文档视界 最新最全的文档下载
当前位置:文档视界 › 高三数学备考冲刺140分问题10应用三角公式化简求值的技巧问题含解析22

高三数学备考冲刺140分问题10应用三角公式化简求值的技巧问题含解析22

高三数学备考冲刺140分问题10应用三角公式化简求值的技巧问题含解析22
高三数学备考冲刺140分问题10应用三角公式化简求值的技巧问题含解析22

问题10 应用三角公式化简求值的技巧问题

一、考情分析

三角函数在高考中通常以中低档题型出现,难度不大,但由于三角公式的特殊性,解题中往往也涉及一些小的变换技巧,如果处理得当,往往可以事半功倍,快速而准确地得到正确结论.通常情况下,三角变换应从“角度、函数、常数、次数、结构”等几方面着手解决. 二、经验分享

(1) 利用sin 2α+cos 2

α=1可以实现角α的正弦、余弦的互化,利用sin αcos α=tan α可以实现角α的弦

切互化.应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2

=1±2sin αcos α,可以知一求二. (二) 函数变换,乃是重点

三角函数作为一类特殊的函数,其六种三角函数(当今教材要求重点掌握正弦函数、余弦函数、正切函数)之间有着密切的联系,因此,充分注意函数之间的关系,是三角函数变形的另一个重点.

【例2】若, ,则 .

【分析】先统一函数名称,化弦为切,再利用两角和的正切公式求值.

【点评】(1)利用sin 2α+cos 2

α=1可以实现角α的正弦、余弦的互化,利用sin αcos α=tan α可以实现角α

的弦切互化.

(2)形如a sin α+b cos α和a sin 2

α+b sin αcos α+c cos 2

α的式子分别称为关于sin α,cos α的一次齐次式和二次齐次式,对涉及它们的三角变换通常转化为正切(分子分母同除以cos α或cos 2

α)求解.如果分母为1,可考虑将1写成sin 2

α+cos 2

α.(3)已知tan α=m 的条件下,求解关于sin α,cos α的齐次式问题,必须注意以下几点:①一定是关于sin α,cos α的齐次式(或能化为齐次式)的三角函数式.②因为cos α≠0,所以可以用cos n α(n ∈N *

)除之,这样可以将被求式化为关于tan α的表示式,可整体代入tan α=m 的值,从而完成被求式的求值运算.③注意1=sin 2

α+cos 2

α的运用.

【小试牛刀】设且则( )

A .32

π

αβ-= B .32

π

αβ+= C .22

π

αβ-=

D .22

π

αβ+=

【答案】C

(三) 常数化角,曲径通幽

三角公式中有不少常数,如1、3、22等,在三角变换中,若能巧妙利用它们与三角函数式或函数值之间的

关系进行转换,往往可以起到意想不到的效果.

【例3】【广东省惠州市2019届高三第三次调研】函数

内的值域为

,则的取值范围为( ) A .

B .

C .

D .

【答案】A 【分析】先将转化为正弦型或余弦型函数,再由自变量的取值范围和值域限定的取值范围。

【解析】函数

当时,

,则

解得

,故的取值范围为

。故选

【小试牛刀】若π0,2α?

?∈ ??

?

,且( )

A .

12 B .13 C .14 D .15

【答案】B

【解析】因为, ,所以,即

所以

(四) 降幂化一,热点不断

三角公式中,一次关系式较多,特别是同角关系式,以及化一公式等等,因此在观察函数关系式时,注意其次数的特征,将高次化为一次,也是解决问题的重要途径. 【例4】【2018届晋豫省际12月大联考】定义在R 上的函数,其中0a >,

且当0,

2x π??

∈????

时,.

(1)求a,b 的值;

(2)若将()y f x =的图像沿x 轴向左平移4

π

个单位,得到函数()y g x =的图像,令,

求()h x 的最大值.

【分析】三角函数问题,一般利用两角和与差的正弦、余弦公式、二倍角公式化为一个角的一个三角函数,然后利用正弦函数(或余弦函数)的性质得出结论.

(2)由(1)得

∵将()y f x =的图像沿x 轴向左平移

4

π

个单位,得到函数()y g x =的图像 ∴

∴()h x 的最大值为22 六、公式变用,柳暗花明

三角函数有众多的公式,我们不仅要会使用公式,还要会使用其变形的等价形式.如cosα=

α

α

sin 22sin ,tanα±tanβ=tan (α+β)(1μtanαtanβ)等.

【例6】

的值为( )

A .3-

B . 3

C .3

D .

33

【分析】本题是非特殊角求值问题,首先应从10°+50°=60°入手,然后注意表达式特征,其中的tan 10°+tan 50°和tan 10°tan 50°在正切的和角公式中也有显现,故考虑正切和角公式的变形.

【答案】B.

【点评】三角公式是恒等式(当等式两边都有意义时),所以,我们不仅要记住公式的原型,还要会逆用公式,或者变形使用,这需要考生对公式各部分的结构特征都要十分熟悉,才能对公式的变形使用驾轻就熟.

总体来说,在三角函数的变换中,各种变换都是穿插进行的,许多时候需要多方位思考,不能拘泥于某一种思维方式,这样才有利于打开思维的空间,找到更加合适的解题方法

【小试牛刀】的值是()

A.1B.3 C.2 D.1 3

【答案】C

【解析】==,故选C.五、迁移运用

1.【广东省惠州市2019届高三第三次调研】已知,,则()

A. B. C. D.

【答案】D

【解析】由得,所以,,

所以,故选D.

10【2018 届四川省凉山州高三毕业班第一次诊断】已知锐角α满足,则sin cos

αα等于()

A. 1

4

B.

1

4

- C.

2

4

D.

2

4

-

【答案】A

11.4cos50°-tan40°=( )

A. 2

B.2+3 2

C. 3 D.22-1

【答案】C

【解析】4cos50°-tan40°=4cos50°-

sin 40°

cos 40°

4sin 40°·cos 40°

cos 40°

sin 40°

cos 40°

=2sin 80°-sin 40°

cos 40°

2cos 10°-sin 40°

cos 40°

2cos 10°-sin30°+10°

cos 40°

3

2

cos 10°-

3

2

sin 10°

cos 40°

3cos 30°cos 10°-sin 30°sin 10°

cos 40°

3cos 40°

cos 40°

= 3

12.【2018届广西玉林市高三期中】已知,则____. 【答案】2

13.【2018上海市杨浦区高三数学一模】已知函数, x R

∈,设0

a>,若函数为奇函数,则α的值为________

【答案】

【解析】∵

∵函数为奇函数

∴为奇函数,则

a>

∵0

故答案为

14.函数的减区间是.

【答案】

【解析】,由

∈,得,所以函数()

f x的减区间是

k Z

()

15.已知,则.

-

【答案】1

16.已知,求下列各式的值.

(1);

(2)

.

【答案】(1)16-

;(2)8

5

【解析】(1)∵,

,即

,

则原式.

(2)∵

,即tan 2a =,

∴原式.

17.已知函数.

(1)求函数()f x 的最小正周期与单调递增区间;

(2)若

时,函数()f x 的最大值为0,求实数m 的值.

【答案】(1)T π=;(2)1

2

m =

.

18.已知函数(其中0ω>)的最小正周期为π.

(Ⅰ) 求ω的值;

(Ⅱ) 将函数()y f x =的图象向左平移

6

π

个单位,再将所得图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数()g x 的图象.求函数()g x 在[]-ππ,上零点.

【答案】(Ⅰ) ω=1;(Ⅱ) 6π-和65π.

【解析】(Ⅰ)

由最小正周期22T ω

π

=

=π,得ω=1. (Ⅱ) 由(Ⅰ)知

,将函数()f x 的图象向左平移

6

π

个单位, 得到图象的解析式

,

将所得图象上各点的横坐标伸长为原来的2倍,得到.

,得6

x k π=π-

,

故当[]x ∈-ππ,时,函数()g x 的零点为6π-和

65π

19.已知cos α=17,cos ()α-β=1314,且0<β<α<π

2.

(1)求tan2α的值; (2)求β的值.

g3.1049 三角函数的化简、求值与证明

g3.1049 三角函数的化简、求值与证明 一、知识回顾 1、三角函数式的化简:(1)常用方法:①直接应用公式进行降次、消项;②切割化弦,异名化同名,异角化同角;③ 三角公式的逆用等。(2)化简要求:①能求出值的应求出值;②使三角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数 2、三角函数的求值类型有三类:(1)给角求值:一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变换消去非特殊角,转化为求特殊角的三角函数值问题;(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如2(),()()ααββααβαβ=+-=++-等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论;(3)给值求角:实质上转化为“给值求值”问题,由所得的所求角的函数值结合所求角的范围及函数的单调性求得角。 3、三角等式的证明:(1)三角恒等式的证题思路是根据等式两端的特征,通过三角恒等变换,应用化繁为简、左右同一等方法,使等式两端的化“异”为“同”;(2)三角条件等式的证题思路是通过观察,发现已知条件和待证等式间的关系,采用代入法、消参法或分析法进行证明。 二、基本训练 1、已知θ是第三象限角,且445 9 sin cos θθ+=,那么2sin θ等于 ( ) A 、223 B 、223- C 、23 D 、23 - 2、函数23 232 y sin x cos x =--+的最小正周期 ( ) A 、2π B 、π C 、3π D 、4π 3、tan 70cos10(3tan 201)- 等于 ( ) A 、1 B 、2 C 、-1 D 、-2 4、已知46 sin 3cos (4)4m m m αα--=≠-,则实数m 的取值范围是______。 5、设1 0,sin cos 2 απαα<<+=,则cos2α=_____。 三、例题分析 例1、化简: 4221 2cos 2cos 2.2tan()sin () 44 x x x x ππ -+ -+ 例2、设3177cos(),45124 x x π ππ +=<< ,求2sin 22sin 1tan x x x +-的值。 例3、求证:sin(2)sin 2cos().sin sin αββ αβαα +-+=

高中数学-解三角形知识点汇总情况及典型例题1

实用标准

—tanC。

例 1 ? (1 )在 ABC 中,已知 A 32.00 , B 81.80 因为 00 v B v 1800,所以 B 640,或 B 1160. c as nC 空啤 30(cm). sin A s in400 ②当B 1160时, 点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的情形; 对于解三角形中的复杂运算可使用计算器 题型2 :三角形面积 2 , AC 2 , AB 3,求tan A 的值和 ABC 的面积。 2 (2 )在 ABC 中,已知 a 20 cm , b 28 cm , 40°,解三角形(角度精确到 10,边长精确 到 1cm ) o 解:(1 )根据三角形内角和定理, C 1800 (A B) 1800 (32.00 81.80) 66.20 ; 根据正弦定理,b asinB 42.9sin81.80 si nA 眾厂 80.1(cm); 根据正弦定理,c 聲C 丝9也彰 74.1(cm). sin 32.0 (2 )根据正弦定理, s"B 舸 A 28sin4°0 a 20 0.8999. ,a 42.9 cm ,解三角形; ①当 B 640 时, C 1800 (A B) 1800 (40° 640) 760, C 1800 (A B) 1800 (400 116。)240 , c asinC si nA 呼 13(cm). sin 40 (2) 解法一:先解三角方程,求出角 A 的值。 例2 ?在ABC 中, sin A cos A

si nA cos A j2cos(A 45 )-—, 2 1 cos(A 45 )-. 又 0 A 180 , A 45o 60o , A 105.° o o 1 \/3 L tan A tan(45 60 ) 一字 2 J3, 1 73 42 si nA sin105 sing5 60) sin4 5 co$60 cos45 si n60 ——-—. 1 1 /2 洽 n S ABC AC AB si nA 2 3 近 46)。 2 2 4 4 解法二:由sin A cos A 计算它的对偶关系式 si nA cos A 的值。 v 2 — si nA cos A —— ① 2 2 1 (si nA cos A)2 2 1 2sin Acos A — 2 Q0o A 180o , si nA 0,cos A 0. 1 另解(si n2A —) 2 2 3 (s in A cos A) 1 2 sin Acos A —, *'6 _ si nA cos A — ② 2 $2 J6 ①+②得sin A --------------- 。 4 ①-②得 cosA <6 。 4 u 而丄 A si nA J 2 J 6 4 c 匚 从而 tan A l l 2 ~3。 cosA 4 v2 v 6

高中数学必修四第三章-三角恒等变换知识点总结

第三章 三角恒等变换 一、两角和与差的正弦、余弦和正切公式: ⑴()cos cos cos sin sin αβαβαβ-=+; ⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-; ⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβ αβαβ --= + ? ()()tan tan tan 1tan tan αβαβαβ-=-+ ⑹()tan tan tan 1tan tan αβ αβαβ ++=- ? ()()tan tan tan 1tan tan αβαβαβ+=+- 二、二倍角的正弦、余弦和正切公式: sin 22sin cos ααα =222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±? ⑵2222cos2cos sin 2cos 112sin α αααα=-=-=- ?2 2 1cos 2cos 1cos 2sin 2 2 α α αα+=-=, ?2 cos 21cos 2 αα+= ,2 1cos 2sin 2αα-=. ⑶22tan tan 21tan α αα =-. 三、辅助角公式: () 22sin cos sin α+=++a x b x a b x , 2 2 2 2 cos sin a b a b a b ???= = ++其中由,决定

四、三角变换方法: (1)角的变换:在三角化简,求值,证明中,表达式中往往出现较多的 相异角,可根据角与角之间的和差,倍半,互补,互余的关系,运用角的变换,沟通条件与结论中角的差异,使问题获解,对角的变形如: ①α2是α的二倍;α4是α2的二倍;α是2α的二倍;2α是4 α的二倍; ②2 304560304515o o o o o o =-=-=; ③()ααββ=+-;④ ()4 24 π π π αα+= --; ⑤2()()()()44 ππ ααβαβαα=++-=+--;等等 (2)函数名称变换:三角变形中,常常需要变函数名称为同名函数。如 在三角函数中正余弦是基础,通常化切为弦,变异名为同名。 (3)“1”的代换:在三角函数运算,求值,证明中,有时需要将常数转 化为三角函数值,例如常数“1”的代换变形有: 221sin cos sin90tan45o o αα=+== (4)幂的变换:降幂是三角变换时常用方法,对次数较高的三角函数式, 一般采用降幂处理的方法。降幂并非绝对,有时需要升幂,如对无理式αcos 1+常用升幂化为有理式。 (5)三角函数式的变换通常从:“角、名、形、幂”四方面入手; 基本原则是:见切化弦,异角化同角,倍角化单角,异名化同名, 高次降低次,特殊值与特殊角的三角函数互化等。

第七节 三角函数的化简与求值

第七节三角函数的化简与求值 [选题明细表] 知识点、方法题号 三角函数式的化简15 三角函数的求值1,2,3,5,9,10,11,13 三角变换的综合应用4,6,7,8,12,14 一、选择题 1.(2018·全国Ⅲ卷)若sin α=,则cos 2α等于( B ) (A)(B)(C)-(D)- 解析:因为sin α=,所以cos 2α=1-2sin2α=1-2×()2=.故选B. 2.设α为锐角,若cos(α+)=,则sin(2α+)的值为( A ) (A)(B)(C)(D) 解析:因为α为锐角,即0<α<, 所以<α+<+=. 因为cos(α+)=, 所以sin(α+)=.

所以sin(2α+)=2sin(α+)cos(α+) =2×× =. cos(2α+)=2cos2(α+)-1=. 所以sin(2α+)=sin(2α+-) =sin(2α+)cos -cos(2α+)sin =×-× =. 故选A. 3.若α∈(,π),且3cos 2α=sin(-α),则sin 2α的值为( D ) (A)(B)-(C)(D)- 解析:cos 2α=sin(-2α) =sin[2(-α)] =2sin(-α)cos(-α), 代入原式,得6sin(-α)cos(-α)=sin(-α),

因为α∈(,π),所以cos(-α)=, 所以sin 2α=cos(-2α)=2cos2(-α)-1=-. 故选D. 4.函数y=的单调递增区间是( A ) (A)(2kπ-π,2kπ+)(k∈Z) (B)(2kπ-,2kπ+)(k∈Z) (C)(2kπ-,2kπ-)(k∈Z) (D)(kπ-,kπ+)(k∈Z) 解析:y== = = =tan(+), 当+∈(kπ-,kπ+),k∈Z时,函数为增函数, 此时x∈(2kπ-,2kπ+),k∈Z. 故选A.

高中数学解三角形和平面向量

高中数学解三角形和平面向量试题 一、选择题: 1.在△ABC 中,若a = 2 ,23b =,0 30A = , 则B 等于( B ) A .60o B .60o 或 120o C .30o D .30o 或150o 2.△ABC 的内角A,B,C 的对边分别为a,b,c ,若c =2,b =6,B =120o ,则a 等于( D ) A .6 B .2 C .3 D .2 3.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c, 且2=a ,A=45°,2=b 则sinB=( A ) A . 1 2 B .22 C . 3 2 D .1 4.ABC ?的三内角,,A B C 的对边边长分别为,,a b c ,若5 ,22 a b A B ==,则cos B =( B ) A . 53 B .54 C .55 D .5 6 5.在△ABC 中,若)())((c b b c a c a +=-+,则A ∠=( C ) A .0 90 B .0 60 C .0 120 D .0 150 6.在△ABC 中,角A,B,C 的对边分别为a,b,c ,若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为(D ) A. 6 π B. 3π C.6π或56 π D. 3π或23 π 7. 在△ABC 中, b a B A =--cos 1cos 1,则△AB C 一定是( A ) A. 等腰三角形 B. 直角三角形 C. 锐角三角形 D. 钝角三角形 8.在ABC ?中,角A 、B 、C 所对应的边分别为a 、b 、c ,若角A 、B 、C 依次成等差数列,且a=1, ABC S b ?=则,3等于( C ) A. 2 B. 3 C. 2 3 D. 2 9.已知锐角△ABC 的面积为33,BC=4,CA=3则角C 大小为( B ) A 、75° B 、60° C 、45° D 、30° 10.在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为30°、60°,则塔高为( A ) A. 3 400 米 B. 33400米 C. 2003米 D. 200米 11.已知A 、B 两地的距离为10km ,B 、C 两地的距离为20km ,现测得0 120ABC ∠=,则A,C 两地 的距离为( D )。 A. 10km B. 103km C. 105km D. 107km 12.已知M 是△ABC 的BC 边上的中点,若向量AB =a ,AC = b ,则向量AM 等于( C ) A . 21(a -b ) B .21(b -a ) C .21( a +b ) D .1 2 -(a +b ) 13.若 ,3) 1( )1, 1(B A -- ,5) (x C 共线,且 BC AB λ=则λ等于( B ) A 、1 B 、2 C 、3 D 、4 14.已知平面向量),2(),2,1(m -==,且∥,则32+=( C ) A .(-2,-4) B. (-3,-6) C. (-4,-8) D. (-5,-10) 15. 已知b a b a k b a 3),2,3(),2,1(-+-==与垂直时k 值为 ( C ) A 、17 B 、18 C 、19 D 、20 16.(2,1),(3,),(2),a b x a b b x ==-⊥r r r r r 若向量若则的值为 ( B ) A .31-或 B.13-或 C .3 D . -1 17. 若|2|= ,2||= 且(-)⊥ ,则与的夹角是 ( B ) (A ) 6π (B )4π (C )3π (D )π12 5 183 =b , a 在 b 方向上的投影是2 3 ,则 b a ?是( B ) A 、3 B 、 29 C 、2 D 、2 1 19.若||1,||2,a b c a b ===+r r r r r ,且c a ⊥r r ,则向量a r 与b r 的夹角为( C ) (A )30° (B )60° (C )120° (D )150°

高中数学人教版必修简单的三角恒等变换教案(系列一)

3.2 简单的三角恒等变换 一.教学目标 1、通过二倍角的变形公式推导半角的正弦、余弦、正切公式,体会化归、换元、方程、逆向 使用公式等数学思想,提高学生的推理能力。 2、理解并掌握二倍角的正弦、余弦、正切公式,并会利用公式进行简单的恒等变形,体会三 角恒等变形在数学中的应用。 3、通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中 如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力. 二、教学重点与难点 教学重点:引导学生以已有的十一个公式为依据,以推导积化和差、和差化积、半角公式的推导作为基本训练,学习三角变换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点,提高推理、运算能力. 教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力. 三、教学设想: (一)复习:三角函数的和(差)公式,倍角公式 (二)新课讲授: 1、由二倍角公式引导学生思考:2 αα与有什么样的关系? 学习和(差)公式,倍角公式以后,我们就有了进行变换的性工具,从而使三角变换的内容、思路和方法更加丰富,这为我们的推理、运算能力提供了新的平台. 例1、试以cos α表示222 sin ,cos ,tan 222α α α. 解:我们可以通过二倍角2cos 2cos 12αα=-和2cos 12sin 2αα=-来做此题. 因为2cos 12sin 2αα=-,可以得到21cos sin 2 2α α-=;

因为2cos 2cos 12α α=-,可以得到21cos cos 22 α α+=. 又因为222 sin 1cos 2tan 21cos cos 2α α ααα-==+. 思考:代数式变换与三角变换有什么不同? 代数式变换往往着眼于式子结构形式的变换.对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此三角恒等变换常常首先寻找式子所包含的各个角之间的联系,这是三角式恒等变换的重要特点. 例2.已知135sin = α,且α在第二象限,求2tan α的值。 例3、求证: (1)、()()1sin cos sin sin 2 αβαβαβ=++-????; (2)、sin sin 2sin cos 22θ? θ? θ?+-+=. 证明:(1)因为()sin αβ+和()sin αβ-是我们所学习过的知识,因此我们从等式右边着手. ()sin sin cos cos sin αβαβαβ+=+;()sin sin cos cos sin αβαβαβ-=-. 两式相加得()()2sin cos sin sin αβαβαβ=++-; 即()()1sin cos sin sin 2 αβαβαβ=++-????; (2)由(1)得()()sin sin 2sin cos αβαβαβ++-=①;设,αβθαβ?+=-=, 那么,22θ? θ? αβ+-==. 把,αβ的值代入①式中得sin sin 2sin cos 22θ?θ?θ?+-+=. 思考:在例3证明中用到哪些数学思想? 例3证明中用到换元思想,(1)式是积化和差的形式,

三角函数的化简求值

【知识要点】 利用同角三角函数的基本关系式——平方关系、商数关系、倒数关系和两角和差倍半角公式来化简求值. 和差化积、积化和差公式: sin sin 2sin cos 22αβ αβαβ+-+= sin sin 2sin cos 22 αβαβαβ-+-= cos cos 2cos cos 22αβαβαβ+-+= cos cos 2sin sin 22 αβαβαβ+--= 1sin cos [sin()sin()]2αβαβαβ=++- 1cos sin [sin()sin()]2 αβαβαβ=+-- 1cos cos [cos()cos()]2αβαβαβ=++- 1sin sin [cos()cos()]2αβαβαβ=+-- 【典型例题】 例1求234cos cos cos cos 9999 π πππ的值. 例2化简下列各式: (1)2sin10cos 20sin 20?-?? (2)22sin sin cos sin cos tan 1x x x x x x +---(3)66441sin cos 1sin cos θθθθ---- 例3已知tan 2α=,求:(1) 4sin 2cos 5sin 3cos αααα -+;(2)223sin 3sin cos 2cos αααα+-.

例4已知sin()410πα- =,7cos 225α=,求sin α及tan()3πα+的值. 例5已知α为第二象限内的角,3sin 5α= ,β为第一象限内的角,5cos 13 β=,求tan (2α-β)的值. 【课堂练习】 1.若sin cos 2sin cos x x x x +=-,则sin cos x x =( ).

高三第一轮复习数学---解三角形及应用举例

高三第一轮复习数学---解三角形及应用举例 一、教学目标:1.理解并掌握正弦定理、余弦定理、面积公式; 2.能正确运用正弦定理、余弦定理及关系式A B C π++=,解决三角形中的 计算和证明问题. 二、教学重点:掌握正弦定理、余弦定理及其变形形式,利用三角公式解一些有关三角形 中的三角函数问题. 三、教学过程: (一)主要知识: 掌握三角形有关的定理: 正余弦定理:a 2 =b 2 +c 2 -2bccos θ, bc a c b 2cos 222-+=θ;R C c B b A a 2sin sin sin === 内角和定理:A+B+C=180°,sin(A+B)=sinC, cos(A+B)= -cosC, cos 2C =sin 2B A +, sin 2 C =cos 2B A + 面积公式:S=21absinC=21bcsinA=2 1 casinB S= pr =))()((c p b p a p p --- (其中p=2 c b a ++, r 为内切圆半径) 射影定理:a = b cos C + c cos B ;b = a cos C + c cos A ;c = a cos B + b cos A (二)例题分析: 例1.在ΔABC 中,已知a=3,b=2,B=45°,求A,C 及边c . 解:由正弦定理得:sinA=23 2 45sin 3sin = ?= b B a ,因为B=45°<90°且b

三角恒等变换-高考理科数学试题

(二十二) 三角恒等变换 [小题对点练——点点落实] 对点练(一) 三角函数的求值 1.(2017·山东高考)已知cos x =3 4,则cos 2x =( ) A .-14 B.14 C .-18 D.18 解析:选D cos 2x =2cos 2x -1=1 8 . 2.(2018·太原一模)若cos ????α-π6=-3 3,则cos ????α-π3+cos α=( ) A .- 22 3 B .±223 C .-1 D .±1 解析:选C 由cos ????α-π3+cos α=12cos α+3 2sin α+cos α=3cos ????α-π6=-1,故选C. 3.(2018·安徽十校联考)sin 47°-sin 17°cos 30° cos 17°=( ) A .-32 B .-12 C.12 D.32 解析:选C sin 47°-sin 17°cos 30° cos 17° =sin (30°+17°)-sin 17°cos 30° cos 17° =sin 30°cos 17°+sin 17°cos 30°-sin 17°cos 30° cos 17° = sin 30°cos 17°cos 17°=sin 30°=1 2 . 4.(2018·湖南郴州质检)已知x ∈(0,π),sin ???? π3-x =cos 2????x 2+π4,则tan x =( ) A.1 2 B .-2 C.22 D. 2

解析:选D 由已知,得sin π3cos x -cos π3sin x =cos ????x +π2+12,即32cos x -1 2sin x = -12sin x +12,所以cos x =3 3 .因为x ∈(0,π),所以tan x = 2. 5.(2018·河北唐山一模)已知α为锐角,且cos ????α+π4=3 5,则cos 2α=( ) A.24 25 B.725 C .- 2425 D .±2425 解析:选A ∵0<α<π2,cos ????α+π4=35>0,∴π4<α+π4<π 2,∴sin ????α+π4=45,∴sin α=sin ????????α+π4-π4=sin ????α+π4cos π4-cos ????α+π4sin π4=45×22-35×22=2 10,∴cos 2α=1-2sin 2α=1-2× ????2102=2425 .故选A. 6.(2018·广东广州模拟)设α为锐角,若cos ????α+π6=35,则sin ????α-π 12=( ) A .-210 B.210 C.2 2 D.45 解析:选B 因为α为锐角,所以0<α<π2,则π6<α+π6<2π 3,因此sin ????α+π6>0,所以sin ??? ?α+π 6= 1-cos 2??? ?α+π 6= 1-????352=45.所以sin ????α-π12=sin ??? ?????α+π6-π4=sin ????α+π6cos π4-cos ????α+π6sin π4=45×22-35×22=2 10 . 7.(2018·荆州一模)计算:sin 46°·cos 16°-cos 314°·sin 16°=________. 解析:sin 46°·cos 16°-cos 314°·sin 16°=sin 46°·cos 16°-cos 46°·sin 16°=sin(46°-16°)=sin 30°=12 . 答案:1 2 8.(2018·洛阳一模)已知sin ????α-π3=14,则cos ????π 3+2α=________. 解析:cos ????π3+2α=cos ????π-2π3+2α=-cos 2????α-π3=2sin 2????α-π3-1=-7 8. 答案:-7 8

三角函数诱导公式专项练习(含答案)

三角函数诱导公式专项练习 学校:___________姓名:___________班级:___________考号:___________ 一、单选题 1.() A. B. C. D. 2.的值为() A. B. C. D. 3.已知,则cos(60°–α)的值为 A. B. C. D.– 4.已知,且,则()A. B. C. D. 5.已知sin(π-α)=-,且α∈(-,0),则tan(2π-α)的值为( ) A. B.- C.± D. 6.已知,则=( ) A. B. C. D. 7.已知,,则() A. B. C. D. 8.已知,则() A. B. - C. D. - 9.如果,那么 A. - B. C. 1 D. -1 10.已知,则() A. B. C. D. 11.化简的值是()

A. B. C. D. 12.的值是() A. B. C. D. 13.已知角的终边经过点,则的值等于 A. B. C. D. 14.已知,则() A. B. C. D. 15.已知的值为()A. B. C. D. 16.已知则() A. B. C. D. 17.已知,且是第四象限角,则的值是( ) A. B. C. D. 18.已知sin=,则cos=( ) A. B. C.- D.- 19.已知cos α=k,k∈R,α∈,则sin(π+α)=( ) A.- B. C.± D.-k 20.=( ) A. sin 2-cos 2 B. sin 2+cos 2 C.±(sin 2-cos 2) D. cos 2-sin 2 21.的值为 A. B. C. D. 22.() A. B. C. D.

(完整版)三角函数化简求值证明技巧

第三讲 一、三角函数的化简、计算、证明的恒等变形的应用技巧 1、网络

2、三角函数变换的方法总结 (1)变换函数名 对于含同角的三角函数式,通常利用同角三角函数间的基本关系式及诱导公式,通过“切割化弦”,“切割互化”,“正余互化”等途径来减少或统一所需变换的式子中函数的种类,这就是变换函数名法.它实质上是“归一”思想,通过同一和化归以有利于问题的解决或发现解题途径。 【例1】已知θ同时满足和,且a、b 均不为0,求a、b的关系。 练习:已知sin(α+β)=,cos(α-β)=,求的值。 2)变换角的形式 对于含不同角的三角函数式,通常利用各种角之间的数值关系,将它们互相表示,改变原角的形式,从而运用有关的公式进行变形,这种方法主要是角的拆变.它应用广泛,方式灵活,如α可变为(α+β)-β;2α可变为(α+β)+(α-β);2α-β可变为(α-β)+α;α/2可看作α/4的倍角;(45°+α)可看成(90°+2α)的半角等等。 【例2】求sin(θ+75°)+cos(θ+45°)-cos(θ+15°)的值。练习已知,求的值

【例3】已知sinα=Asin(α+β)(其中cosβ≠A),试证明:tan(α +β)= 提示:sin[(α+β)-β]=Asin (α+β) (3)以式代值 利用特殊角的三角函数值以及含有1的三角公式,将原式中的1或其他特殊值用式子代换,往往有助于问题得到简便地解决。这其中以“1”的变换为最常见且最灵活。“1”可以看作是sin2x+cos2x, sec2x-tan2x, csc2x -cot2x,tanxcotx, secxcosx, tan45°等,根据解题的需要,适时地将“1”作某种变形,常能获得较理想的解题方法。 【例4】化简: (4)和积互化 积与和差的互化往往可以使问题得到解决,升幂和降次实际上就是和积互化的特殊情形。这往往用到倍、半角公式。 【例5】解三角方程:sin2x+sin22x=sin23x

高中数学解三角形方法大全

解三角形的方法 1.解三角形:一般地,把三角形的三个角和它们的对边叫做三角形的元素。已知三角形的几个元素求 其他元素的过程叫作解三角形。 以下若无特殊说明,均设ABC ?的三个内角C B A 、、的对边分别为c b a 、、,则有以下关系成立: (1)边的关系:c b a >+,b c a >+,a c b >+(或满足:两条较短的边长之和大于较长边) (2)角的关系:π=++C B A ,π<A , C B A sin )sin(=+,C B A cos )cos(-=+,2 cos 2sin C B A =+ (3)边角关系:正弦定理、余弦定理以及它们的变形 板块一:正弦定理及其应用 1.正弦定理: R C c B b A a 2sin sin sin ===,其中R 为AB C ?的外接圆半径 2.正弦定理适用于两类解三角形问题: (1)已知三角形的任意两角和一边,先求第三个角,再根据正弦定理求出另外两边; (2)已知三角形的两边与其中一边所对的角,先求另一边所对的角(注意此角有两解、一解、无解

总结:若已知三角形的两边和其中一边所对的角,解这类三角形时,要注意有两解、一解和无解的可能 如图,在ABC ?中,已知a 、b 、A (1)若A 为钝角或直角,则当b a >时,ABC ?有唯一解;否则无解。 (2)若A 为锐角,则当A b a sin <时,三角形无解; 当A b a sin =时,三角形有唯一解; 当b a A b <

三角函数化简求值专题复习

三角函数化简求值专题复习 高考要求 1、理解任意角的概念、弧度的意义、正确进行弧度与角度的换算;掌握任意角三角函数的定义、会利用单位圆中的三角函数线表示正弦、余弦、正切。 2、 掌握三角函数公式的运用(即同角三角函数基本关系、诱导公式、和差及倍角公式) 3、 能正确运用三角公式进行简单三角函数式的化简、求值和恒等式证明。 热点分析 1.近几年高考对三角变换的考查要求有所降低,而对本章的内容的考查有逐步加强的趋势,主要表现在对三角函数的图象与性质的考查上有所加强. 2.对本章内容一般以选择、填空题形式进行考查,且难度不大,从1993年至20XX 年考查的内容看,大致可分为四类问题(1)与三角函数单调性有关的问题;(2)与三角函数图象有关的问题;(3)应用同角变换和诱导公式,求三角函数值及化简和等式证明的问题;(4)与周期有关的问题 3.基本的解题规律为:观察差异(或角,或函数,或运算),寻找联系(借助于熟知的公式、方法或技巧),分析综合(由因导果或执果索因),实现转化.解题规律:在三角函数求值问题中的解题思路,一般是运用基本公式,将未知角变换为已知角求解;在最值问题和周期问题中,解题思路是合理运用基本公式将表达式转化为由一个三角函数表达的形式求解. 【例1】求值: ? +?? ??+?+?80cot 40csc 10sin 20tan 10cos 20sin 2. 解:原式的分子? ? ?+??+ ?=20cos 10sin 20sin 20cos 10cos 20sin 2 ? ?+ ?=20cos 10cos 20sin 2?? +?=20cos 10cos 40sin 320cos 20cos 60sin 220cos 80sin 40sin =? ? ?=??+?= , 原式的分母= ? ? +?=??+?80sin 80cos 40cos 280sin 80cos 40sin 1 ()??+?+?=80sin 80cos 40cos 40cos ?? ?+?=80sin 20cos 60cos 240cos 310cos 10cos 30cos 280sin 20cos 40cos =? ? ?=??+?= , 所以,原式=1. 【变式】1、求值 () ? +??+?+?10cos 110tan 60tan 110cos 40cos 2 解:()()2 5cos 25cos 45cos 225cos 250cos 40cos 25cos 21060cos 240cos 25cos 210sin 23 10cos 21240cos 25cos 210sin 310cos 40cos 2=? ??=??+?=??-?+?=? ?? ? ? ???+?+?=??+?+?=·原式 【变式】2、求00 20 210sin 21)140 cos 1140sin 3( ?- 。 分析:原式= 202020210sin 21 140cos 140sin 140sin 140cos 3? -

(完整版)高中数学解三角形方法大全

解三角形 1.解三角形:一般地,把三角形的三个角和它们的对边叫做三角形的元素。已知三角形的几个元素求 其他元素的过程叫作解三角形。 以下若无特殊说明,均设ABC ?的三个内角C B A 、、的对边分别为c b a 、、,则有以下关系成立: (1)边的关系:c b a >+,b c a >+,a c b >+(或满足:两条较短的边长之和大于较长边) (2)角的关系:π=++C B A ,π<A , C B A sin )sin(=+,C B A cos )cos(-=+,2 cos 2sin C B A =+ (3)边角关系:正弦定理、余弦定理以及它们的变形 板块一:正弦定理及其应用 1.正弦定理: R C c B b A a 2sin sin sin ===,其中R 为AB C ?的外接圆半径 2.正弦定理适用于两类解三角形问题: (1)已知三角形的任意两角和一边,先求第三个角,再根据正弦定理求出另外两边; (2)已知三角形的两边与其中一边所对的角,先求另一边所对的角(注意此角有两解、一解、无解 【例1】考查正弦定理的应用 (1)ABC ?中,若ο 60=B ,4 2 tan = A ,2=BC ,则=AC _____; (2)ABC ?中,若ο 30=A ,2= b ,1=a ,则=C ____; (3)ABC ?中,若ο 45=A ,24=b ,8=a ,则=C ____; (4)ABC ?中,若A c a sin =,则c b a +的最大值为_____。

总结:若已知三角形的两边和其中一边所对的角,解这类三角形时,要注意有两解、一解和无解的可能如图,在ABC ?中,已知a、b、A (1)若A为钝角或直角,则当b a>时,ABC ?有唯一解;否则无解。 (2)若A为锐角,则当A b a sin <时,三角形无解; 当A b a sin =时,三角形有唯一解; 当b a A b< < sin时,三角形有两解; 当b a≥时,三角形有唯一解 实际上在解这类三角形时,我们一般根据三角形中“大角对大边”理论判定三角形是否有两解的可能。板块二:余弦定理及面积公式 1.余弦定理:在ABC ?中,角C B A、 、的对边分别为c b a、 、,则有 余弦定理: ? ? ? ? ? - + = - + = - + = C ab b a c B ac c a b A bc c b a cos 2 cos 2 cos 2 2 2 2 2 2 2 2 2 2 ,其变式为: ? ? ? ? ? ? ? ? ? - + = - + = - + = ab c b a C ac b c a B bc a c b A 2 cos 2 cos 2 cos 2 2 2 2 2 2 2 2 2 2.余弦定理及其变式可用来解决以下两类三角形问题: (1)已知三角形的两边及其夹角,先由余弦定理求出第三边,再由正弦定理求较短边所对的角(或由余弦定理求第二个角),最后根据“内角和定理”求得第三个角; (2)已知三角形的三条边,先由余弦定理求出一个角,再由正弦定理求较短边所对的角(或由余弦定理求第二个角),最后根据“内角和定理”求得第三个角; 说明:为了减少运算量,能用正弦定理就尽量用正弦定理解决 3.三角形的面积公式 (1) c b a ABC ch bh ah S 2 1 2 1 2 1 = = = ? ( a h、 b h、 c h分别表示a、b、c上的高); (2)B ac A bc C ab S ABC sin 2 1 sin 2 1 sin 2 1 = = = ? (3)= ?ABC S C B A R sin sin sin 22(R为外接圆半径) (4) R abc S ABC4 = ? ; (5)) )( )( (c p b p a p p S ABC - - - = ? 其中) ( 2 1 c b a p+ + = (6)l r S ABC ? = ?2 1 (r是内切圆的半径,l是三角形的周长)

高中数学三角恒等变换精选题目(附答案)

高中数学三角恒等变换精选题目(附答案) 1、cos 24cos36cos66cos54? ? ? ? -的值为( ) A 0 B 12 C 2 D 1 2 - 2.3cos 5α=- ,,2παπ?? ∈ ??? ,12sin 13β=-,β是第三象限角,则=-)cos(αβ( ) A 、3365- B 、6365 C 、5665 D 、1665 - 3. tan 20tan 4020tan 40? ? ? ? ++的值为( ) A 1 B 3 C D 4. 已知()()tan 3,tan 5αβαβ+=-=,则()tan 2α的值为( ) A 47- B 47 C 18 D 18- 5.βα,都是锐角,且5sin 13α=,()4 cos 5 αβ+=-,则βsin 的值是( ) A 、3365 B 、1665 C 、5665 D 、6365 6.,)4,43(ππ- ∈x 且3cos 45x π?? -=- ??? 则cos2x 的值是( ) A 、725- B 、2425- C 、2425 D 、7 25 7. 函数4 4 sin cos y x x =+的值域是( ) A []0,1 B []1,1- C 13,22?????? D 1,12?? ???? 8. 已知等腰三角形顶角的余弦值等于 5 4 ,则这个三角形底角的正弦值为( ) A 1010 B 1010- C 10103 D 10 103- 9.要得到函数2sin 2y x =的图像,只需将x x y 2cos 2sin 3-= 的图像( )

A 、向右平移6π个单位 B 、向右平移12π个单位 C 、向左平移6π个单位 D 、向左平移12π个单位 10. 函数sin 22x x y =+的图像的一条对称轴方程是 ( ) A 、x =113π B 、x = 53π C 、53x π=- D 、3 x π =- 11. 已知1cos sin 21cos sin x x x x -+=-++,则x tan 的值为 ( ) A 、34 B 、34- C 、43 D 、4 3- 12.若0,4πα? ? ∈ ?? ?()0,βπ∈且()1tan 2αβ-=,1 tan 7 β=-,则=-βα2 ( ) A 、56π- B 、23π- C 、 712 π- D 、34π- 13. .在ABC ?中,已知tanA ,tanB 是方程2 3720x x -+=的两个实根,则tan C = 14. 已知tan 2x =,则 3sin 22cos 2cos 23sin 2x x x x +-的值为 15. 已知直线12//l l ,A 是12,l l 之间的一定点,并且A 点到12,l l 的距离分别为12,h h ,B 是直线2l 上一动点,作AC ⊥AB ,且使AC 与直线1l 交于点C ,则ABC ?面积的最小值为 。 16. 关于函数( )cos2cos f x x x x =-,下列命题: ①若存在1x ,2x 有12x x π-=时,()()12f x f x =成立;②()f x 在区间,63ππ?? - ???? 上是单调递增; ③函数()f x 的图像关于点,012π?? ??? 成中心对称图像; ④将函数()f x 的图像向左平移 512 π 个单位后将与2sin 2y x =的图像重合. 其中正确的命题序号 (注:把你认为正确的序号都填上) 17. 已知02 π α<< ,15tan 2 2tan 2 α α + = ,试求sin 3πα? ?- ?? ?的值. 18. 求) 212cos 4(12sin 3 12tan 30 200--的值.

相关文档
相关文档 最新文档