉水中的磷酸根离子含量分别高达4、1和70 μg/L左右。2006年R9大修期间,1#、2#高加都进行了更换,我们特别制定了“高加冲洗和投运临时规程”,采取了对高加管侧、壳侧分别进行冷态及热态冲洗的方法,并严格控制冲洗后的验收标准。整个二回路系统冲洗历时93 h,耗水约5 000 t。通过二回路系统充分的冲洗,使得启动后蒸汽发生器炉水的阳离子电导率仅为0.176 μS/cm。

表3第四燃料周期和第五燃料周期第一月二回

路系统水质比较

Table 3 Comparing of water quality of secondary

system in the first month after startup between

the 4th fuel cycle and the 5th fuel cycle

系统控制参数单位 4th燃料周期 5th燃料周期阳离子电导率/μS?cm-1 1.02 0.161

pH (25℃)8.81 9.10

Na+/mg?L-10.019 0 0.000 74

Cl-/mg?L-10.025 4 0.003 02

蒸汽发

生器排

污水

SO42-/mg?L-10.021 5 0.004 48

给水阳离子电导率/μS?cm-10.142 0.125 主蒸汽阳离子电导率/μS?cm-10.126 0.088 为保证冲洗彻底,也充分利用凝汽器热井底部的磁栅。一般在凝汽器冲洗结束后把放入热井底部的磁栅全部取出来,把磁栅表面吸附的腐蚀产物清洗干净后,又重新把它们放进凝汽器。给水中的铁含量要求小于100 μg/L就可以向SG上水,而实际上经过循环冲洗后,给水的铁含量通常控制在10 μg/L以下。为了保证启动后SG的水质正常,启动之前对辅助给水系统以及SG本身进行了比较彻底的冲洗。通过这些措施,可以保证系统启动后二回路系统的水质很快就恢复到正常运行的水平。

3 结语

核电厂二回路的水质指标要达到越来越严格的要求,必须对每个环节都进行严格的控制,目前秦山核电厂采取的二回路系统高A VT处理、对凝结水精处理装置的优化运行以及大修及启动过程的严格控制等改进措施,有效地改善了二回路系统的水化学环境,也使WANO化学性能指标逐步达到了世界先进水平。二回路系统水化学的改进确保了蒸汽发生器传热管的结构完整性,到目前为止,秦山核电厂经过16年的运行后,蒸汽发生器所有传热管仍未出现过破损,也没有进行过堵管。

参考文献

[1] Kadoi Eiichi. First Trial of High A VT Chemistry for PWR Secondary

Water Chemistry in Japan[M]. The Japan Atomic Power Company, 2002 [2] 林芳良. 压水堆化学[M]. 北京:原子能工业出版社, 1984

Improvement of Secondary Water Chemistry in Qinshan

Nuclear Power Plant

Tao Jun, Kong Deping

(Qinshan Nuclear Power Company,Haiyan,Zhejiang 314300,China)

[Abstract]The water quality control in PWR secondary system has close relationship with the service life of key important components, such as SG. With the improvement of water chemistry management of secondary system in Qinshan nuclear power plant(QNPP), the water quality of secondary system becomes better and better. These improvements include renewal of management concept, adoption of high A VT of secondary system, opti-mized operation of condensate polisher and strictly chemical control during outage and startup period. With the implementation of these measurements, the WANO chemistry performance index improved from 1.66 in 1997 to 1.00 in 2006, reaching the advanced level of the world. The improvement of secondary water chemistry ensures the integrity of SG tubes in QNPP.

[Key words]secondary system;water chemistry;WANO chemistry performance index

《中国工程科学》2008年第10卷第2期要目预告

建设现代农业,推进农业科技创新与体制改革

卢良恕中医五脏相关学说研究(一)

——从五行到五脏相关邓铁涛郑 洪印度洋8.7级与8.5级地震的物理前兆

孙 威 孙晓明双层辉光离子渗金属技术特点

高 原 徐晋勇 高 清等 川江载货汽车滚装运输贡献的评估与发展政策

许茂增 吴 旻高阶高斯积分节点的高精度数值计算

张庆礼 王晓梅 殷绍唐等风流脉动下采空区流场数值模拟与实验研究

李永存 林爱晖 王海桥等我国企业安全生产管理的制度创新研究罗一新线性分配方法的逆序问题研究

章 玲 周德群基于最小速率保证的IEEE802.16e公平调度算法

史俊财 胡爱群 关艳峰多任务下I/O设备的动态功耗管理

戚隆宁 张 哲 黄少珉基于遗传算法的传感器网络拓扑控制研究

刘林峰 庄艳艳 刘 业高压VDMOS 的一种高精度静态物理模型

鲍嘉明 孙伟峰 赵 野等考虑电池放电特性的动态电压调节策略研究

许 参 胡 晨基于双光源的实时视线追踪系统

黄 莹 王志良 戚 颖连续式加热炉内钢坯黑印的模拟研究

宋晓娜 陈海耿 崔 苗

电化学水处理技术

电化学水处理技术的研究进展及方向 标签:脱色剂废水脱色纺织印染废时间:2010-06-13 15:05:35 点击:243 回帖:0 上一篇:油田污水电化处理技术的目的和意下一篇:丙烯酸漆耐侯丙烯酸防腐涂料生产 电化学水处理技术的研究进展及方向1电化学水处理技术的研究进展在科学技术发展的进程中,电化学在电解、电镀、化学电源、电分析、金属腐蚀与防护等领域都占据着重要的地位。但随着科学技术的进步,电化学的应用范围已经扩大到环境保护、电子、能源、材料、化工、冶金和化学合成等领域。这使电化学获得了新的更有意义的生命力。电化学正在逐步变成独立于化学以外的一门新学科。由此可见,现代电化学是一门交叉学科,也是应用前景非常明显的学科。近年来,电化学方法作为一种环境友好技术,在环境污染治理方面越来越受到人们的重视特别是在废水中生物难降解有机物去除方面,电化学发挥了不可低估的作用。污水处理的电化学方法主要有微电解、电化学氧化与还原、电气浮与电凝聚电渗析等方法。根据研究表明:这些方法在处理实际废水的过程发挥着很好的作用,而且电化学水处理技术因其具有多功能性、高度的灵活性、易于自动化、无二次污染等其它水处理技术无法比拟的优点,正成为国内外水处理技术研究的热点课题,尤其对那些难以生化降解、对人类健康危害极大的“三致”(致癌、致畸、致突变)有机污染物的去除具有很高的效率,并且又能节省大量的能源。因而,电化学水处理技术近年来已成为世界水处理技术相当活跃的研究领域,受到国内外的广泛关注。而在电化学水处理技术中,微电解以及电化学氧化一直是科学工作者研究的重点内容。人们主要是通过反应机理研究和应用研究两个方面对电化学水处理技术开展研究的。其中微电解是在酸性条件下,利用铁与碳形成铁碳原电池对污染物进行氧化还原,使污染物降解为生物易于降解的物质,降低毒性,从而提高废水的可生化性。在应用方面,通过研究发现:反应时间、pH值、铁碳比以及反应器的种类等因素都影响着微电解的处理效果。在机理方面,研究认为:在反应过程中,酸性条件产生的Fe3+, Fe2+和活性氢[H〕与污染物发生氧化还原反应从而使污染物得到降解。电化学氧化是利用具有高析氧电位以及良好催化性能的材料作为阳极,在外加电压下,氧化废水中的污染物,使污染物降解的技术。在应用方面,通过研究发现:电化学氧化技术适合用于染料废水、垃圾渗滤液、农药废水、炼油废水等高浓度高毒性难于生物降解的废水的预处理。其中电流密度、电极材料的种类、反应时间、pH值、电解质以及电化学反应器的形式等因素都影响废水的处理效果。电极材料的种类尤其是阳极材料一直是科学工作者的研究的热点问题,目前关于电极的研究大多集中于钦基涂层电极,主要有:钦基二氧化锰电极 (Ti/Mn02 )、钛基二氧化铅电极(Ti/Pb02)以及钌系涂层钛电极(Ti/Ru02 )、锡锑涂层钛电极( TiJSn02+Sb203 )、铱系涂层钛电极(TilIr02)等金属氧化物涂层钛电极。其中又以钛基二氧化铅电极(Ti/Pb02)以及锡锑涂层钛电极(Ti/Sn02+Sb203)为代表,它们具有析氧电位较高、催化性能良好、机械强度高不易变形等特点。这两种电极一般分别采用电沉积法味口提拉法制备。电极方面的研究主要集中改进制备方法,加入添加剂以改善电极的性能,提高处理效果,延长使用寿命和降低能耗。在电极槽方面有两维电极槽和复极性三维电极槽。两维电极槽即传统阴阳两电极的普通电极槽。针对帄東二维电极面体比(area-volume ratio)较小,单位槽体处理量小,电流效率低等缺点,在20世纪60年代末期提出了三维电极的概念,并进行了应用与机理的研究。三维电极是一种新型电化学反应器,也叫床电极。它是在传统的二维电解槽电极间装填粒状或其他碎屑状工作电极材料并使装填工作电极材料表面带电,成为新的一极(第三极),在工作电极材料表面能发生电化学反应。三维电极,按粒子极性可分为单极性和复极性;按粒子材料填充方式可分为固定方式与流动方式在机理方面,研究表明:电化学氧化有直接氧化和间接氧化两类。其中电化学直接氧化是污染物直接被电极氧化,有些污染物能够被直接矿化。而电化学间接氧化是在电解质溶液中生成[-OH]等强氧化剂将污染物氧化,转化为低毒性易于生物降解的有机物,提高了废水的可生化性。国内外针对电化学氧化水处理技术的工艺条件、影响因素作了大量的研究,但在反应机理、动力学模型等理论内容的研究上还相对不足,有机物降解中间产物和活性物种的鉴定也不充分,许多机理研究还停留在假设和理论推测阶段,具有一定片面性,而且主要针对苯系物质,研究对象比较单一。2电化学水处理技

电厂化学水处理认识

电厂化学水处理综述 ——水寿 摘要:对用水进行较好的净化处理才能防止热力设备的结垢、腐蚀,避免爆管事故,有效防止过热器和汽机的积盐,以免汽轮机出力下降甚至造成事故,从而保证锅炉、汽机等重要设备的安全、有序运行。本文介绍了电厂化学水处理技术的发展特点,以及常规的方法与应用。 关键词:化学水处理;特点;方法 前言:电厂的化学水处理主要是指锅炉用水的给水处理,这个过程的好坏直接关系到相关设备是否可以安全经济运行,所以说化学水处理是电厂生产的重要过程。因此必须在建设前期从设计上严把关,深入研究化学处理的工艺,做好预控工作,建设过程中慎重对待化学水处理的施工和设备安装,为以后电厂顺利投产运营打下坚实的基础。基于该背景,本文对电厂化学水处理的发展特点、常见方法和工艺进行了综述,方便更好的理解该该部分技术内容为以后工作打下坚实的基础,同时也作为本人的学习总结。 1 化学水处理的技术特点 水在火力发电厂水汽循环系统中所经历的过程不同,水质常有较大的差别。因此根据实用的需要,人们常给予这些水以不同的名称,具体为原水、锅炉补给水、给水、锅炉水、锅炉排污水、凝结水、冷却水和疏水等,通常情况下为了方便又简单的分为炉内水和炉外水。电厂化学水处理主要包括补给水处理和汽、水监督工作,补给水处理

也叫炉外水处理,是净化原水、制备热力系统所需质量合格的补给水,是锅炉水质合格的重要保障。汽水监督工作是改善锅炉运行工况、防止汽水循环不良的安全保障。随着当前技术的不断发展进步,现代电厂化学水处理呈现出集中、多元化、环保等特点,下面分别阐述。1.1分布集中化 在以往的电厂化学水处理过程中,常常设有多种处理系统,一般按照功能分为净水预处理系统、锅炉补给水处理系统、汽水的取样监测分析、循环水处理系统、加药处理系统、废水处理系统等等。这种按照功能作用设立的多种处理系统占地面积大、需要的维护人员多、给生产管理造成了不便。现在为了提高化学水处理设备的利用率、节约场地及管理方便,化学水处理设备的布置呈现紧凑、集中、立体的结构。根据相关文献的研究,该种结构的布局满足了整体流程的需要,是一种效果较好的结构模式。 1.2处理工艺多元化 化学水处理的传统常用工艺为混凝过滤、离子交换、磷酸酸化处理,随着科学技术的不断发展,电厂化学水处理工艺向着多元化的方向发展。当前水处理工艺发展为利用微生物对水质进行处理,利用膜处理技术对化学水进行反渗透、细微过滤也已经广泛应用于水处理,超滤、流动电流技术也在化学水处理中发挥着积极的作用。 处理控制系统也越来越集中化,把各个子系统合为一整套系统,然后采用PLC加上位机的控制结构。其中,PLC负责对各个子系统进行控制和数据采集,通过通信接口与PLC连接起来的上位机负责对各

压水堆核电厂二回路热力系统课程设计

1.设计目的和要求 本课程设计是学生在学习《核电站系统及运行》课程后的一次综合训练,是实践教学的一个重要环节。通过课程设计使学生进一步巩固、加深所学的理论知识并有所扩展;学习并掌握压水堆核电厂二回路热力系统拟定与热平衡计算的方法和基本步骤;锻炼提高运算、制图和计算机应用等基本技能;增强工程概念,培养学生对工程技术问题的严肃、认真和负责态度。 通过课程设计应达到以下要求: (1)了解、学习核电厂热力系统规划、设计的一般途径和方案论证、优选的原则; (2)掌握核电厂原则性热力系统计算和核电厂热经济性指标计算的内容和方法; (3)提高计算机绘图、制表、数据处理的能力; (4)培养学生查阅资料、合理选择和分析数据的能力,掌握工程设计说明书撰写的基本原则。 2.任务和内容 本课程设计的主要任务,是根据设计的要求,拟定压水堆核电厂二回路热力系统原则方案,并完成该方案在满功率工况下的热平衡计算。 本课程设计的主要内容包括: (1)确定二回路热力系统的形式和配置方式; (2)根据总体需求和热工约束条件确定热力系统的主要热工参数; (3)依据计算原始资料,进行原则性热力系统的热平衡计算,确定计算负荷工况下各部分汽水流量及其参数、发电量、供热量及全厂性的热经济指标; (4)编制课程设计说明书,绘制原则性热力系统图。

3.热力系统原则方案确定方法 3.1 热力系统原则方案 电站原则性热力系统表明能量转换与利用的基本过程,反映了发电厂动力循环中工质的基本流程、能量转换与利用过程的完善程度。为了提高热经济性,压水堆核电厂二回路热力系统普遍采用包含再热循环、回热循环的饱和蒸汽朗肯循环,其典型的热力系统组成如图1所示。 图1 典型压水堆核电厂二回路热力系统原理流程图 3.1.1 汽轮机组 压水堆核电厂汽轮机一般使用低参数的饱和蒸汽,汽轮机由一个高压缸、2~3个低压缸组成,高压缸、低压缸之间需要设置外置式汽水分离器。高压缸发出整个机组功率的40%~50%,低压缸发出整个机组功率的50%~60%。最佳分缸压力=(0.1~0.15)蒸汽初压。

火电厂化学水处理设施防腐蚀工艺常见问题及对策

火电厂化学水处理设施防腐蚀工艺常见 问题及对策 张芳芳 (滕州富源低热值燃料热电有限公司,山东滕州277523) 摘要:指出了在火电厂生产过程中,会形成化学水,因化学水中具有腐蚀性,会造成化学水处理设施如酸碱输送管道、循环水加酸设备、地下酸碱中和池等的腐蚀,探讨了火电厂化学水处理设施防腐蚀施工工艺常见问题及对策,从而为火电厂化学水处理设施的施工和维护人员的工作提供借鉴。关键词:火电厂;化学水处理设施;防腐蚀工艺;分析收稿日期:2011 03 21 作者简介:张芳芳(1982 ),女,河北泊头人,助理工程师,主要从事火电厂有关技术工作。 中图分类号:T M 621.8 文献标识码:A 文章编号:1674 9944(2011)04 0211 02 1 引言 纵观世界各国火电厂的发展历程,其实亦是腐 蚀防护技术的发展。在火电厂化学水处理设施的设计过程中,设备的工艺性能往往是人们关注的重点,而防腐蚀措施则相对缺乏。只有到设备出现严重腐蚀影响到火电厂正常工作时,才考虑相应的应急措施。这时候的腐蚀防护存在着许多人为的技术困难和障碍,常常只能起到暂时缓解的作用。要想改善现有状况,合理、有效、经济地对设备腐蚀进行控制,必须积极地应对火电厂化学水处理设施的腐蚀防护工作,防患于未然。 2 火电厂化学水处理设施防腐蚀工艺 常见问题分析 火电厂化学水处理设施防腐蚀工艺的常见问题包括沟道中块材和酸碱中和池的腐蚀防护问题、循环水加酸的系统腐蚀问题、其他腐蚀防护方面的问题。沟道中块材和酸碱中和池的腐蚀防护问题表现为,在当前的许多火电厂中通过使用中和池来对生产过程产生的废碱、废酸液体进行处理。但是,酸碱中和是一种具有非线性特征的反应,用于中和的酸碱量过量或不足及不均匀搅拌等都会使得中和后的液体pH 值达不到规定的范围当中,很多电厂在运行几年之后,沟道和中和池的腐蚀破坏问题就开始显现,这是由于其腐蚀防护层遭到损坏之后,废液的渗漏往往会造成基地的腐蚀;循环水加酸的系统腐蚀问题表现为一般情况下,火电厂中循环水的浓缩倍率都在2.5以上,采用硫酸加阻垢剂的方式进行处理时一种普遍的形式,但是由于材质、安装工艺及加药方式等细节上出现的问题常常会造成腐蚀问题的发生;其他腐蚀防护出现的问题表现为水处理车 间和酸碱平台的铁制沟盖板受到腐蚀、计量室内的墙壁腐蚀、贮存盐酸和硫酸的衬胶管罐和普通钢制罐的腐蚀。 3 火电厂化学水处理设施防腐蚀工艺 常见问题原因及处理方式 3.1 沟道和中和池的腐蚀防护问题原因及处理 方式 造成这一问题的原因主要包括,沟道块材的勾缝和合层厚度同防腐施工的要求不相符;修复不到位,对混凝土基层的腐蚀情况没有进行检查;布局方面设计的缺陷。沟道块板的勾缝和合层厚度同防腐施工的要求不相符表现为树脂胶泥较差的流动性难以填满石材间的缝隙,这就导致在一定年限之后,酸碱废水就会向混凝土层渗透,进而造成混凝土层被腐蚀,引起地基塌陷。其处理方式是注意施工中树脂胶泥的接层层和厚度和灌缝,严格按照相关规定进行防腐施工的验收,进行有效的施工管理,从而避免偷工减料,杜绝此类腐蚀问题的发生。修复不到位,对混凝土基层的腐蚀情况没有进行检查表现为未能按照防腐施工的要求对沟道或水池进行施工,一旦发生渗漏,酸碱液体会对混凝土的基层进行腐蚀,严重时深入到混凝土层周围的基础当中。其处理方式是检查基土层,排干其中的酸碱液体,对混凝土基层进行彻底修复。布局设计方面的缺陷表现为设计上的腐蚀防护不合理,其处理方式应重施工初期的设计入手,对内部的腐蚀情况及时发现,及早处理。 3.2 循环水加酸的系统腐蚀问题原因及处理方式 造成这一问题的原因主要包括材质、安装工艺及加药方式上的问题。材质问题表现为钢结构罐内的胶层,钢结构本身具有耐腐蚀性,但是加上橡胶, 214 2011年4月 Journal of Green Science and Technology 第4期

化学水处理技术操作规

化学水处理技术操作规程

汽水质量标准

第一章汽水汽水质量标准与化验方法 一、 给水化验方法 1、硬度:(EDTA 法): 取100毫升透明水样于250毫升三角瓶中加 入2%的(氨—氯化铵缓冲溶液)⑴3—5毫升,再加入酸性铬兰⑵K3~ 5滴,用L ⑶特利隆(EDTA )标准液滴定到由红色变成紫红色为终点。 计算: 硬度(微摩尔/升) =100 1000100001.0EDTA ???毫升数 耗 当水样为100ml ,微量滴定管lml=100小格,则此硬度等于耗EDTA 的小格数。 注意事项: a 、滴定时应慢慢加入EDTA ,并剧烈摇动。 b 、水样温度须控制在30℃左右,防止假终点。 c 、为防止Cu 2+及其他离子干扰需加Na 2S ⑷两滴。 d 、本法须在氨性溶液PH=10~来滴定。 2、小碱度的化验方法:取100毫升蒸汽样水注入250毫升三角瓶中,放在电炉上加热沸腾5~7分钟(余水样余原有的2/3)时取下置于 冷却水槽中冷至恒温,加入混合指示剂⑷5滴,用L 2 1H 2SO 4⑸滴定至紫 灰色。 小碱度(μmol/L ) =10001000)(422 1???水样毫升耗酸毫升SO H C 注意事项: a 、一定要遵守加热时间和冷却要求,否则影响结果。

b 、在做蒸汽小碱度时,禁止盐酸瓶及倒酸影响化验结果。 c 、混合指示剂规定每周至少更换一次。 d 、蒸汽煮沸时间,不应少于5分钟。但也不应过长,否则影响蒸汽 碱度结果。 4、Cl -化验方法:取样水100ml250ml 三角瓶中,加p =5%铬酸钾⑹指 示剂1ml ,以1mg Cl -/ml 的AgNO 3⑺滴定至浅棕红色为终点。 计算方法: Cl -(mg /L) =(耗AgNO 3毫升数/100)×1000 注意事项: a 、若水样呈碱性,必须先用L ⑽酸中和, b 、若水样中呈有酸性必级用L 碱⑾中和, c 、溶液温度越高铬酸银溶得越多,结果不准确,故必须将其冷却至 室温再化验。测定炉水时必须将其先冷却后再化验。 酚酞碱度:取滤清的水样100ml 于250ml 三角瓶中,加2~3滴1%酚 酞⑸以L 2 1H 2SO 4⑹滴定至由红色为转为无色为终点。 计算方法: 一、 炉水化验方法 1、总碱度:取100毫升蒸汽样水注入250毫升三角瓶中,置于冷却 水槽中冷至恒温,水样中加2~3滴1%甲基橙⑻(用~L 21H 2SO 4滴定) 至由橙黄色为转为橙红色为终点。 碱度(毫摩尔/升) =1000422 1??水样体积耗酸毫升SO H C

火力发电厂化学水处理设计技术规定

火力发电厂化学水处理设计技术规定 SDGJ2—85 主编部门:西北电力设院 批准部门:东北电力设院 施行日期:自发布之日起施行 水利电力部电力规划设计院 关于颁发《火力发电厂化学水处理 设计技术规定》SDGJ2—85的通知 (85)水电电规字第121号 近几年来,随着电力工业的发展和高参数大机组的建设,电厂化学水处理技术迅速发展,积累了许多新的经验。为了总结近年来水处理设计经验和在设计中更好地采用水处理技术革新和技术革命的新成果,提高设计水平,加速电力建设,我院组织有关设计院对原《火力发电厂化学水处理设计技术规定》(SDGJ2—77)进行了修改。修订工作经过调查研究、征求意见、组织讨论,并邀请了有关生产、科研、设计、施工、制造等单位的有关同志对修订后的送审稿进行了审查定稿,现颁发执行,原设计技术规定作废。 本规定由水利电力部西北电力设计院和水利电力部东北电力设计院负责管理。希各单位在执行过程中,注意积累资料,及时总结经验,如发现不妥和需要补充之处,请随时函告水利电力部西北电力设计院和水利电力部东北电力设计院,并抄送我院。 1985年10月22日 第一章总则 第1.0.1条火力发电厂(以下简称发电厂)水处理设计应满足发电厂安全运行的要求,做到 经济合理、技术先进、符合环境保护的规定,并为施工、运行、维修提供便利条件。 第1.0.2条水处理室在厂区总平面中的位置,宜靠近主厂房,交通运输方便,并适当地留有扩建余地;不宜设在烟囱、水塔、煤场的下风向(按最大频率风向)。 第1.0.3条水处理系统和布置应按发电厂最终容量全面规划,其设施应根据机组分期建设情况及技术经济比较来确定是分期建设还是一次建成。 第1.0.4条本规定适用于汽轮发电机组容量为12~600MW的新建发电厂或扩建发电厂的水处理设计。 第1.0.5条发电厂水处理设计,除应执行本规定外,还应执行现行的有关国家标准、规范及水利电力部颁布的有关规程。 第二章原始资料 第2.0.1条在设计前应取得全部可利用的历年来水源水质全分析资料,所需份数应不少于下列规定: 对于地面水,全年的资料每月一份,共十二份;对于地下水或海水,全年的资料每季一份,共四份。

第五章 压水堆核电厂二回路凝结水系统及给水系统

核电厂系统与设备 2015/11/11 11 第五章二回路凝结水系统及 给水系统 2015年秋季 核电厂系统与设备 2015/11/11 2 5.1 凝结水抽取系统 第五章压水堆核电厂二回路凝结水系统及给水系统 5.1.1 系统功能 可概括为:凝结、除气、抽真空、收集、输送等功能,即: ——作为热力循环的冷源,将汽轮机排汽冷凝成凝结水,并进行除氧,经4级低压加热器送到除氧器; ——与汽轮机抽汽系统一起为汽轮机建立和维持一定的真空; ——向蒸汽旁路系统、汽轮机排汽口喷淋系统等提供冷却水及向一些泵提供轴封水; ——接收各处来的疏水并维持系统的凝结水量。 系统主要由凝汽器、凝结水泵、给水管线(去低压加热器)、疏水接收罐等组成。 核电厂系统与设备 2015/11/11 3 1、凝汽器工作原理简图 第五章压水堆核电厂二回路凝结水系统及给水系统 5.1.2 凝结水抽取系统描述 核电厂系统与设备 2015/11/11 4 第五章压水堆核电厂二回路凝结水系统及给水系统 5.1.2 凝结水抽取系统描述 1、凝汽器工作原理 凝汽器(又称冷凝器)实际上是一种表面式热交换器,循环冷却水(海水)在管束内流过,使在管束外流动的蒸汽冷凝,在热力循环中它起着冷源的作用。 在凝汽器蒸汽凝结空间为汽水两相共存,其压力是蒸汽凝结温度下的饱和压力。一般情况下,蒸汽凝结温度接近环境温度,如40℃的蒸汽凝结温度所对应的饱和压力为0.0075MPa ,远低于大气压力。因此,形成了高度真空。同时凝汽器抽真空系统及时抽出凝汽器内不凝结气体,维持凝汽器内的压力恒定不变。 核电厂系统与设备 2015/11/11 5第五章压水堆核电厂二回路凝结水系统及给水系统 5.1.2 凝结水抽取系统描述 2、凝汽器 大亚湾核电站每台机组设置了三台单独的凝汽器,分别安装在三个低压缸的下部。每台凝汽器由壳体、膨胀连接件、管板、管束、水室、热阱等部分组成。 表面式凝汽器:由于饱和蒸汽轮机的排气量要比同容量的常规汽轮机大得多,因此,核电厂的凝汽器也比较大。它的设计容量为85%的额定新蒸汽流量,在额定负荷下工作压力是43×10-4MPa。 核电厂系统与设备 2015/11/11 6 第五章压水堆核电厂二回路凝结水系统及给水系统 5.1.2 凝汽器结构简图 1)壳体:壳体顶部汽入口通过橡胶膨胀件与低压缸排汽口相连。 2)哑铃状橡胶膨胀件; 3)管板:为双层管板结构,内层管板材料为碳钢,外层管板材料为铝青铜,以防止海水腐蚀。管板尺寸为 5526mm ×2488mm ×35mm ; 4)管束:有两组独立的换热管束,每组管束有6808根,传热管外径25.5mm ,厚0.71mm 、长16700mm 。 5)水室和热阱:每组管束都有相同且相对独立的进、出口水室,每个凝汽器有一个收集凝结水的热阱。

电厂化学水处理技术发展与应用

电厂化学水处理技术发展与应用 发表时间:2017-10-20T11:59:18.583Z 来源:《防护工程》2017年第15期作者:王延风 [导读] 并且注意加强原有设施的利用率和使用效率,降低能耗节约成本,更应注重整个处理过程中的环保性,走可持续路线。 摘要:电厂是能源行业的重要部门,对居民的日常生产、生活都具有较大的影响。从现有的工作来看,电厂化学水处理技术虽然在某些方面表现的较为出色,但并没有创造出理想的价值。在人口不断增加和社会不断发展的今天,依靠固有的技术,是很难取得较大发展的。在今后的技术研究和应用中,需进一步贴合实际,根据不同地区的实际要求,进一步优化技术。在此,本文主要对电厂化学水处理技术的发展与应用进行讨论。 关键词:电厂;化学水处理;发展技术;应用 1、当今电化学处理技术的发展特点 1.1设备集中化布置 传统电厂化学水处理系统包括净水的预处理、锅炉补给水的处理、凝结水精的处理、汽水取样的监测分析、加药的、综合水泵房、循环水的加氯、废水的及污的水处理等系统。它存在占地的面积较大、生产的岗位较分散、管理的不便等等诸如此类的问题。现在,为了优化水处理整体流程,设备布置也发生了变化,其以紧凑、立体、集中构型来代替平面、松散、点状构型。节约占地面积、厂房空间,提高设备的综合利用率,并且方便运行的管理。 1.2生产集中化控制 传统的生产控制采用了模拟盘,而现在的趋势是集中化控制,即将电厂中所有化学水处理的子系统合为一套控制系统,取消了模拟盘,采用了PCL、上位机2级控制结构,并且利用PLC对各个系统中设备进行数据采集、控制,上位机、PCL之间通过数据通信接口进行了通信。各个子系统以局域网总线形式集中的联接在化学主控制室上位机上,从而实现化学水处理系统集中监视、操作、自动控制。 1.3方式以环保和节能为导向 21世纪环保观念已深入大家心中,随着环境保护意识的不断提高,减少水处理过程中产生的污染,尽量不使用或者少量的使用化学品已经成为一个趋势。绿色的水处理概念已经广泛的被大家接受。“少排放、零排放”、“少清洗、零清洗”也就成为了锅炉水的发展方向。而对于耗水量大的电厂来说,在我国水资源紧缺的现状下,合理的利用资源和提高水的使用重复率已经变成其关键的任务之一。重复率体现着对水的循环使用,串级使用,水的回收等方面的实现。“零排放”在电厂中已有部分实现,也就是说仅从水体中取出水但不向水体及环境排放废水。 1.4工艺多元化 传统电厂水处理工艺以混凝过滤、离子交换、磷酸铵盐处理等为主。当前,电厂的水处理技术出现多元化的特点。随化工材料的技术不断进步与发展,膜处理技术也开始广泛应用在水质处理当中,离子的交换树脂种类、使用的条件、范围也有了较大进展,粉末树脂在凝结水的处理中也同样发挥着积极作用。 1.5检测方法方式趋科学化 随着技术的发展,化学检测、诊断技术进一步的得到了发展、应用,其方式也日趋科学化。化学诊断实现从事后分析到事前防范转变,实现从手工分析到在线诊断转变,实现从微量分析到痕量分析转变。所有的转变,为预防事故发生、保证机组安全稳定运行提供有力保障。 2、电厂化学水处理技术的发展创新 2.1电厂化学水处理中膜技术的应用 与传统的化学水处理技术工艺相比,近几年才开始被采用的膜分离技术具有更加多的优点。膜处理技术是当前世界上最为高端先进的处理技术,在提高用水的品质上有着强大的优势。在传统的化学水处理过程当中,存在着很多的方法手段,比如电厂锅炉补给水的处理,一般情况下,都有过滤—软化—分离等一系列过程。其中,在电厂传统的化学水处理过程中,为了应付其中一道道复杂的工艺和处理难度,电厂需要投入大量劳动力、大量的占地面积和比较高的资金成本。然而,更主要的是,对于电厂化学水处理过程中所排放酸碱废液,国家规定了标准,而传统技术并不能达到当前绿色环保的标准要求。然而,在使用膜分离技术时,电厂化学水处理的整个过程中都不会排放一点酸碱废液,大大地减少了环境污染,切实体现了当代人的绿色环保理念。同时,采用膜分离技术还具有使用分离的设备少、结构简单、占地面积小、劳动强度小和实现自动化控制等优点,而将该技术应用于电厂化学水处理的过程中也实现了耗能低、效率高、生产的水品质量高的最终目的。 2.2化学水处理系统中的FCS技术应用 当前电厂化学水处理系统设备在运行时处于一种分散的状态,比如自动加药、汽水取样和监控常规测点等设备,不仅分布散而且数量还很多。而FCS技术则完全可以解决这一弊端,因为它的全分散性、全数字化、可相互操作性和全开放性的技术特点,与当前电厂水处理系统的设备分散性现状极为适合。在电厂化学水处理系统中,FCS技术的应用实现了低成本和性能全数字化,极大地减少了劳动力的投入。所以,改造或者建设这样一个能够将自动加药、远程遥控、即时监控和集合信息上传到MIS系统集为一体的化学水处理的综合全自动化平台,已经成为无法阻挡的电厂化学水处理技术的发展方向和趋势潮流。在理论上,这个系统是分解了原有的操控系统后,经过重新构建而形成的。改良后的系统在很多方面都有很明显的效果,可促使每一控制点的控制精准度大幅提高,这是此系统最为突出的一个特点,也由于这一点,系统整体的自动化水平和系统的硬件设备的管理水平都得到了提升,不仅人为的干扰因素大幅度地减少了,机组凝结水系统运行全自动化目标也得到了实现。同时,生产成本也有了很大的降低。此外,在系统改造完成后还提高了它的可靠性,连自动运行的速度也都有明显的提升。 3、关于电厂化学水处理技术应用的要点 3.1电厂水处理技术——锅炉补给水 在使用传统的水系统时,电厂经常使用混凝的方式进行锅炉补给水处理。如今,在变频技术出现后,电厂锅炉补给水系统发生了结构

垃圾发电厂焚烧系统和主要设备的选用

垃圾发电厂焚烧系统和主要设备的选用 摘要:对垃圾焚烧发电厂设计中主要设备与系统的选用进行了讨论,主要设备为焚烧锅炉与汽轮机,主要系统为垃圾进料与前处理系统、烟气净化系统等。最后,给出了本类电厂目前的发电效率与供电效率的水平。 关键词:垃圾焚烧;发电厂设计;主要设备;选用 1概述 随着经济迅速发展,人民生活水平的提高,城市生活垃圾量增长迅速,我国每年以6%~8%的速度增长2000年全国城市垃圾产出量达14亿t。因此,如何有效地对城市生活垃圾进行净化处理,己成为人们广泛关注的问题。 用焚烧方式并回收其中能量的垃圾处理技术在近20年得到了迅速发展,美国、欧洲、日本等发达国家己开始大量应用,并产生了良好的环保效益与经济效益。焚烧垃圾,回收能源,以实现城市生活垃圾的减容化、无害化和资源化,被认为是我国处理城市生活垃圾的一个重要方向。 城市生活垃圾焚烧发电厂由于有自己的特点,发电效率比现代化火电厂低得多,本文对其主要设备(焚烧锅炉、汽轮机)及主要系统(垃圾进料及前处理系统、烟气净化系统)的选用进行讨论,做到在避免和控制二次污染的前提下,在技术和经济可行的情况下,提高发电效率。 2焚烧锅炉的选用 焚烧锅炉包括焚烧炉及余热锅炉两大部分。按我国生活垃圾焚烧污染控制标准(GWKB3-2000)要求:垃圾应在焚烧炉内充分燃烧,烟气在后燃室应在不低于850℃的条件下停留不少于2s。 2.1选型 目前,适合我国高水分、低热值城市生活垃圾并经过运行考验的焚烧锅炉有引进三菱重工技术的炉排式焚烧锅炉和浙江大学开发的异重循环流化床焚烧锅炉。前者1997年己在深圳投入运行,日处理垃圾150t,但设备为部分国产化,价格昂贵,垃圾能源化利用程度不高。后者1998年8月在杭州余杭锦江热电有限公司建成投产,蒸发量35t/h,日处理垃圾150t,最大日处理超过216t,应用与煤助燃方式,运行一直稳定。浙江省电力设计院设计的山东菏泽、杭州乔司等垃圾焚烧发电厂均采用后者。 2.2容量 作为垃圾发电产业的首批电厂,焚烧锅炉蒸发量采用与示范电厂一样为35t/h。在流化床焚烧锅炉中垃圾焚烧处理采用与煤助燃方式,这样有利于燃烧稳定,提高了炉内燃烧温度从而可降低有害排放,并有利于蒸汽参数的提高。目前由浙江大学和杭州锅炉厂共同研制生产的异重循环流化床垃圾焚烧锅炉单炉垃圾处理量为200t/d,辅助燃煤与垃圾量重量比为3:7;在相同的蒸发量(35t/h)下,今后单炉垃圾处理量可提高为300t/d,此时辅助燃煤与垃圾量重量比为2:8。 2.3蒸汽参数 垃圾焚烧锅炉生产的蒸汽其参数偏低,原因如下:(1)焚烧锅炉的热功率较小,在同容量的小型火电厂中也同样不会应用高压蒸汽参数;(2)焚烧锅炉燃烧气体中含有的氯化物盐类会引起过热器的高温腐蚀。在日本通常将焚烧锅炉的蒸汽参数设计为2.94MPa,300℃以下;在欧洲与美国,过热器管材应用低合金钢与高镍合金,蒸汽参数一般不超过4.5MPa,450℃。深圳市政环卫综合处理厂[1]是我国第一家采用焚烧工艺处理城市生活垃圾并用其热能进行发电与供热的工厂,安装进口的2台日本三菱重工炉排式焚烧锅炉,每台可供1.6MPa饱和蒸汽12t/h,后经技改后,每台可供1.4MPa,350℃过热蒸汽10.7t/h。同一工厂的3号焚烧

火力发电厂化学水处理的重要性探讨

火力发电厂化学水处理的重要性探讨 摘要:火力发电厂的过程其实也是水的具体形态的转换过程。水在电厂的发电 过程中起着重要作用。首先是液态水进入锅炉吸收煤等挥发的化学能成为蒸汽, 再经过喷嘴高速进入汽轮机组,一系列做功过程后所携能量转化为电能输出,而 蒸汽进入凝汽器凝结成液态水,经低压加热器加热后进入除氧器除氧,之后再经 给水泵、高压加热器进入锅炉,不断水汽循环,充当了能量的传递者以及冷却的 作用。本文分析了电厂化学水处理技术发展的特点,并就电厂处理化学水的具体 方法进行了研究分析,给出了最佳处理方案。 关键词:火力发电厂;化学水处理;重要性 引言 当前,随着节能减排和环保政策的深化推进,水资源的合理利用与清洁排放 成为了社会关注的焦点所在,而我国水资源的日渐短缺和废水排放污染的日渐凸显,使得水阶梯定价成为必然,火电厂作为耗水大户,也面临着新的挑战和要求,不仅要为社会提供高质量的电力支撑,而且要兼顾环保性,而化学处理技术作为 电厂水处理系统的关键所在,其关系到锅炉废水处理、锅炉补给水处理以及锅炉 的内水处理等多个方面,与火电厂的安全运行和节能存在多层次、全方位的关联 作用,是水资源循环高效利用的基础和条件,更直接关系着火电厂的经济效益。 本文即针对此种需求,从化学水处理技术的发展趋势出发,分析了其未来发展方 向和主要着力点,同时,结合实际应用需求,分析了火电厂化学水处理技术的相 关分类,明确不同种类技术的利弊,从而有针对性地进行优化设计,以实现电厂 用水的安全性和可循环性,缓解水资源短缺的压力。 1火力发电厂化学水水质要求 火力发电厂化学水具有化学水处理净化的多样化的特点,能够全面的净化化 学水,可以将火力发电厂的相关设备集中设置,通过科学、环保、节能的方式, 节约成本,提高火力发电厂的经济效益,推动火力发电厂的可持续发展。虽然化 学水对于火力发电厂有着很多的作用,但是天然的化学水是不能直接应用到火力 发电产的工作当中的,火力发电厂化学水的水质要求极为严格,主要体现在以下 几个方面:第一:纯天然的化学水杂质含有大量的悬浮物、重金属离子、硬度、 盐类、有机物等杂质,直接使用会对火力发电厂产生极大的损害,因此要对原水 的杂质排净,一般通过澄清、过滤、除盐、超滤、反渗透等多种方法,对化学水 进行净化,完成初步处理作为锅炉的补给水。第二:锅炉中的给水系统由锅炉补 给水、凝结水以及各类疏水组成,因为锅炉补给水自身携带有大量的溶解氧和由 于系统的严密性导致给水系统中含有溶解氧和二氧化碳等溶解性气体,在较低的PH值条件下对给水系统以及锅炉的金属管壁等会造成各类腐蚀,因此需对给水用除氧器进行热力除氧并添加相应的除氧剂消除水中的溶解氧,通过加氨处理维持 给水系统在一个适当的PH值中,防止系统金属腐蚀。第三:火力发电厂的化学 水要有一部分运用到凝汽器当中,为了防止凝汽器出现故障导致化学水变质,以 至于影响火力发电厂的正常运转,要优先对凝结水进行优化处理,将水中包含的 盐铁分子进行去除,降低火力发电厂运行机组的参数值,确保化学水的水质。第四:火力发电厂的化学水不光是要加热,还要进行冷却水处理,在这个环节当中 由于火力发电厂的环境不好,空中细菌太多,稍微处理不当就会导致冷却水出现 微生物,为了防止微生物的出现,应当在冷却水中添加相应的药剂,之后再将冷 却水放入水循环系统,确保冷却水的纯净。第五:通过将化学水放入锅炉,产生

电厂化学水处理工艺流程

电厂化学水处理工艺流程 Final approval draft on November 22, 2020

化学水处理系统 一.从给水品质标准看化学水处理的必要性 下表是锅炉给水品质标准。 总硬度 (μmol/L) 溶解氧 (μg/L) 电导率 (μs/cm) 二氧化硅 (μg/L) PH值 (25℃) 二氧化碳 (μg/L) 标准≤30 ≤50 10 ≤20 ~≤20 我国北方多采用深井水源,其水质超标最严重的是总硬度,总硬度是指溶液中钙离子(Ca2+)和镁离子(Mg2+)摩尔浓度的平均值。所谓摩尔浓度指每升溶液中溶质含量的毫摩尔数。例如Ca的原子量为40,1mol Ca2+的质量是80g (其化学意义是:1mol Ca2+内含×1023个钙离子)。如果1L溶液中含有1g Ca2+,那么它的摩尔浓度是1/80=L=L。 给水水质不良,特别是钙、镁、钠、硅酸根离子超标,会给热力设备造成如下危害: 1. 热力设备的结垢:如果进入锅炉或其它热交换器的水质不良,则经过一段时间运行后,在和水接触的受热面上,会生成一些固体附着物,这种现象称为结垢,这些固体附着物称为水垢。因为水垢的导热性比金属差几百倍,而这些水垢又极易在热负荷很高的锅炉炉管中生成,所以结垢对锅炉(或热交换器)的危害性很大;它可使结垢部位的金属管壁温度过高,引起金属强度下降,这样在管内压力的作用下,就会发生管道局部变形、产生鼓包,甚至引起爆管等严重事故。结垢不仅危害安全运行,而且还会大大降低发电厂的经济性。例如,热力发电厂锅炉的省煤器中,结有1mm厚的水垢时,其燃料用量就比原来的多消耗%~%。因此有效防止或减少结垢,将会产生很大的经济效益。另外,循环水的水质不良,在汽轮机凝汽器内结垢会导致凝汽器真空度降低,从而使汽轮机的热效率和出力下降;过热器的结垢会使蒸汽温度达不到设计值,使整个热力系统的经济性降低。热力设备结垢以后,必须及时进行清洗工作,这就要停运设备,减少了设备的年利用小时数;此外,还要增加检修工作量和费用等。 2.热力设备及其系统的腐蚀:发电厂热力设备的金属经常和水接触,若水质不良,则会引起金属腐蚀,如给水管道,省煤器、蒸发器、加热器、过热器和汽轮机凝汽器的换热管,都会因水质不良而腐蚀。腐蚀不仅要缩短设备本身的使用期限,造成经济损失;而且腐蚀产物转入水中,使给水中杂质增多,从而加剧在高热负荷受热面上的结垢过程,结成的垢又会加速炉管的垢下腐蚀。此种恶性循环,会迅速导致爆管等事故。 3. 过热器和汽轮机流通部分的积盐:水质不良还会使蒸汽溶解和携带的杂质(主要是Na+和HSiO3-离子)增加,这些杂质会沉积在蒸汽的流通部位,如过热器和汽轮机,这种现象称为积盐。过热器管内积盐会引起金属管壁过热甚至爆管;阀门会因积盐而关闭不严;汽轮机内积盐会大大降低汽轮机的出力和效率,即使少量的积盐也会显着增加蒸汽流通的阻力,使汽轮机的出力下降。当汽轮机积盐严重时,还会使推力轴承负荷增大,隔板弯曲,造成事故停机。

某垃圾焚烧发电厂化学水处理系统三种设计方案的对比研究 王成林

某垃圾焚烧发电厂化学水处理系统三种设计方案的对比研究 王成林 摘要:通过对某垃圾焚烧发电厂的化学水处理系统三种设计方案进行详细的技 术经济比较,结果表明采用全膜法“超滤+两级反渗透+EDI”的方案技术上优于“超 滤+两级反渗透+混床”方案和“超滤+反渗透+一级除盐+混床”方案。全膜法主要优 势在于:无需酸碱,更加环保;水回收率更好;占地更小;更加便于自动化控制。全膜法的一次性投资要略高于传统的离子交换,但运行费用更低。综合来看,垃 圾焚烧发电厂中的化学水处理系统推荐采用全膜法。 关键词:化学水处理全膜法离子交换电除盐垃圾焚烧发电 1.引言 目前我国城市生活垃圾量增长迅猛,垃圾焚烧发电成为城市垃圾处理的发展 趋势[1]。垃圾焚烧发电厂的化学水处理系统起着维持热力系统正常的水汽循环运 行的重要作用。因此选择化学水处理系统不仅要系统安全可靠,还要技术先进和 运行经济[2]。 近些年来,随着超滤、反渗透、电除盐等各种膜技术的日臻成熟完善,已在 水处理领域得到广泛的应用[3]。目前电厂化学水处理系统常用的工艺系统如下:方案一:采用超滤+一级反渗透+二级反渗透+EDI方案,简称“两级反渗透+EDI 方案”,也叫全膜法。 方案二:采用超滤+一级反渗透+二级反渗透+混床方案,简称“两级反渗透+混 床方案”; 方案三:采用超滤+反渗透+一级除盐+混床方案,简称“反渗透+一级除盐+混 床方案”。 本文将以某垃圾焚烧电厂的化学水处理系统为例,对以上三种水处理方案进 行技术经济比较。 某垃圾焚烧电厂日焚烧处理生活垃圾2250吨,设置三条焚烧线,单台焚烧炉处理能力为750t/d,余热锅炉采用次高温次高压蒸汽锅炉(485℃,6.4MPa),并2 套25MW抽凝式汽轮机+30MW发电机组。 2.化学水处理系统工艺设计 2.1设计规模 根据《发电厂化学设计技术规范》(DL5068-2014),计算化水处理系统的生 产能力: a)余热锅炉总额定蒸发量:a=72.8t/h×3=218.4t/h b)正常运行汽水循环损失(按锅炉额定蒸发量的5%计)为b=10.92t/h c)余热锅炉连续排污损失(按锅炉额定蒸发量的1%)为c=2.184t/h d)启动及事故增加的损失(按全厂最大一台锅炉最大连续蒸发量的10%计) 为d=7.28t/h e)余热锅炉部分引起的化水系统正常负荷为:e= b+c=10.92+2.184=13.104t/h f)考虑余热锅炉超负荷10%运行时,化水系统出力为 f=1.1e=1.1×13.104=14.41t/h 此外: g)SNCR喷射用水g=2.5 t/h h)加药设备用水h=0.42 t/h i)水环真空泵用水i=4 t/h

电厂化学水处理完整版

第一章水质概述 第一节天然水及其分类 一、水源 水是地面上分布最广的物质,几乎占据着地球表面的四分之三,构成了海洋、江河、湖泊以及积雪和冰川,此外,地层中还存在着大量的地下水,大气中也存在着相当数量的水蒸气。地面水主要来自雨水,地下水主要来自地面水,而雨水又来自地面水和地下水的蒸发。因此,水在自然界中是不断循环的。 水分子(H2O)是由两个氢原子和一个氧原子组成,可是大自然中很纯的水是没有的,因为水是一种溶解能力很强的溶剂,能溶解大气中、地表面和地下岩层里的许多物质,此外还有一些不溶于水的物质和水混合在一起。 水是工业部门不可缺少的物质,由于工业部门的不同,对水的质量的要求也不同,在火力发电厂中,由于对水的质量要求很高,因此对水需要净化处理。 电厂用水的水源主要有两种,一种是地表水,另一种是地下水。 地表水是指流动或静止在陆地表面的水,主要是指江河、湖泊和水库水。海水虽然属于地表水,但由于其特殊的水质,另作介绍。 天然水中的杂质 要有氧和二氧化碳天然水中的杂质是多种多样的,这些杂质按照其颗粒大小可分为悬浮物、胶体和溶解物质三大类。 悬浮物:颗粒直径约在10-4毫米以上的微粒,这类物质在水中是不稳定的,很容易除去。水发生浑浊现象,都是由此类物质造成的。 胶体:颗粒直径约在10-6---10-4毫米之间的微粒,是许多分子和离子的集合体,有明显的表面活性,常常因吸附大量离子而带电,不易下沉。 溶解物质:颗粒直径约在10-6毫米以上的微粒,大都为离子和一些溶解气体。呈离子状态的杂质主要有阳离子(钠离子Na+、钾离子K+、钙离子Ca2+、镁离子Mg2+),阴离子(氯离子CI -、硫酸根SO42-、碳酸氢根HCO3-);溶解气体主。 水质指标 二、水中的溶解物质 悬浮物的表示方法:悬浮物的量可以用重量方法来测定(将水中悬浮物过滤、烘干后称量),通常用透明度或浑浊度(浊度)来代替。 溶解盐类的表示方法: 1.含盐量:表示水中所含盐类的总和。 2.蒸发残渣:表示水中不挥发物质的量。 3.灼烧残渣:将蒸发残渣在800℃时灼烧而得。 4.电导率:表示水导电能力大小的指标。 5.硬度的表示方法:硬度是用来表示水中某些容易形成垢类以及洗涤时容易消耗肥皂得一类物质。对于天然水来说,主要指钙、镁离子。硬度按照水中存在得阴离子情况。划分为碳酸盐硬度和非碳酸盐硬度两类。

压水堆水化学复习题答案..

题型:1.填空题、2.看图填空、3.简单题、4.计算题或论述题。复习要点 第一部分:水化学概述 1.水的特殊(反常)性质与分子结构的关系。何谓分子的缔合?何谓氢键? 关系:水分子是具有偶极矩的强极性分子,这种结构成为水具有许多反常性质的主要原因;水分子的缔合:水分子的偶极矩相互吸引,并通过“氢键”而形成多分子的聚集状态。这种由简单分子结合成比较复杂的分子,而不引起物质的化学性质改变的现象,称为分子的缔合。氢键:与负电性强的元素(尤其是氟和氧)作共价结合的氢原子,还可以再和此类元素的另一原子相结合。此时所形成的第二个键,称为氢键。 2什么叫水的离子积?写出表达式。练习溶液的pH值计算。 水的离子积:水的离解平衡式为[][] []w K = - + O H OH H 2或 [][][]O H OH H 2 w K = - + ,几乎在所有溶液 中,H2O的活度接近1.0,因此不考虑H2O的平衡常数,则Kw=[H+][OH-],称为水的离子积。 表达式:Kw=[H+][OH-] pH值计算:pH=-lg[H+] 3.解释硬水、软水、暂时硬度、永久硬度。硬水软化的常用方法有哪些。 硬水:溶有较多量Ca2+和Mg2+的水叫做硬水。 软水:溶有少量Ca2+和Mg2+的水叫做软水。 暂时硬度:由碳酸氢钙或碳酸氢镁引起的硬度,叫做暂时硬度。 永久硬度:如果水中溶有Ca和Mg的硫酸盐或氯化物,则不能用加热的方法去掉Ca和Mg 的离子,这种硬度叫永久硬度。 方法: 1.药剂软化法:采用石灰、纯碱、碳酸三钠和硼砂等药剂中的一种或几种。反应结束后澄清就得到软水。(操作复杂但成本低,适于处理大量的高硬度的水,常作为水软化的初步处理。) 2.离子交换法:现代使用盐型离子交换树脂来降低水的硬度。 3其他方法: 过滤法:在大规模滤水时,使用由沙砾和石子组成的过滤器;小规模的过滤采用烧结玻璃、特制的过滤材料和过滤膜等。过滤法只能除掉不溶性杂质。 蒸馏法。 第二部分:压水堆的放射性 1.压水堆放射性物质的来源及组成?压水堆核电厂一回路冷却剂中主要的裂变产物有哪些?列出其中6中主要核素。 来源:一.堆芯放射性物质的积累1.来自燃料中的裂变产物 2.结构材料腐蚀产物的活化 二.冷却剂中的裂变产物 一回路冷却剂放射性:(1)放射性碘;(卤素I碘、Br溴) (2)惰性气体裂变产物;(Kr、Xe)

相关文档
相关文档 最新文档