文档视界 最新最全的文档下载
当前位置:文档视界 › 迈克尔逊干涉仪

迈克尔逊干涉仪

迈克尔逊干涉仪
迈克尔逊干涉仪

迈克尔逊干涉仪

迈克尔逊干涉仪是用分振幅的方法实现干涉的光学仪器,设计十分巧妙。迈克尔逊发明它后,最初用于著名的以太漂移实验。后来,他又首次用之于系统研究光谱的精细结构以及将镉(Cd)的谱线的波长与国际米原器进行比较。迈克尔逊干涉仪在基本结构和设计思想上给科学工作以重要启迪,为后人研制各种干涉仪打下了基础。迈克尔逊干涉仪在物理学中有十分广泛的应用,如用于研究光源的时间相干性,测量气体、固体的折射率和进行微小长度测量等。 【实验目的】

1. 了解迈克尔逊干涉仪的结构、原理和调节方法;

2. 了解光的干涉现象及其形成条件;

3. 观察等倾干涉条纹,测量氦氖激光器的波长;

4. 学习一种测量气体折射率的方法。 【实验仪器】

迈克尔逊干涉仪,He-Ne 激光器及电源,扩束镜(凸透镜),挡光片一片,升降台,玻璃板,白光光源 【实验原理】 一、

一般介绍

迈克尔逊干涉仪的原理见图1。光源S 发出的光束射到分光板1G 上,1G 的后面镀有半透膜,光束在半透膜上反射和透射,被分成光强接近相等、并相互垂直的两束光。这两束光分别射向两平面镜1M 和2M ,经它们反射后又汇聚于分光板1G ,再射到光屏E 处,从而得到清晰的干涉条纹。平面镜1M 可在光线1的方向上平行移动。补偿板2G 的材料和厚度与1G 相同,也平行于1G ,起着补偿光线2的光程的作用。如果没有2G ,则光线1会三次经过玻璃板,而光线2只能一次经过玻璃板。2G 的存在使得光线1、2由于经过玻璃板而导致的光程相等,从而使光线1、2的光程差只由其它几何路程决定。由于本实验采用相干性很好的激光,故补偿板2G 并不重要。但如果使用的是单色性不好、相干性较差的光,如纳光灯或汞灯,甚至白炽灯,2G 就成为必需了。这是因为波长不同的光折射率不同,由分光板1G 的厚度所导致的光程就会各不一样。补偿板2G 能同时满足这些不同波长的光所需的不同光程补偿。

图1 干涉原理图

用迈克尔逊干涉仪可以观察各种类型的条纹,见表1。

二、等倾干涉与激光波长的测量

平面镜2M 通过1G 成虚像2M ',故可认为两束相干光线是由1M 和2M '反射来的。用扩束镜会聚激光,可得到一个点光源。它经平面镜1M 和2M '反射后的光线可视为由虚光源1S 和2S '发出(如图2),其间距为d 2(d 为1M 和2M '的间距)。此二虚光源发射的球面波在相遇空间处处相干,故为非定域干涉。用屏

观察干涉花样时,取不同的空间位置和空间取向,原则上可以观察到圆、椭圆、双曲线和直线条纹(但受

实验仪器的实际限制,一般只能看到圆和椭圆)。通常使屏垂直于1S 和2S '的连线,此时观察到一组同心圆,圆心在1S 和2

S '的连线上。若使屏旋转一个角度,则得到一组椭圆。

图2 光程图

由1S 、2

S '到屏上任一点B 的两光线的光程差为B S B S 21'-=δ。考虑到z d <<,且θ很小,从图中可以看出,

)2

11(2cos 22θθδ-

≈=d d (1)

()??

?+==(暗纹中心)

(明纹中心)

2

/12cos 2λλ

θδk k d (2)

时,在屏上就可以看到相应的明纹或暗纹。

由(1)和(2)式可知:

1、0=θ时光程差最大,即圆心处的干涉级最高。若盯住同一级圆条纹(δ不变),移动平面镜1M 使d 增加时,θ会增加,即条纹向外扩大。此时中心处0=θ,故光程差(干涉级)将变大,表现为不断冒出圆环。反之,d 减小时,条纹内缩,最后在中心处消失。对于中心处,每冒出或消失一个圆环,条纹就改变

一个级别,相当于光程差2

12S S d '==δ改变一个波长。设1M 移动了d ?的距离,同时冒出或消失的圆环个数为N ,则光波波长

N

d ?=

2λ (3)

从仪器上读出d ?,并数出相应的条纹变化条数N ,就可由上式测出光波的波长λ。若将λ作为标准值,测出冒出或消失N 个圆环时1M 移动的距离,与由(3)式算出的理论值比较,可以校正仪器传动系统的误差。

2. 圆条纹间距可以用相邻条纹的角间距θ?来表示。对(1)式求微分,得d θδθ21-=??(负号表示光程

差δ增加时θ减小),其中δ?为相邻条纹的光程差之差,即λ。把λδ=?代入,得

d

θλθ2=

? (4)

可见,当d 固定时,θ越大,θ?越大。也就是说,平面镜1M 不动时,故越往外条纹越密,同时越细。当d 增加时,间距θ?将变小,条纹变密变细;反之,条纹变疏变粗。

3. 上面的讨论都是0>d 即1M 比2

M '靠外的情况。对于0>d ),避免在移动1M 时不小心通过了临界点,造成计数上的麻烦。

图3 干涉

三、等厚干涉与透明玻璃板厚度的测量

如图4,如果1M 和2

M '间形成一很小的角度,则1M 与2M '之间有一楔形空气薄层,这时将产生等厚干涉条纹。当光束入射角θ足够小时,可由式(1)求两相干光束的光程差,即

)2

11(2cos 22θθδ-

≈=d d =22θd d - (5)

在1M 、2

M '的交线上,0=d ,即0=δ,因此在交线处产生一直线条纹,称为中央明纹。在左右两旁靠近交线处,由于θ和d 都很小,这时式(5)中的2

θd 项与d 2相比可忽略,因而由

d 2=δ (6)

所以产生的条纹近似为直线条纹,且与中央条纹平行。离中央条纹较远处,因2

θd 项的影响增大,条纹发生显著的弯曲,弯曲方向突向中央明纹。离交线越远,d 越大,条纹弯曲地越明显。

图4

由于干涉条纹的明暗和间距决定与光程差δ与波长的关系,若用白光作光源,则每种不同波长的光所产生的干涉条纹明暗会相互交错重叠,结果就看不到明暗相间的条纹了。换句话说,如果换用白光作光源,

在一般情况下,不出现干涉条纹。进一步分析还可以看出,在1M 、2

M '两面相交处,交线上0=d ,但是1、2两束光在半反射膜面上的反射情况不同,引起不同的光程差,故各种波长的光在交线附近可能有不同

的光程差。因此,用白光作光源时,在1M 、2

M '两面的交线附近的中央条纹可能看到白色条纹,也可能是暗条纹。在它的两旁还大致对称的有几条彩色的直线条纹,稍远就看不到条纹了。

光通过折射率n 为厚度为l 的均匀透明介质时,其光程比通过同厚度的空气要大)1(-n l 。在迈克尔逊干涉仪中,但白光的中央条纹出现在视场的中央后,如果光路1中加入一块折射率为n 为厚度为l 的均匀薄玻璃片,由于光束1的往返,光束1和光束2在相遇时所获得的附加光程差'

δ 为

'δ=)1(2-n l

此时,若将1M 向1G 方向移动距离2'δ=?d ,则光束1、2在相遇时的光程差又恢复至原样这样,白光干涉的中央条纹将重新出现在视场中央。这时

)1(2

'

-==

?n l d δ (7)

根据式(7),测出1M 前移的距离d ?,如已知薄玻璃片的折射率n ,则可求出其厚度l ;反之,如已知玻璃片的厚度l ,则可求出其折射率n 。

【实验仪器介绍】

1.底角调平螺钉 2.底座 3.垂直方向的拉簧螺丝 4.导轨 5.精密丝杆 6.反射镜M1 7.反射镜M2 8.反射镜调节螺钉 9.补偿板 10.读数窗11.粗调手轮 12.毛玻璃屏 13.水平方向的拉簧螺丝 14.微调手轮

图5 迈可尔逊干涉仪结构图

迈克尔逊干涉仪结构如图5,反射镜1M 由精密丝杆转动可沿导轨前后移动,称为移动反射镜;反射镜2M 固定塞仪器架上,称为固定反射镜;1M 和2M 的镜架背后各有三个调节螺丝,用来调节反射镜的法线方向;与2M 镜架连接的有垂直方向和水平方向两个拉簧螺丝,利用拉簧的弹性可以比较精细地调节2M 镜面的方位。确定1M 位置的有三个读数装置,即导轨侧面的毫米刻度主尺和两个调节手轮上的百分度盘,10为读数窗口;14为微调手轮。迈克尔逊干涉仪上带有精密的读数装置,其读数方法与螺旋测微器相同,只是有两层嵌套而已。具体地说,读数装置由三部分组成:(1)主尺。是毫米刻度尺,装在导轨地侧面,只读到毫米整数位(2位),不估读。(2)粗调手轮。控制着刻度圆盘,从读数窗口可以看到刻度。旋转手轮使圆盘转一周,动镜1M 就移动1mm 。而圆盘有100个分格,故圆盘转动一个分格时1M 就移动0.01mm 。(3)微调鼓轮。其上又有100个分格。鼓轮转一周使1M 移动0.01mm ,故它转一个分格使1M 移动0.0001mm 。读数时还要估读一位。可见,每一级装置读数时只读出整数个分格数,不估读,其估读位由下一级给出;而最后一级则要估读。这样,一个读数由导轨刻度尺读数(2位)、正面窗口读数(2位)和鼓轮读数(3位)构成,共7位有效数字。

由激光器光源产生的平行入射光,在6处用毛玻璃屏通过分光板可以看到光源的若干个像,利用1M 、

2M 镜架背后的螺丝,细心调整镜面方位,使最亮的两个像重合,再在光源后加上扩束镜,就可以在屏上

看到干涉条纹,然后用拉丝弹簧调整干涉条纹形状满足实验要求。

【实验内容及步骤】

一、迈克尔逊干涉仪的基本调节

1. 点燃氦氖激光器,调节其高度和方向,使激光束大致照到两平面镜1M 、2M 及屏E 的中部,并使从两

平面镜反射来的两束光能尽量原路返回,即尽可能回到激光器的出光口。

2. 屏上可以看到两排光点,都以最亮者居中。调节1M 和2M 后面的三个螺丝,使两个最亮点重合(此时

1M 和2M 相互垂直)

。此时要检查回到激光器的两束光是否仍照在出光口或附近。 二、观察等倾干涉条纹,测量氦氖激光波长

1. 在氦氖激光器前放置一个扩束镜(短焦距凸透镜),使平行光聚焦为点光源并扩散开。此时在屏上可以

看到圆形干涉条纹。然后双向转动1M 的微调鼓轮,观察条纹冒出和缩进现象,判定1M 和2

M '之间的距离d 是增大还是减小;观察条纹粗细、疏密情况,判断d 是较大还是较小。旋转光屏E ,使之不

平行于1M 和2

M ',可以观察到椭圆条纹。如果干涉条纹很细,不利于随后的测量,可旋转粗调手轮使d 大幅度减小,从而使条纹变疏变粗。

2. 固定一个方向转动微调鼓轮直至条纹变化稳定。然后记下此时的读数1d 。继续向这个方向转动鼓轮,

观察屏上的圆环冒出或缩进N=100个,再记录一次读数2d 。然后利用公式(3)计算波长。 3. 重复上述过程两次,再次得到两个波长值。

4. 计算三个波长的平均值,将其与标准波长值0λ=632.8nm 比较,计算相对误差。

注意:由于仪器存在空程误差,一定要条纹的变化稳定后才能开始测量。而且,测量一旦开始,微调鼓轮的转动方向就不能中途改变。

三、观察等厚干涉条纹,测量透明玻璃板厚度

1. 调节白光条纹。先用单色光源调好等倾圆条纹,使1M 与1G 的距离稍大与于2M 与1G 的距离,然后稍

稍旋转2M 镜太下的水平拉簧螺丝,使1M 、2

M '成一很小的夹角,此时看见弯曲的条纹。向前移动1M 使条纹变直,这表明中央条纹在逐渐向视场中央移动。再以白光代替单色光,继续按原方向缓慢地转动鼓轮,使1M 继续向前移动,直到白光干涉条纹出现。

2. 将中央条纹移至视场中某一位置,记下1M 的位置,将待测玻璃片放在1M 与1G 之间的光路中,使玻

璃片与1M 平行。向前移动1M 1M ,直至中央条纹重新移至视场中同一位置,再记下1M 的位置,则1M 所移动的距离即为式(7)中的d ?。

【数据记录及处理】

2、测量透明玻璃板厚度

表格自拟

【注意事项】

1.实验中,请勿正视激光光源,以免损伤眼睛。

2.仪器上的光学元件精度极高,不要用手抚摩或让赃物沾上。

3.一起传动机构相当精密,使用时要轻缓小心。

4.测量过程中,由于仪器存在空程误差,一定要条纹的变化稳定后才能开始测量。而且,测量一旦开始,微调鼓轮的转动方向就不能中途改变。

【附录】

【思考题】

1.迈克尔逊的主要部件有哪些?分别起什么作用?

2.光的干涉形成的条件,以及相关结论是什么?

3.为什么在测量过程中,测位鼓轮的转动方向不能中途改变?

迈克尔逊干涉仪测He-Ne激光的波长

实验十 迈克尔逊干涉仪测He-Ne 激光的波长 迈克尔逊干涉仪是1883年美国物理学家迈克尔逊和莫雷合作设计制作出来的精密光学仪器。它利用分振幅法产生双光束以实现光的干涉,可以用来观察光的等倾、等厚和多光束干涉现象,测定单色光的波长和光源的相干长度等。在近代物理和计量技术中有广泛的应用。 【实验目的】 1.了解迈克尔逊干涉仪的特点,学会调整和使用。 2.学习用迈克尔逊干涉仪测量单色光波长及薄玻璃片厚度的方法。 【实验仪器】 WSM-100型迈克尔逊干涉仪,HNL -55700型H e -N e 激光器、扩束镜,白赤灯,毛玻璃片,光具座,薄玻璃片。 【实验原理】 迈克尔逊干涉仪工作原理:如图10-1所示。在图中S 为光源,G 1是分束板,G 1的一面镀有半反射膜,使照在上面的光线一半反射另一半透射。G 2是补偿板,M 1、M 2为平面反射镜。 光源H e -N e 激光器S 发出的光经会聚透镜L 扩束后,射入G 1板,在半反射面上分成两束光:光束(1)经G 1板内部折向M 1镜,经M 1反射后返回,再次穿过G 1板,到达屏E ;光束(2)透过半反射面,穿过补偿板G 2射向M 2镜,经M 2反射后,再次穿过G 2,由G 1下表面反射到达屏E 。两束光相遇发生干涉。 补偿板G 2的材料和厚度都和G 1板相同,并且与G 1板平行放置。考虑到光束(1)两次穿过玻璃板,G 2的作用是使光束(2)也两次经过玻璃板,从而使两光路条件完全相同,这样,可以认为干涉现象仅仅是由于M 1镜与M 2镜之间的相对位置引起的。 为清楚起见,光路可简化为图10-2所示,观察者自E 处向G 1板看去,透过G 1板,除直接看到M 1镜之外,还可以看到M 2镜在G 1板的反射像M 2',M 1镜与M 2'构成空气薄膜。事实上M 1、M 2镜所引起的干涉,与M 1、M 2'之间的空气层所引起的干涉等效。 1.干涉法测光波波长原理: 考虑M 1、M 2'完全平行,相距d 时的情况。点光源S 在镜M 1、M 2'中所成的像s '、s ''构成相距d 2的相干光源,光路如图10-3所示。设s ''到0点的距离 为h 。这种情况下,干涉现象发生在两光相遇的所有空间中,因此干涉是非定域 的。对于屏幕上任意一点P 处,设s ''到0点的距离为h 。两像光源发出的光相 遇时的光程差为δ,P 点处发生相长干涉的条件为: λ=θ-θ+=δk h d 2h 2 1cos cos (10—1) 由(10-1)式,结合图3可以看出,保持h 与d 不变,令P 点向外移动时,1θ、2θ将增大,对应级次K 将伴随δ减小,所以中央条纹的级次高。 2E 图10-1 迈克尔逊干涉仪原理图 M M '图10-3干涉光程计算 2S 图10-2 迈克尔逊干涉仪简化光路

迈克尔逊干涉仪器介绍

迈克尔逊干涉仪调整和应用仪器 一.实验装置组成 迈克尔逊干涉仪(WSM100/200型)、多束光纤激光源(HNL-55700,He-Ne)、WAN-12B 型数显空气折射率测量仪、观察屏。 二.仪器主要用途(迈克尔逊干涉仪(WSM100/200型)) 1.观察光的干涉现象(等厚条纹、等倾条纹、白光彩色条纹),测定单色光波长; 2.测定光源和滤光片相干长度、配发布里——珀罗系统观察多光束干涉现象,配条纹计数器标准毫米刻尺等。 3.附加适当装置,还可以扩大实验范围(如演示偏振光的干涉、测量压电陶瓷静态特性等)。 三.仪器主要技术参数和规格 迈克尔逊干涉仪(WSM100/200型) 1.移动镜行程:WSM-100型100mm WSM-200型200mm 2.微动手轮分度值:0.0001mm 3.波长测量精度:当条纹计数为100时,测定单色光波长的相对误差<2%。 4.导轨直线性误差:WSM-100型±16" WSM-200型±24" 5.分光板、补偿板平面度:λ/30。 多束光纤激光源(HNL-55700,He-Ne) 1.波长:632.80nm

2.工作电流:10mA±10% 3.输出功率:大于10mW 4.工作电压:220V±10% 5.额定功率:50Hz WAN-12B型数显空气折射率测量仪 1.输入电压:220V 50HZ 2.测量范围:0~0.12Mpa(与大气压差) 3.仪器精度:2.5% 四.使用注意事项 1.激光属强光,会灼伤眼睛,注意不要让激光直接照射眼睛。 2.光纤为传光介质,可弯曲,但不可折压。 3.调整迈克尔逊干涉仪的反射镜时,须轻柔操作,不能把螺钉拧的过紧或过松。 4.工作时切勿震动桌子与仪器,测量中一旦发生震动,使干涉仪跳动,必须重新测量。 5.数条纹变化时,应细致耐心,切勿急躁。

迈克尔逊干涉仪实验报告87789

迈克耳逊干涉仪 一.实验目的 1.了解迈克尔逊干涉仪的结构和原理,掌握调节方法; 2.用迈克尔逊干涉仪测量钠光波长和精细结构。 二.实验仪器 迈克尔逊干涉仪、钠光灯、透镜等。 三.实验原理 迈克耳孙干涉仪原理如图所示。两平面反射镜M1、M2、光源 S和观察点E (或接收屏)四者北东西南各据一方。M1、M2相互垂直,M2是固定的,M1可沿导轨做精密移动。G1和G2是两块材料相同薄厚均匀相等的平行玻璃片。G1的一个表面上镀有半透明的薄银层或铝层,形成半反半透膜,可使入射光分成强度基本相等的两束光,称G1为分光板。G2与G1平行,以保证两束光在玻璃中所走的光程完全相等且与入射光的波长无关,保证仪器能够观察单、复色光的干涉。可见G2作为补偿光程用,故称之为补偿板。G1、G2与平面镜M1、M2倾斜成45°角。

如上图所示一束光入射到G1上,被G1分为反射光和透射光,这两束光分别经M1和M2反射后又沿原路返回,在分化板后表面分别被透射和反射,于E处相遇后成为相干光,可以产生干涉现象。图中M′2是平面镜M2由半反膜形成的虚像。观察者从E处去看,经M2反射的光好像是从M′2来的。因此干涉仪所产生的干涉和由平面M1与M′2之间的空气薄膜所产生的干涉是完全一样的,在讨论干涉条纹的形成时,只需考察M1和M2两个面所形成的空气薄膜即可。两面相互平行可到面光源在无穷远处产生的等倾干涉,两面有小的夹角可得到面光源在空气膜近处形成的等厚干涉。若光源是点光源,则上述两种情况均可在空间形成非定域干涉。设M1和M′2之间的距离为d,则它们所形成的空气薄膜造成的相干光的光程差近似用下式表示 若M1与M′2平行,则各处d相同,可得等倾干涉。系统具有轴对称不变性,故屏E上的干涉条纹应为一组同心圆环,圆心处对应的光程差最大且等于2d,d 越大圆环越密。反之中心圆斑变大圆环变疏。若d增加则中心“冒出”一个条纹,反之d减小则中心“缩进”一个条纹。故干涉条纹在中心处“冒出”或“缩进”的个数N与d的变化量△d之间有下列关系 根据该关系式就可测量光波波长λ或长度△d。 钠黄双线的精细结构测量原理简介: 干涉条纹可见度定义为:当,时V=1, 此时干涉条纹最清晰,可见度最大;时V=0,可见度最小。 从一视见度最低的位置开始算起,测量一次视见度最低处的位置,者其间的光程差 为,且由关系算出谱线的精细结构。 四.实验结果计与分析 次数初读数 d1(mm) 末读数 d2(mm) △ d=|d1-d2| (mm) (nm)(nm ) 137.7247937.754420.02963592.6592.6

迈克尔逊干涉仪测‘

实验四 用迈克尔逊干涉仪空气的折射率 一、实验目的 用分离的光学元件构建一个迈克尔逊干涉仪。 通过降低空气的压强测量其折射率。 二、仪器和光学元件 光学平台;HeNe 激光;调整架,35x35mm ;平面镜,30x30mm ;磁性基座;分束器50:50;透镜,f=+20mm ;白屏;玻璃容器,手持气压泵,组合夹具,T 形连接,适配器,软管,硅管 三、实验原理 借助迈克尔逊干涉仪装置中的两个镜,光线被引进干涉仪。通过改变光路中容器内气体的压强,推算出空气的折射率。 If two Waves having the same frequency ω , but different amplitudes and different phases are coincident at one location , they superimpose to ()()2211sin sin αα-?+-?=wt a wt a Y The resulting can be described by the followlng : ()α-?=wt A Y sin w ith the amplitude δ cos 22122212?++=a a a a A (1) and the phase difference 21ααδ-= In a Michelson interferometer , the light beam is split by a half-silvered glass plate into two partial beams ( amplitude splitting ) , reflected by two mirrors , and again brought to interference behind the glass plate . Since only large luminous spots can exhibit circular interference fringes , the Iight beam is expanded between the laser and the glass plate by a lens L . If one replaces the real mirror M3 with its virtual image M3 /, , Which is formed by reflection by the glass plate , a point P of the real light source appears as the points P / , and P " of the virtual light sources L l and L 2 · Due to the different light paths , using the designations in Fig . 2 , 图 2 the phase difference is given by : θλπδcos 22???=d (2) λis the wavelength of the laser ljght used . According to ( 1 ) , the intensity distribution for a a a ==21 is 2cos 4~2 22δ??=a A I (3) Maxima thus occur when δis equal to a multiple of π2,hence with ( 2 ) λθ?=??m d cos 2;m=1,2,….. ( 4 )

迈克尔逊干涉仪及其应用

迈克尔逊干涉仪及其应用 迈克尔逊干涉仪的应用 迈克尔逊干涉仪是一种利用分振幅法实现干涉的精密光学仪器.自1881 年问世以来,迈克尔逊曾用它完成了三个著名的实验:否定“ 以太” 的迈克尔逊—莫雷实验;光谱精细结构和利用光波波长标定长度单位.迈克尔逊干涉仪结构简单、光路直观、精度高,其调整和使用具有典型性.根据迈克尔逊干涉仪的基本 原理发展的各种精密仪器已广泛应用于生产和科研领域. 【预习要求】 1. 阅读实验十六,理解光的干涉、等倾干涉与等厚干涉 . 2. 了解定域干涉与非定域干涉概念 . 3. 了解迈克尔逊干涉仪的结构和使用 . 【实验目的】 1. 研究迈克尔逊干涉仪上各种光的干涉现象 . 2. 了解迈克尔逊干涉仪的应用 . 【实验仪器】 迈克尔逊干涉仪,法布里-珀罗干涉仪,氦氖激光器,钠光灯,白炽灯, 扩束镜 【实验要求】 1. 定域干涉与非定域干涉的研究 (1)观察激光产生的定域干涉与非定域干涉; (2)粗略测定激光定域等倾干涉条纹和等厚干涉条纹的定域位置(精确到 mm ); (3)观察钠光产生的定域干涉与非定域干涉 . 2. 钠光双线波长差与相干长度的测定 (1)用迈克耳孙干涉仪测定钠光双线波长差; (2)用迈克耳孙干涉仪测定钠光相干长度;

(3)用迈克耳孙干涉仪考察氦-氖激光的相干长度 . 3. 钠光双线波长差的测定与考察补偿板的作用 (1)用迈克耳孙干涉仪测定钠光双线波长差; (2)用法布里-珀罗干涉仪测定钠光双线波长差; (3)观察无补偿板的迈克耳孙干涉仪中条纹的特点 . 【实验提示】 1. 如何获得点光源和面光源?如何测定干涉条纹的定域位置? 2. 钠光包含中心波长分别为589.0nm 和589.6nm 的两条谱线,在迈克耳逊干涉仪中它的干涉条纹有什么特点? 测波长差的公式;能用测出的波长差计算相干长度吗?测定光源相干长度的方法,实际可能达到的精度 . 3. 钠光包含中心波长分别为589.0nm 和589.6nm 的两条谱线,在迈克耳逊干涉仪和法布里-珀罗干涉仪中它的干涉条纹各有什么特点? 4. 迈克耳逊干涉仪中补偿板有哪些作用? 5.考虑实际可能达到的精度,确定是否要用微动手轮,应如何安排测量次数,如何处理数据 . 【设计报告要求】 1 . 写明实验的目的和意义 2 . 阐明实验原理和设计思路 3 . 说明实验方法和测量方法的选择 4 . 列出所用仪器和材料 5 . 确定实验步骤 6 . 设计数据记录表格 7 . 确定实验数据的处理方法 【思考题】

迈克尔逊干涉仪实验报告

迈克尔逊和法布里-珀罗干涉仪 摘要:迈克尔逊干涉仪是一种精密光学仪器,在近代物理和近代计量技术中都有着重要的应用。通过迈克尔逊干涉的实验,我们可以熟悉迈克尔逊干涉仪的结构并掌握其调整方法,了解电光源非定域干涉条纹的形成与特点和变化规律,并利用干涉条纹的变化测定光源的波长,测量空气折射率。本实验报告简述了迈克尔逊干涉仪实验原理,阐述了具体实验过程与结果以及实验过程中的心得体会,并尝试对实验过程中遇到的一些问题进行解释。 关键词: 迈克尔逊干涉仪;法布里-珀罗干涉仪;干涉;空气折射率; 一、引言 【实验背景】 迈克尔逊干涉仪是1883年美国物理学家迈克尔逊和莫雷合作,为研究“以太”漂移而设计制造出来的精密光学仪器。它是利用分振幅法产生双光束以实现干涉。通过调整该干涉仪,可以产生等厚干涉条纹,也可以产生等倾干涉条纹,主要用于长度和折射率的测量。法布里-珀罗干涉仪是珀罗于1897年所发明的一种能现多光束干涉的仪器,是长度计量和研究光谱超精细结构的有效工具; 它还是激光共振腔的基本构型,其理论也是研究干涉光片的基础,在光学中一直起着重要的作用。在光谱学中,应用精确的迈克尔逊干涉仪或法布里-珀罗干涉仪,可以准确而详细地测定谱线的波长及其精细结构。 【实验目的】 1.掌握迈克尔逊干涉仪和法布里-珀罗干涉仪的工作原理和调节方法; 2.了解各类型干涉条纹的形成条件、条纹特点和变化规律; 3.测量空气的折射率。 【实验原理】 (一) 迈克尔逊干涉仪 1M 、2M 是一对平面反射镜,1G 、2G 是厚度和折射率都完全相同的一对平行玻璃板,1G 称 为分光板,在其表面 A 镀有半反射半透射膜,2G 称为补偿片,与1G 平行。 当光照到1G 上时,在半透膜上分成两束光,透射光1射到1M ,经1M 反射后,透过2G ,在1G 的半透膜上反射到达E ;反射光2射到2M ,经2M 反射后,透过1G 射向E 。两束光在玻璃中的 光程相等。当观察者从E 处向1G 看去时,除直接看到2M 外还可以看到1M 的像1 M 。于是1、2

迈克尔逊干涉仪实验

迈克尔逊干涉实验 无非2班袁鹏 一实验目的 1、学习按一定原理自行组装仪器的技能,通过自行组装迈克尔逊干涉仪学 习光路的调整。 2、学习在组装的迈克尔逊干涉仪上开拓应用的技能。 3、在组装的迈克尔逊干涉仪上进行压电晶片电致伸缩效应的观测。粗略测 出压电晶片的压电系数。 二实验原理 1、迈克尔逊干涉仪的原理。 迈克尔逊干涉仪是应用分振幅法产生双光束以实现干涉的仪器,仪器的光学 系统由两个平面反射镜M 1和M 2 及两块材质相同、厚度相等的平行平面玻璃板G 1 和G2所组成,如上图所示。从光源S发出的光,射到分光板G1上,分光板G1后表面有半反射膜,将一束光分解成两束光;一束为反射光(1),另一束为透射光(2),他们的强度近似相等。由于G1与M1、M2均成45度角,所以两束光都垂直的射到M1和M2,并经反射后回到G1上的半反射膜,再在观察处E相遇。因为光束(1)、(2)是相干光,若仪器调整得当,便可在E处观察到干涉图样。

G2为补偿板,其物理性能和几何形状与G1相同,它的作用是为了补偿光束(2)的光程,使光束(1)和光束(2)在玻璃中的光程完全相等。 2、干涉条纹的形成。 由于半反射膜实质上是一块反射镜,它使M2在M1附近形成一个虚像M'2。由 于是从观察处E看到的两束光好像是从M 1和M' 2 射来的,故可将M' 2 看成一个虚 平面。因M' 2不是实物,它的表面和M 1 的表面所夹的空气薄膜可以任意调节。如 使M 1、M' 2 平行则形成等厚的空气薄膜,产生等倾干涉;若不平行则形成空气劈 尖,形成等厚干涉。从而在实验过程中可以观察到不同的干涉图样。 (1)等倾干涉使M 2垂直M 1 (即M 1 平行M'2),S又为面光源时,这就相 当于空气平面板所产生的等倾干涉。自M 1和M 2 反射后两光束的光程差(如果光 束(1)、(2)在半反射膜上反射时无附加光程差)为i d cos 2 = ?,式中d为M1 和M' 2间的距离,即为空气膜厚度。i为入射光M 1 、M' 2 镜表面的入射角。由上式 可知,当d一定时,光程差只决定于入射角。面光源上具有相同倾角i的所有光束的光程差?也相同,它们在干涉区域里将形成同一条干涉条纹,这种干涉即为等倾干涉。对应不同入射角的光束光程差不相同,形成不同级次的干涉条纹,便得到一组明暗相间的同心圆环,条纹定域在无穷远处,在E处直接用眼睛就可以观察到等倾干涉的同心圆环。 (2)等厚干涉当M 1、M' 2 相距很近,并把M' 2 调成与M 1 相交呈很小的角 度时,就形成一空气劈尖。在劈尖很薄的情况下,从E处便可看到等厚干涉条纹。这时,两相干光程差仍可近似的表示为i d cos 2 = ?,在M1和M'2的交线处的直线纹称为中央条纹。在交线上,d=0,光程差?为零,条纹为一条直线;在交线附近d很小,i的变化可以忽略,即cosi视为常数,条纹为一组近似与中央条纹平行的等间距的直条纹,可视为等厚条纹;离交线较远处d变大,光程差?的改变,除了与膜厚度d有关外,还受i角的影响,cosi的影响不能忽略。实际上i 很小,i d cos 2 = ?≈2d(1-i2/2),条纹发生弯曲。 三实验仪器 防振台氦氖激光光源凸透镜可变光栏直尺光屏分束镜反射镜支架压电晶片等

迈克尔逊干涉仪实验报告

实验目的: 1)学会使用迈克尔逊干涉仪 2)观察等倾、等厚和非定域干涉现象 3)测量氦氖激光的波长和钠光双线的波长差。 实验仪器: 氦氖激光光源、钠光灯、迈克尔逊干涉仪、毛玻璃屏 实验原理: 1:迈克尔逊干涉仪的原理: 迈克尔逊干涉仪的光路图如图所示,光源S 出发的光经过称。45放置的背面镀银的半透玻璃板1P 被分成互相垂直的强度几乎相等的两束光,光 路1通过1M 镜反射并再次通过1P 照射在观察平 面E 上,光路2通过厚度、折射率与1P 相同的玻 璃板2P 后由2M 镜反射再次通过2P 并由1P 背面 的反射层反射照射在观察平面E 上。图中平行于1M 的'2M 是2M 经1P 反射所成的虚像,即1P 到2M 与1P 到'2M 的光程距离相等,故从1P 到2M 的光路可用1P 到'2M 等价替代。这样可以认为1M 与'2M 之间形成了一个空气间隙,这个空气间隙的厚度可以通过移动1M 完成,空气间隙的夹角可以通过改变1M 镜或2M 镜的角度实现。当1M 与' 2M 平行时可以在观察平面E 处观察到等倾干涉现象,当1M 与'2M 有一定的夹角时可以在观察平面E 处观察到等厚干涉现象。 2:激光器激光波长测量原理: 由等倾干涉条纹的特点,当θ =0 时的光程差δ 最大,即圆心所对应的干

涉级别最高。转动手轮移动 M1,当 d 增加时,相当 于增大了和 k 相应的θ 角 ,可以看到圆 环一个个从中心“冒出” ;若 d 减小时,圆环逐渐 缩小,最后“淹没”在中心处。 每“冒”出或“缩”进一个干涉环,相应的光程差改变了一个波长,也就是 M 与M ’之间距离 变化了半个波长。 若将 M 与 M ’之间距离改变了△d 时,观察到 N 个干涉环变化,则△d =N 由此可测单色光的波长。 3:钠光双线波长差的测定: 在使用迈克尔逊干涉仪观察低压钠黄灯双线的等倾干涉条纹时,可以看到随着动镜1M 的移动,条纹本身出现了由清晰到模糊再到清晰的周期性变化,即反衬度从最大到最小再到最大的周期性变化,利用这一特性,可测量钠光双线波长差,对于等倾干涉而言,波长差的计算公式为: 实验内容与数据处理: (1)观察非定域干涉条纹 1)通过粗调手轮打开激光光源,调节激光器使其光束大致垂直于平面反光镜2M 入射,取掉投影屏E ,可以看到两排激光点 2)粗调手轮移动1M 镜的位置,使得通过分光板分开的两路光光程大致相等 3)调节1M 、2M 镜后面的两个旋钮,使两排激光点重合为一排,并使两个最亮的光点重合在一起。此时再放上投影屏E ,就可以看到干涉条纹。 4)仔细调节1M 、2M 镜后面的两个旋钮,使1M 与' 2M 平行,这时在屏上可以看到同心圆条纹,这些条纹为非定域条纹。 5)转动微调手轮,观察干涉条纹的形状、疏密及中心“吞”、“吐”条纹随光程差改变的变化情况。

迈克尔逊干涉仪实验与最佳测量区间的分析

迈克尔逊干涉仪实验与最佳测量区间的分析 摘要:用迈克尔逊干涉仪能观察到等倾干涉、等厚干涉条纹和白光干涉的彩色条纹。产生等倾干涉与等厚干涉不仅与M 1与2'M 之间的夹角α有关,还受其间空气 层厚度d 的影响。在测H e-N e 激光波长时,通过分析,在一定的测量区间内,测得的波长误差较小。本文主要对等倾干涉等厚干涉所遇到的现象、特点及仪器的调节图像的判断进行分析,接着分析白光干涉现象中央条纹的亮暗,最后对测波长的最佳区间分析,并经过实验得出最佳测量范围。 关键词:迈克尔逊干涉仪 等倾干涉 等厚干涉 白光干涉 最佳测量区间 Michelson interferometer experiment with the best measurement interval analysis Abstract: Such dumping intervention, uniform thickness interference, white stripe and color interference fringes as can be observed in the Michelson interferometer. Inclined to interfere in the formation and the thickness intervention with the M 1 and 2'M the angle, which is also affected by the air layer thickness d effects. The He – Ne laser wavelength measurement, after analysis, in a certain interval measurement, the measurement error of wavelength is smaller. In this paper, such as the dumping of interference encountered thick interference phenomena, characteristics and the regulatory apparatus judgment image analysis then analyzes white interference fringes of the central-darkness, in the final test ,after the best wavelength interval analysis, we carry out some experiments and make out the best measurement range Key words: Michelson interferometer dumping intervention uniform thickness interference the white light interference best sampling interval

迈克尔逊干涉实计算仿真

西南交通大学 个性化实验项目结题报告迈克尔逊干涉实验的计算仿真 班级:电气(电牵)2012级班学生姓名: 指导教师:邱春蓉 完成时间:2015年5月23日

1.在项目中的分工 在项目中我主要负责代码的撰写和实验结果的采集调试。 2.查阅资料、方案确定等准备工作 迈克尔逊干涉实验是一个基本的光学物理实验。光的干涉现象是波相干迭加的必然结果,证明了光的波动性。 根据光强分布的理论公式,通过编程得到数值曲线,这种计算机仿真方法可以不受仪器、场地的限制,实验效果形象、直观,扩展了等倾干涉,等厚干涉问题的研究途径。 应用 Matlab 仿真这两种干涉方式,并与实验结果类比。 我首先复习了大学物理实验关于迈克尔逊干涉实验中的部分,初步理解了迈克尔逊干涉实验的原理和结果。然后复习了数学实验中MATLAB 软件的应用。在做完这一切之后,我开始试图思考MATLAB 中仿真迈克尔逊实验图样的方法,即通过解析式生成函数图样。我发现我的物理知识和书本内容不足够描述干涉图样,在上网查阅专著后,我们解决了这个问题。最终编写了代码。 3.项目实施过程描述 3.1 二、实验原理 光的干涉现象是光的波动性的一种表 现。当一束光被分成两束,经过不同路径再 相遇时,果光程差小于该束光的相干长度, 将会出现干涉现象。迈克尔逊干涉仪是一种 利用分割光波振幅的方法实现干涉的精密光 学仪器。自1881年问世以来,迈克尔逊曾用 它完成了三个著名的实验:否定“以太”的 迈克尔逊—莫雷实验,光谱精细结构和利用 光波波长标定长度单位。迈克尔逊干涉仪结 构简单、光路直观、精度高,其调整和使用 具有典型性。 迈克尔逊干涉仪利用两个完全相同、斜 置的玻璃板,将两个几乎垂直的平面镜等效 为接近平行的情况,以至于只需要用螺丝进 行微调即可,同时使一束光成为两束相关光,发生干涉现象。可以认为,是平面镜与另一个平面镜等效位置之间的空气薄膜发生了干涉。 光程差推导计算式为: θcos 2d =? 其中d 为薄膜厚度,θ为入射角。 根据理论公式,迈克尔逊干涉仪成像会是一群同性圆环,其各点处光强公式为: δcos 22121I I I I I ++= 其中,δ是两列光波的相位差。由此可以构造xOy 坐标轴下的轨迹方程集合,由这个原理编写程序。 3.2 程序设计与运行

“迈克尔逊干涉仪”实验报告

“迈克尔逊干涉仪”实验报告 【引言】 迈克尔逊干涉仪是美国物理学家迈克尔逊(A.A.Michelson)发明的。1887年迈克尔逊和莫雷(Morley)否定了“以太”的存在,为爱因斯坦的狭义相对论提供了实验依据。迈克尔逊用镉红光波长作为干涉仪光源来测量标准米尺的长度,建立了以光波长为基准的绝对长度标准,即1m=1 553 164.13个镉红线的波长。在光谱学方面,迈克尔逊发现了氢光谱的精细结构以及水银和铊光谱的超精细结构,这一发现在现代原子理论中起了重大作用。迈克尔逊还用该干涉仪测量出太阳系以外星球的大小。 因创造精密的光学仪器,和用以进行光谱学和度量学的研究,并精密测出光速,迈克尔逊于1907年获得了诺贝尔物理学奖。 【实验目的】 (1)了解迈克尔逊干涉仪的原理和调整方法。 (2)测量光波的波长和钠双线波长差。 【实验仪器】 迈克尔逊干涉仪、He-Ne激光器、钠光灯、扩束镜 【实验原理】 1.迈克尔逊干涉仪结构原理 图1是迈克尔逊干涉仪光路图,点光源 S发出的光射在分光镜G1,G1右表面镀有半 透半反射膜,使入射光分成强度相等的两束。 反射光和透射光分别垂直入射到全反射镜M1 和M2,它们经反射后再回到G1的半透半反射 膜处,再分别经过透射和反射后,来到观察区 域E。如到达E处的两束光满足相干条件,可 发生干涉现象。 G2为补偿扳,它与G1为相同材料,有 相同的厚度,且平行安装,目的是要使参加干 涉的两光束经过玻璃板的次数相等,波阵面不会发生横向平移。 M1为可动全反射镜,背部有三个粗调螺丝。 M2为固定全反射镜,背部有三个粗调螺丝,侧面和下面有两个微调螺丝。 2.可动全反镜移动及读数 可动全反镜在导轨上可由粗动手轮和微动手轮的转动而前后移动。可动全反镜位置的读数为: ××.□□△△△ (mm) (1)××在mm刻度尺上读出。

迈克尔逊干涉仪测量空气折射率

空气折射率的测量 学习要点和重点: 1、迈克尔逊干涉仪原理, 2、利用迈克尔逊干涉原理测量气体折射率的方法。 学习难点: 1、 光路的调整, 2、 干涉条纹变化数目的读取。 迈克尔逊干涉仪中的两束相干光各有一段光路在空间上是分开的,在其中一支光路上放进被研究对象不会影响另一支光路。本实验利用迈克尔逊原理测量空气折射率。 一、 实验目的与要求 1、 学习一种测量气体折射率的方法; 2、 进一步了解光的干涉现象及其形成条件; 3、 学习调整光路的方法。 二、 实验仪器 He-Ne 激光器、反射镜2个、分束镜、扩束镜、气室、打气球、气压表、毛玻璃等。 三、 实验原理 迈克尔逊干涉仪光路示意图如图1所示。其中,G 为平板玻璃,称为分束镜,它的一个表面镀有半反射金属膜,使光在金属膜处的反射光束与透射光束的光强基本相等。 M 1、M 2为互相垂直的平面反射镜,M 1、M 2镜面与分束镜G 均成450角;M 1可以移动,M 2固定。2M '表示M 2对G 金属膜的虚像。 从光源S 发出的一束光,在分束镜G 的半反射面上被分成反射光束1和透射光束2。光束1从G 反射出后投向M 1镜,反射回来再穿过G ;光束2投向M 2镜,经M 2镜反射回来再通过G 膜面上反射。于是,反射光束1与透射光束2在空间相遇,发生干涉。 由图1可知,迈克尔逊干涉仪中,当光束垂直入射至M 1、M 2镜时,两束光的光程差δ为 M 2M 图1 迈克尔逊干涉仪光路示意图

)(22211L n L n -=δ (1) 式中,1n 和2n 分别是路程1L 、2L 上介质的折射率。 设单色光在真空中的波长为λ,当 ,3 ,2 ,1 ,0 ,==K K λδ (2) 时干涉相长,相应地在接收屏中心的总光强为极大。由式(1)知,两束相干光的光程差不但与几何路程有关,还与路程上介质的折射率有关。 当1L 支路上介质折射率改变1n ?时,因光程的相应改变而引起的干涉条纹的变化数为N 。由(1)式和(2)式可知 1 12L N n λ = ? (3) 例如:取nm 0.633=λ和mm L 1001=,若条纹变化10=N ,则可以测得0003.0=?n 。可见,测出接收屏上某一处干涉条纹的变化数N ,就能测出光路中折射率的微小变化。 正常状态(Pa P C t 501001325.1,15?==)下,空气对在真空中波长为nm 0.633的光的折射率 00027652.1=n ,它与真空折射率之差为410765.2)1(-?=-n 。用一般方法不易测出这个折射率差, 而用干涉法能很方便地测量,且准确度高。 四、 实验内容及步骤 (一)实验装置 实验装置如图2所示。用He-Ne 激光作光源(He-Ne 激光的真空波长为nm 0.633=λ),并附加小孔光栏H 及扩束镜T 。扩束镜T 可以使激光束扩束。小孔光栏H 是为调节光束使之垂直入射在M 1、M 2镜上时用的。另外,为了测量空气折射率,在一支光路中加入一个玻璃气室,其长度为L 。气压表用来测量气室内气压。在O 处用毛玻璃作接收屏,在它上面可看到干涉条纹。 (二)测量方法 图2 测量空气折射率实验装置示意图 气压表

Zemax激光光学设计实例应用013迈克尔逊干涉仪仿真

013:迈克尔逊干涉仪仿真 在这一节的实例中,我们要采用干涉分析等工具来仿真物理光学现象。下面,我们一边建模一边讨论。 图13-1 理想成像LDE 编辑器列表 图13-2 理想成像结构及像差分析图列表 我们先建立一个简单的理想光学成像系统(4F 系统),系统设置中,物方类型选择物面数值孔径(随意设置一个合理的值);波长为默认;视场为默认0 度。在透镜数据编辑器中输入如图13-1 所示的数据。停止面(Surface 1)的类型选择“Paraxial XY”(傍轴光线),这样就可以将这个面设置为“理想薄透镜”。注意,“Paraxial”为旋转对称理想透镜,“Paraxial XY”为两轴分离理想薄透镜,可以分别设置两个轴不同的光焦度,

即单独设置一个轴就成为“理想柱面镜”。其参数“X-Power”和“Y-Power”分别为两个轴的光焦度,即理想焦距的倒数。 然后打开3D Layout 查看光路结构,同时调出各种像差分析图,例如点列图、光扇图、光程差OPD 图表等等,看看理想情况想的像差分析图表是什么样子的。如图13-2 所示,像差图分析结果像差均为0,点列图为理想点。 再来看看理想情况下的成像效果。点击Analysis→Image Simulation→Image Simulation打开成像仿真器,默认情况下的成像仿真为网格线条模式,如图13-3 所示。 图13-3 理想成像仿真分析(网格线条模式) 点击设置菜单,更改输入文件,根据自己的喜好选择物方图像。软件自带了一个BMP 格式的演示图片(高一点的版本才有),可以用来模拟拍照实际成像效果。参数设置如图13-4所示,其中视场高度(Field Height)选项与系统设置中的视场类型有关,如果系统设置中视场类型为视场角度,那么这里应该是指物面对停止面STO 的张角(全角),所以视场高度若再设为0,则表示物面尺寸为0,可能无法看到成像。将视场高度(Field Height)的值设为5(度),表示物面高度(Y 方向)尺寸设定为tan5*50=4.4mm。而X 方向(宽度)则根据图片的比例(像素比例)直接换算得到。设置完毕,得到理想成像系统的成像效

用迈克尔逊干涉仪测量激光波长

用迈克尔逊干涉仪测量激光波长 〔引课:〕 在大学物理中我们学习了光的薄膜干涉,知道薄膜干涉现象分为两种: 在物理课上,我们只是从理论上研究了薄膜干涉的原理,那么在实验课上我们通过什么方法获得等倾或等厚干涉的图像呢? ***************************** 迈克尔逊干涉仪 ***************************** ***注意*** 本实验只利用迈克尔逊干涉仪测量等倾干涉图像 〔正课:〕 实验目的与要求 迈克尔逊干涉仪的构造 迈克尔逊干涉仪的原理 迈克尔逊干涉仪的使用 实验原理 1.迈克尔逊干涉仪的构造 等厚干涉等倾干涉

2.迈克尔逊干涉仪的原理 (1) 光路图 图30—2 迈克尔逊干涉仪光路图 光源S发出的光到达分光板 1 G后,被分成振幅(强度)几乎相等的反射光(1)和透射光(2)。光束(1)向着 1 M前进,光束(2)经过 2 G后向着 2 M前进,这两束光分别在 1 M和2 M上反射后逆着各自的入射方向返回,最后到达光屏E。由于这两束光是来自同一光源S的同一束光,因此他们是两列相干光束,在E 处必有干涉图样形成。

(2) 光程差的计算 1M 和2M ˊ平行时(1M ⊥ 2M ),将观察屏垂直置于S 1和S 2ˊ连线处,就可以观察到等倾干涉圆环条纹。由于1M 和2M ˊ之间 为空气,折射率n =1,故光程差 θδcos 2d =。 并且有: θδcos 2d == ?? ? ? ?----+--------暗条纹明条纹λλ)2/1(k k ( k=0、1、2…) 对光程差δ作进一步的分析: 图30—4 非定域等倾干涉

大学物理实验之迈克尔逊干涉仪的调整与应用方法及步骤详解

迈克尔逊干涉实验 实验前请认真阅读本要点: (1)听完课后,同学们结合仪器请仔细阅读教材的相关内容,特别是P189的干涉仪光路图(图5-61)、P191公式(5-123、5-124)的由来及应用、P193至P194的仪器说明与练习一。 测量固体试件的线膨胀系数还要阅读教材的P136与P138的实验内容1。 注:迈克尔逊干涉仪有仿真实验,同学们可以在实验之前用其进行预习。 仿真实验位于: 桌面\大学物理仿真实验\大学物理仿真实验(第二部分),其中 大学物理仿真实验(第二部分).exe为正式版,大学物理仿真实验示教版(第二部分).exe为示教版,同学们在使用之前可先看示教版。 (2)实验内容 1)掌握迈克尔逊干涉仪的调节方法,并记录位置改变时干涉条纹的变化,如条纹的“冒出”和“缩进”、条纹的疏密、条纹间距与“空气薄膜”的关系等。 2)根据逐差法的要求确定如何合理测量数据,规范记录实验数据及已知参数等。 3)拟定利用迈克尔逊干涉仪测量透明薄片的折射率(厚度)的实验方案,并利用仿真实验来验证实验方案。 4)(选做)利用仿真实验测量测量钠光的波长、钠黄光双线的波长差、钠光的相干长度等。 (3)阅读F盘上的数据处理文件(迈克尔逊干涉仪的调整与应用数据处理、线膨胀系数测量数据处理(据环数记温度)、线膨胀系数测量数据处理(据温度记环数)),了解需测量的数据要求(处理需用逐差法),确定如何进行数据测量。根

据需测量的数据,在实验仪器上进行预测量与观察相应的实验现象,即先测量一小部份数据,弄清测量的重点与难点,确定测量方法,然后进行正式测量。 (4)测波长与测线膨胀系数的主要调节方法是一样的,需掌握迈克尔逊干涉光路的调节方法,并了解干涉条纹的变化情况,如条纹的“冒出”和“缩进”、条纹的疏密、条纹间距与“空气薄膜”的关系等。(一些问题详见附录4 疑难解答) 测量He-Ne激光的波长的同学还要掌握如何正确使用读数结构(包括如何读数、校零、消空程等)。 @ 测量固体试件的线膨胀系数的同学还要掌握如何正确进行控温(详见38的实验内容1)。 (5)测波长的同学(后十位同学)需每冒出(或缩进)50环,读一次 M镜 1 的位置,至少连续测8组,将数据填入表格,并观察其实验现象。 测线膨胀系数的同学(前十位同学)可以采用按升高(降低)一定的温度(例如2℃)测量试件伸长量的方法(采用逐差法)进行测量,要求连续测量8组;也可以采用按试件一定的伸长量(例如由20个干涉环变化算出的光程差),测出所需升高(降低)温度的方法进行测量,要求连续测量8组。 注:测波长或测线膨胀系数只需做其中之一,但两个实验都需要掌握;请注意数据处理文件(迈克尔逊干涉仪的调整与应用数据处理、线膨胀系数测量数据处理(据环数记温度)、线膨胀系数测量数据处理(据温度记环数))。 (6)将所测量数据输入相应的数据处理文件(位于F盘,共有迈克尔逊干涉仪的调整与应用数据处理、线膨胀系数测量数据处理(据环数记温度)、线膨胀系数测量数据处理(据温度记环数)三个文件),不要关闭文件,让老师检查数据是否合格。 (7)数据合格后重新用新报告纸按要求记录所测数据(并记录其标准值或参考值,详见附录1 数据记录要求),将原始数据与仪器使用登记本一并让老师签字,并了解如何处理所测数据(详见附录 2 数据处理要求)及逐差法相关知识(附录3 逐差法处理实验数据);

实验40 用迈克尔逊干涉仪测量氦氖激光器波长

实验40 用迈克尔逊干涉仪测量氦氖激光器波长 一、实验目的 1.了解迈克尔逊干涉仪的结构及调整方法,并用它测光波波长 2.通过实验观察等倾干涉现象 二、实验仪器 氦氖激光器、迈克尔逊干涉仪(250nm)、透镜、毛玻璃等。 迈克尔逊干涉仪外形如图一所示。 其中反射镜M1是固定的,M2可以在导轨上前后移动,以改变光程差。反射镜M2的移动采用蜗轮蜗杆传动系统,转动粗调手轮(2)可以实现粗调。M2移动距离的毫米数可在机体侧面的毫米刻度尺(5)上读得。通过读数窗口,在刻度盘(3)上可读到0.01mm;转动微调手轮(1)可实现微调,微调手轮的分度值为1×10-4mm。可估读到10-5mm。M1、M2背面各有3个螺钉可以用来粗调M1和M2的倾度,倾度的微调是通过调节水平微调(15)和竖直微调螺丝(16)来实现的。 图一图二 三、实验原理 1.仪器基本原理 迈克尔逊干涉仪的光路和结构如图二所示。M1、M2是一对精密磨光的平面反射镜。P1、P2是厚度和折射率都完全相同的一对平行玻璃板,与M1、M2均成45°角。P1的一个表面镀有半反半透膜,使射到其上的光线分为光强度差不多相等的反射光和透射光;P1称为分光板。当光照到P1上时,在半透膜上分成相互垂直的两束光,透射光(1)射到M1,经M1反射后,透过P2,在P1的半透膜上反射后射向E;反射光(2)射到M2,经M2反射后,透过P1射向E。由于光线(2)前后共通过P1三次,而光线(1)只通过P1一次,有了P2,它

们在玻璃中的光程便相等了,于是计算这两束光的光程差时,只需计算两束光在空气中的光程差就可以了,所以P 2称为补偿板。当观察者从E 处向P 1看去时,除直接看到M 2外还看到M 1的像M 1ˊ。于是(1)、(2)两束光如同从M 2与M 1ˊ反射来的,因此迈克尔逊干涉仪中所产生的干涉和M 1′~M 2间“形成”的空气薄膜的干涉等效。 2.干涉条纹的图样 本实验用He-Ne 激光器作为光源(见图三),激光S 射向迈克尔逊干涉仪,点光源经平面镜M 1、M 2反射后,相当于由两个点光源S 1ˊ和S 2ˊ发出的相干光束。S ˊ是S 的等效光源,是经半反射面A 所成的虚像。S 1′是S ′经M 1′所成的虚像。S 2′是S ′经M 2所成的虚像。由图三可知,只要观察屏放在两点光源发出光波的重叠区域内,都能看到干涉现象。如果M 2与M 1′严格平行,且把观察屏放在垂直于S 1′和S 2′的连线上,就能看到一组明暗相间的同心圆干涉环,其圆心位于S 1′S 2′轴线与屏的交点P 0处,从图四可以看出P 0处的光程差ΔL =2d ,屏上其它任意点P ′或P ″的光程差近似为 ?cos 2d L =? (1) 式中?为S 2′射到P ″点的光线与M 2法线之间的夹角。当λ?k d =?cos 2时,为明纹;当 2/)12(cos 2λ?+=?k d 时,为暗纹。 由图四可以看出,以P 0为圆心的圆环是从虚光源发出的倾角相同的光线干涉的结果,因此,称为“等倾干涉条纹”。?=0时光程差最大,即圆心P 0处干涉环级次最高,越向边缘级次越低。当d 增加时,干涉环中心级次将增高,条纹沿半径向外移动,即可看到干涉环从中心“冒”出;反之当d 减小,干涉环向中心“缩”进去。 图三 图四 由明纹条件可知,当干涉环中心为明纹时,ΔL =2d=k λ。此时若移动M 2(改变d),环心处条纹的级次相应改变,当d 每改变λ/2距离,环心就冒出或缩进一条环纹。若M 2移动距离为Δd ,相应冒出或缩进的干涉环条纹数为N ,则有

相关文档
相关文档 最新文档