文档视界 最新最全的文档下载
当前位置:文档视界 › 第六节函数与方程及最值问题

第六节函数与方程及最值问题

第六节 函数与方程及最值问题

【热点聚焦】

函数与方程及最值问题一直是高考的重点内容,在历届的高考试题中均占有一定的比重。特别是函数与方程思想,更是思考问题与解决问题常用的方法,应重点掌握。

【基础知识】

一.函数最大(小)值定义

1.最大值: 一般地,设函数y=f(x)的定义域为I ,如果存在实数M 满足: (1)对于任意的x ∈I ,都有f(x)≤M ; (2)存在x 0∈I ,使得f(x 0) = M 那么,称M 是函数y=f(x)的最大值(Maximum Value ).

注意:○

1 函数最大(小)首先应该是某一个函数值,即存在x 0∈I ,使得f(x 0) = M ; ○

2 函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x ∈I ,都有f(x)≤M (f(x)≥M ). 2.利用函数单调性的判断函数的最大(小)值的方法

1 利用二次函数的性质(配方法)求函数的最大(小)值 ○

2 利用图象求函数的最大(小)值 ○

3 利用函数单调性的判断函数的最大(小)值 如果函数y=f(x)在区间[a ,b]上单调递增,在区间[b ,c]上单调递减则函数y=f(x)在x=b 处有最大值f(b);如果函数y=f(x)在区间[a ,b]上单调递减,在区间[b ,c]上单调递增则函数y=f(x)在x=b 处有最小值f(b). 二.函数与方程

函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数

))((D x x f y ∈=的零点.

函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图

象与x 轴交点的横坐标.即:方程0)(=x f 有实数根?函数)(x f y =的图象与x 轴有交点?函数)(x f y =有零点.

函数零点的求法:求函数)(x f y =的零点:○

1 (代数法)求方程0)(=x f 的实数根; ○

2 (几何法)对于不能用求根公式的方程,可以将它与函数)(x f y =的图象联系起来,并利用函数的性质找出零点. 三.二分法及步骤

对于在区间a [,]b 上连续不断,且满足)(a f ·)(b f 0<的函数)(x f y =,通过不断地把函数)(x f 的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.

给定精度ε,用二分法求函数)(x f 的零点近似值的步骤如下: 1.确定区间a [,]b ,验证)(a f ·)(b f 0<,给定精度ε; 2.求区间a (,)b 的中点1x ;

3.计算)(1x f :○1 若)(1x f =0,则1

x 就是函数的零点; ○2 若)(a f ·)(1x f <0,则令b =1x (此时零点),(10x a x ∈); ○3 若)(1

x f ·)(b f <0,则令a =1x (此时零点),(10b x x ∈); 4.判断是否达到精度ε;

即若ε<-||b a ,则得到零点零点值a (或b );否则重复步骤2~4. 四.函数零点的性质

从“数”的角度看:即是使0)(=x f 的实数;从“形”的角度看:即是函数)(x f 的图象与x 轴交点

的横坐标;若函数)(x f 的图象在0x x =处与x 轴相切,则零点0x 通常称为不变号零点;若函数

)(x f 的图象在0x x =处与x 轴相交,则零点0x 通常称为变号零点.

用二分法求函数的变号零点:二分法的条件)(a f ·)(b f 0<表明用二分法求函数的近似零点都是

指变号零点.

【课前训练】

1.(2003北京春)函数f (x )=

)

1(11

x x --的最大值是( )

A.

5

4 B.

45

C.

4

3

D.

3

4

2.函数f (x )=a x (a >0,a ≠1)在[1,2]中的最大值比最小值大2

a

,则a 的值为( )

A .

21 B .2

3 C .21或32 D .2或2

3

3.(2005年福建卷))(x f 是定义在R 上的以3为周期的偶函数,且0)2(=f ,则方程)(x f =0在区间(0,6)内解的个数的最小值是 ( )

A .5

B .4

C .3

D .2

4.设函数()x f 在区间[b a ,]上连续,若满足______________,若方程()0=x f 在区间[b a ,]上一定有实根。

5.(1999全国)若正数a ,b 满足ab =a +b +3,则ab 的取值范围是_____.

【试题精析】

【例1】(2002全国)设a 为实数,函数f (x )=x 2+|x -a |+1,x ∈R . (1)讨论f (x )的奇偶性;(2)求f (x )的最小值.

【评述】:函数奇偶性的讨论问题是中学数学的基本问题,如果平时注意知识的积累,对解此题会有较大帮助.因为x ∈R ,f (0)=|a |+1≠0,由此排除f (x )是奇函数的可能性.运用偶函数的定

义分析可知,当a =0时,f (x )是偶函数,第2题主要考查学生的分类讨论思想、对称思想. 【例2】(2000春季北京、安徽文)已知二次函数f (x )=(lg a )x 2+2x +4lg a 的最大值为3,求a 的值.

【评述】本小题主要考查二次函数最大值和最小值的概念以及对于配方法、对数方程、二次方程的解法的运用能力.

【例3】一个星级旅馆有150个标准房,经过一段时间的经营,经理得到一些定价和住房率的数据如下:

欲使每天的的营业额最高,应如何定价?

【例4】(2005年上海卷)对定义域分别是D f 、D g 的函数y=f(x) 、y=g(x), f(x)·g(x) 当x ∈D f 且x ∈D g 规定: 函数h(x)= f(x) 当x ∈D f 且x ?D g g(x) 当x ?D f 且x ∈D g

(1) 若函数f(x)=-2x+3,x≥1; g(x)=x -2,x ∈R,写出函数h(x)的解析式; (2) 求问题(1)中函数h(x)的最大值;

(3) 若g(x)=f(x+α), 其中α是常数,且α∈[0,π],请设计一个定义域为R 的函数y=f(x),及一个α

的值,使得h(x)=cos2x,并予以证明.

【例5】(2005年广东卷)设函数()f x 在(,)-∞+∞上满足(2)(2)f x f x -=+,

(7)(7)f x f x -=+,且在闭区间[0,7]上,只有(1)(3)0f f ==.

(Ⅰ)试判断函数()y f x =的奇偶性;

(Ⅱ)试求方程()f x =0在闭区间[-2005,2005]上的根的个数,并证明你的结论.

【例6】某电器公司生产A 种瑾的家庭电器。1996年平均每台电脑生产成本为5000元,并以纯利润20%标定出厂价。1997年开始,公司更新设备,加强管理,逐步推行股份制,从而使生产成本逐年降低。2000年平均每台A 种型号的家庭电脑尽管出厂价仅是1996年出厂价的80%,但却实现了纯利润50%的高效率。求 (1)2000年每台电脑的生产成本;

(2)以1996年的生产成本为基数,用二分法求1996年~2000年生产成本平均每年降低的百分数(精确到0.01)。

【点评】这是一个降低成本提高效率的问题。注意:这里“以纯利润20%标定出厂价”指成本的

20%。成本+利润=出厂价;利润=成本×利润率。在第(2)问中所要解的方程

)10(3200)1(50004<<=-x x 要求用二分法来解,主要目的地是熟悉二分法的解题步骤,虽然

比较繁杂,但是能让学生体会到“逐步逼近”的数学思想。

【针对训练】

1.求方程()0=x f 在[0,1]内的近似根,用二分法计算到445.010=x 达到精度要求。那么所取

误差限ξ是( )

A .0.05

B .0.005

C .0.005

D .0.00005 2.若函数()x f 唯一的零点在区间(1,3)、(1,4)、(1,5)内,那么下列命题中错误的是( )

A .函数()x f 在(1,2)或[)3,2内有零点

B .函数()x f 在(3,5)内无零点

C .函数()x f 在(2,5)内有零点

D .函数()x f 在(2,4)内不一定有零点.

3.若函数f(x)唯一的一个零点同时在区间(0,16)、(0,8)、(0,4)、(0,2)内,那么下列命

题中正确的是

(A )函数f(x)在区间(0,1)内有零点 (B )函数f(x)在区间(0,1)或(1,2)内有零点

(C )函数f(x)在区间[2,16)内无零点 (D )函数f(x)在区间(1,16)内无零点

4.下列函数图象与x 轴均有交点,其中不能用二分法求函数零点近似值的是( )

5.(2006年湖北卷)关于x 的方程()

0112

2

2=+---k x x ,给出下列四个命题:

①存在实数k ,使得方程恰有2个不同的实根; ②存在实数k ,使得方程恰有4个不同的实根; ③存在实数k ,使得方程恰有5个不同的实根; ④存在实数k ,使得方程恰有8个不同的实根. 其中假命题的个数是 (B )

A. 0

B. 1

C. 2

D. 3

6.用二分法求方程0523

=--x x 在区间[2,3]内的实根,取区间中点5.20=x ,那么下一个有根区间是______________。

7.(1998上海)函数y =??

?

??>+-≤<+≤+1,510,30,32x x x x x x 的最大值是 .

8.函数()ln 2f x x x =-+的零点个数为 .

9.(2007年山东日照试题)A 、B 两城相距100km ,在两地之间距A 城x km 处D 地建一核电站给A 、B 两城供电,为保证城市安全.核电站距市距离不得少于10km.已知供电费用与供电距离的平方和供电量之积成正比,比例系数25.0=λ.若A 城供电量为20亿度/月,B 城为10亿度/月. (Ⅰ)把月供电总费用y 表示成x 的函数,并求定义域;

(Ⅱ)核电站建在距A 城多远,才能使供电费用最小.

10.我国从

(Ⅱ)据资料可知我国2003年的国内生产总值为116694亿元,你的预测是否准确,若误差较大,能修正你所构造的模型吗?

第六节参考答案

【课前训练】

1.答案:D 解析:首先讨论分母1-x (1-x )的取值范围:1-x (1-x )=x 2-x +1=(x -

2

1

)2

+

43≥4

3

.因此,有0<)1(11x x --≤34.所以,f (x )的最大值为34.

评述:该题侧重考查考生“化生为熟”的识别能力及对代数式的转化能力。 2..答案:C 解析:因指数函数y =a x 为单调函数,所以有|a 2-a |=2a ,解得a =21

或a =2

3. 3.答案:B 4.答案:()()0

ab -2

ab -3≥0,(ab -3)(ab +1)≥0,∴ab ≥3,∴ab ≥9.

解析二:由ab =a +b +3,可得:b =

1

3

-+a a (a >0,b >0), ∴a >1,又ab =a ·

13-+a a =[(a -1)+1]13-+a a =(a +3)+13

-+a a =a -1+4+1

41-+-a a =(a -1)+

14-a +5≥214)1(--a a +5=9.等号成立条件为a -1=1

4-a ,即a =3.

【试题精析】

【例1】(解:(1)当a =0时,函数f (-x )=(-x )2+|-x |+1=f (x ),此时f (x )为偶函数. 当a ≠0时,f (a )=a 2+1,f (-a )=a 2+2|a |+1,f (-a )≠f (a ),f (-a )≠-f (a ). 此时函数f (x )既不是奇函数,也不是偶函数 (2)①当x ≤a 时,函数f (x )=x 2-x +a +1=(x -

21)2+a +4

3. 若a ≤

2

1

,则函数f (x )在(-∞,a ]上单调递减,从而,函数f (x )在(-∞,a ]上的最小值为f (a )=a 2+1. 若a >

21,则函数f (x )在(-∞,a ]上的最小值为f (21)=43+a ,且f (2

1

)≤f (a ). ②当x ≥a 时,函数f (x )=x 2+x -a +1=(x +

21)2-a +4

3

. 若a ≤-

21,则函数f (x )在[a ,+∞)上的最小值为f (-21)=43-a ,且f (-21

)≤f (a ). 若a >-

2

1

,则函数f (x )在[a ,+∞)上单调递增,从而,函数f (x )在[a ,+∞)上的最小值为f (a )=a 2+1. 综上,当a ≤-

21时,函数f (x )的最小值是43-a .当-21<a ≤2

1

时,函数f (x )的最小值是a 2+1.当a >

21时,函数f (x )的最小值是a +4

3. 【例2】解:原函数式可化成f (x )=a a

a x a lg 4lg 1

)lg 1(lg 2+-+

.由已知,f (x )有最大值3,所以lg a <0,并且a

lg 1

-

+4lg a =3,整理得 4(lg a )2-3lg a -1=0,解得 lg a =1,lg a =41-.∵lg a <0,故取lg a =4

1-.∴a =1010001044

1=-.

【例3】解:根据已知数据,可假设该客房的最高价为160元,并假设在各价位之间,房价与住

房率之间存在线性关系.设y 为旅馆一天的客房总收入,x 为与房价160相比降低的房价,因此当房价为)160(x -元时,住房率为)%102055(?+x ,于是得y =150·)160(x -·)%1020

55(?+x

由于)%1020

55(?+

x

≤1,

可知0≤x ≤90.因此问题转化为:当0≤x ≤90时,求y 的最大值的问题.将

y 的两边同除以一个常数0.75,得y 1=-x +50x +17600.

由于二次函数y 1在x =25时取得最大值,可知y 也在x =25时取得最大值,此时房价定位应是

160-25=135(元),相应的住房率为67.5%,最大住房总收入为13668.75(元). 所以该客房定价应为135元.(当然为了便于管理,定价140元也是比较合理的) 【例4】解:(1) (23)(2)[1,)()2

(,1)x x x h x x x -+-∈+∞?=?-∈-∞?

(2) 当x≥1时, h(x)= (-2x+3)(x -2)=-2x 2+7x-6=-2(x -

47)2+81,∴h(x)≤8

1

; 当x<1时, h(x)<-1,∴当x=

47时, h(x)取得最大值是8

1

(3)令 f(x)=sinx+cosx,α=2π,则g(x)=f(x+α)= sin(x+2π)+cos(x+2

π

)=cosx-sinx,

于是h(x)= f(x)·f(x+α)= (sinx+cosx)( cosx -sinx)=cos2x.

〖另解〗令f(x)=1+2sinx, α=π, g(x)=f(x+α)= 1+2sin(x+π)=1-2sinx, 于是h(x)= f(x)·f(x+α)= (1+2sinx)( 1-2sinx)=cos2x.

【例5】解:由f(2-x)=f(2+x),f(7-x)=f(7+x)得函数)(x f y =的对称轴为72==x x 和, 从而知函数)(x f y =不是奇函数,

由)14()4()

14()()4()()

7()7()2()2(x f x f x f x f x f x f x f x f x f x f -=-????-=-=????+=-+=- )10()(+=?x f x f ,从而知函数)(x f y =的周期为10=T

又0)7(,0)0()3(≠==f f f 而,故函数)(x f y =是非奇非偶函数;

(II)由)14()4()14()()

4()()7()7()2()2(x f x f x f x f x f x f x f x f x f x f -=-??

??-=-=????+=-+=-)10()(+=?x f x f

(II) 又0)9()7()13()11(,0)0()3(=-=-====f f f f f f

故f(x)在[0,10]和[-10,0]上均有有两个解,从而可知函数)(x f y =在[0,2005]上有402个解, 在[-2005.0]上有400个解,所以函数)(x f y =在[-2005,2005]上有802个解. 【例6】解:(1)设2000年每台电脑的成本为p 元,根据题意,得

%80%)201(5000%)501(?+?=+p ,解得p =3200(元)。

(2)设1996年~2000年间每年平均生产成本降低的百分率为x ,根据题意,得

)10(3200)1(50004<<=-x x 。

令()3200)1(50004--=x x f ,作出x 、()x f 的对应值表,如下表:

观察上表,可知()()015.00

取区间(0,0.15)的中点075.01=x ,用计算器可算得()460075.0≈f 。因为

()()015.0075.0

再取(0.075,0.15)的中点1125.02=x ,用计算器可算得()981125.0-≈f 。因为

()()01125.0075.0

)1125.0,103125.0(0∈x ,)1078125.0,103125.0(0∈x ,)1078125.0,10546875.0(0∈x 。

由于|0.1078125-0.10546875|=0.00234375<0.01,此时区间(0.10546875,0.1078125)的两个端点精确到0.01的近似值都是0.11,所以原方程精确到0.01的近似解为0.11。 答:(1)2000年每台电脑的生产成本为3200元;

(2)1996年~2000年生产成本平均每年降低的百分数为11%。

【针对训练】

1.答案:C 2.答案:C 3.答案:C 4.答案:B

5.解选B 。本题考查换元法及方程根的讨论,要求考生具有较强的分析问题和解决问题的能力;

据题意可令21x t -=(0)t ≥①,则方程化为2

0t t k -+=②,作出函数2

1y x =-的图象,结

合函数的图象可知:(1)当t=0或t>1时方程①有2个不等的根;(2)当0

故当t=0时,代入方程②,解得k=0此时方程②有两个不等根t=0或t=1,故此时原方程有5个根;

当方程②有两个不等正根时,即1

04

k <<此时方程②有两根且均小于1大于0,故相应的满足方程2

1x t -=的解有8个,即原方程的解有8个;当14k =时,方程②有两个相等正根t =12

,相

应的原方程的解有4个;故选B 。

6.答案:由计算器可算得()12-=f ,()163=f ,()625.55.2=f ,()()05.22

7.答案:4 解析:当x ≤0时,y 的最大值为3;当0<x ≤1时,y 的最大值为4;当x >1时,y 的最大值不存在,但此时y <4.故y 的最大值是4. 8.答案:2个 9.解:(Ⅰ)y =5x 2+

2

5

(100—x )2(10≤x ≤90); (Ⅱ)由y =5x 2+

2

5

(100—x )2=152x 2-500x +25000=

1522

1003x ??- ?

??

+500003. 则当x =

100

3

米时,y 最小. 故当核电站建在距A 城100

3

米时,才能使供电费用最小.

10.解:(Ⅰ)本小题只要能建立一个正确的数学模型即可给分(例如根据两点得出直线方程等).下面利用excel 给出几个模型,供参考: (1)直线型:

将x =6代入y =6197.2x +71045中得2003年的国内生产总值为108228.2亿元. (2)二次函数型:

将x =6代入y =328.71x 2+4224.9x +73346中得2003年的国内生产总值为110529亿元. (3)四次函数型:

将x =6代入y =224.79x 4-3004.1x 3+14231x 2-21315x +88208中得2003年的国内生产总值为115076.2亿元.

(4)指数函数型:

将x =6代入y =72492e 0.0692x 中得2003年的国内生产总值为109797亿元. (5)幂函数型:

将x=6代入y=76113x0.1658中得2003年的国内生产总值为102441.6亿元.

(Ⅱ)从以上的5个模型可以看成,四次函数型最接近2003年的实际国内生产总值,其实从其R2值也可以看成,因为四次函数型中R2=1.

根据自己所建模型予以调整.

利用函数的最值求不等式恒成立问题

考点2、利用函数的最值求不等式恒成立问题 例3、已知过函数1)(23++=ax x x f 的图象上一点),1(b B 的切线的斜率为-3. (1)求b a ,的值; (2)求A 的取值范围,使不等式1987)(-≤A x f 对于]4,1[-∈x 恒成立; 【解析】(1)()x f '=ax x 232+ 依题意得3,323)1('-=∴-=+==a a f k ()1323+-=∴x x x f ,把),1(b B 代入得1)1(-==f b 1,3-=-=∴b a (2)令063)(2'=-=x x x f 得0=x 或2=x 31232)2(,1)0(23-=+?-==f f 17)4(,3)1(=-=-f f 17)(3],4,1[≤≤--∈∴x f x 要使1987)(-≤A x f 对于]4,1[-∈x 恒成立,则)(x f 的最大值198717-≤A 2004≥∴A 变式训练1、设函数2()()ln ()f x x a x a R =-∈ (Ⅰ)若x e =为()y f x =的极值点,求实数a . (Ⅱ)求实数a 的取值范围,使得对任意(0,3]x e ∈恒有2()4f x e ≤成立(注:e 为 自然对数的底数). 【解析】(I )求导得2()()2()ln ()(2ln 1)x a a f x x a x x a x x x -=-+=-+-¢ 因为x e =是()f x 的极值点,所以()0f e =¢ 解得a e =或3a e =. 经检验,符合题意,所以a e =,或3a e = (II )①当031a 时即1 3 a > 时,由①知,(0,1]x ?时,不等式恒成立,故下 研究函数在(1,3]a 上的最大值, 首先有22(3)(3)ln34ln3f a a a a a a =-=此值随着a 的增大而增大,故应

高考复习函数知识点总结

高考复习 函数知识点总结 一.函数概念的理解以及函数的三要素 (1)函数的概念 ①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. ②函数的三要素:定义域、值域和对应法则. ③只有定义域相同,且对应法则(函数关系式)也相同的两个函数才是同一函数. (2)区间的概念及表示法 ①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ; 满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ; 满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做 [,)a b ,(,]a b ; 满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做 [,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b < . (3)求函数的定义域时,一般遵循以下原则: ① 分式的分母不为0; ② 偶次根式下被开方数大于0; ③ 0y x = ,则有0x ≠ ; ④ 对数函数的真数大于0,底数大于0切不等于1 注意:①解析式为整式的函数定义域为R ; ②若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则

其定义域一般是各基本初等函数的定义域的交集; ③对于求复合函数定义域问题,一般步骤是:若已知() f x的定义域 为[,] a g x b ≤≤解出. f g x的定义域应由不等式() a b,其复合函数[()] (4)求函数的值域或最值 常用方法: ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值. ②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量 的取值范围确定函数的值域或最值. ③判别式法:若函数() =可以化成一个系数含有y的关于x的二次方程 y f x 2 ++=,则在()0 a y x b y x c y ()()()0 a y≠时,由于,x y为实数,故必须有 2()4()()0 ?=-?≥,从而确定函数的值域或最值. b y a y c y ④不等式法:利用基本不等式确定函数的值域或最值. ⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代 数函数的最值问题转化为三角函数的最值问题. ⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的 值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法. (5)函数解析式 ①换元法;(用于求复合函数的解析式) ②配凑法;(用于求复合函数的解析式)

导数中恒成立问题(最值问题)

导数中恒成立问题(最值问题) 恒成立问题是高考函数题中的重点问题, 也是高中数学非常重要的一个模块, 不管是小题,还 是大题,常常以压轴题的形式出现。 知识储备(我个人喜欢将参数放左边,函数放右边) 先来简单的(也是最本质的)如分离变量后, a f (x )恒成立,则有a f (X )max 2. 对于双变量的恒成立问题 f(x) min g(x)min 今天呢,我会花很多时间来讲解一道二次函数,因为二次函数是最本质的, (甚至我提出这样 一个观点,所有导数的题目95%3根结底就是带参数二次函数在已知定义域上根的讨论, 3%是 ax b 与ax 3 b 这种形式根的讨论,2%!观察法得到零点,零点通常是1,-,e 之类),所以如果 e 我们真正弄清楚了二次函数,那么对于千变万化的导数题,我们还会畏惧吗。 那么我们先从一道练习题说起 一?二次函数型(通常方法是讨论对称轴,根据图像求最值) 例题1.已知f (x ) ■ 2x2 2ax a 1定义域为R ,求a 的取值围 思考:①引入定义域(非R ) ② 参数在二次项,就需考虑是否为0 1 ③ 引入高次(3次,4次,—,I nx , e x 等等) x ④ 引入a 2, a 3等项(导致不能分离变量) f (x )恒成立,则有a f ( x) min (若是存在性问题,那么最大变最小, 最小变最大) 如:化简后我们分析得到, a,b , f (x) 0恒成立,那么只需 f ( x) min a,b ,使得 f(x) 0,那么只需f (X )max 0 如:化简后我们分析得到, X i ,X 2 a,b , f(xj g(X 2),那么只需 f (X)min g ( X) max 如:化简后我们分析得到, X i a,b , x 2 c, d 使f (xj gg ),那么只需 如:化简后我们分析得到, X i a,b ,X 2 C,d 使 f (X i ) g(X 2),那么只需 f (X)max g(x)min 还有一些情况了,这里不一一列举, 一个变量,再处理另一个变量) 3.对于带绝对值的恒成立问题, 成立问题(2014.03锡常镇一模那题特别典型) 总之一句话 (双变量的存在性与恒成立问题,都是先处理 我们往往先根据函数的单调性,去掉绝对值,再转变成恒

函数不等式恒成立问题经典总结

函数、不等式恒成立问题解法(老师用) 恒成立问题的基本类型: 类型1:设)0()(2 ≠++=a c bx ax x f ,(对于任意实数R 上恒成立) (1)R x x f ∈>在0)(上恒成立00?且a ; (2)R x x f ∈<在0)(上恒成立00a 时,],[0)(βα∈>x x f 在上恒成立?????>>-?????<- ?0 )(2020)(2βββαααf a b a b f a b 或或, ],[0)(βα∈x x f 在上恒成立?? ?>>?0 )(0 )(βαf f ],[0)(βα∈- ?????<-?0 )(2020)(2βββαααf a b a b f a b 或或 类型3: αα>?∈>min )()(x f I x x f 恒成立对一切 αα>?∈?∈>的图象的上方或的图象在恒成立对一切 恒成 一、用一次函数的性质 对于一次函数],[,)(n m x b kx x f ∈+=有: ?? ?<>?>0 )(0 )(0)(,0)(0)(0)(n f m f x f n f m f x f 恒成立恒成立 例1:若不等式)1(122 ->-x m x 对满足22≤≤-m 的所有m 都成立,求x 的范围。 解析:我们可以用改变主元的办法,将m 视为主变元,即将元不等式化为:0)12()1(2 <---x x m ,;令)12()1()(2 ---=x x m m f ,则22≤≤-m 时,0)(

用导数研究函数的恒成立与存在性问题-答案

用导数研究函数的恒成立与存在问题 1.已知函数23()2ln x f x x x a = -+,其中a 为常数. (1)若1a =,求函数()f x 的单调区间; (2)若函数()f x 在区间[1,2]上为单调函数,求a 的取值范围. 2.已知函数3 2 ()4()f x x ax a R =-+-∈,'()f x 是()f x 的导函数。 (1)当2a =时,对于任意的[1,1]m ∈-,[1,1]n ∈-,求()()f m f n '+的最小值; (2)若存在0(0,)x ∈+∞,使0()f x >0,求a 的取值范围。

3.已知函数x ax x f ln )(+= )(R a ∈. (1)若2=a ,求曲线)(x f y =在点1x =处的切线方程; (2)求)(x f 的单调区间; (3)设22)(2 +-=x x x g ,若对任意1(0,)x ∈+∞,均存在[]1,02∈x ,使得)()(21x g x f <, 求实数a 的取值范围.

4.(2016届惠州二模)已知函数()22ln f x x x =-+. (Ⅰ)求函数()f x 的最大值; (Ⅱ)若函数()f x 与()a g x x x =+ 有相同极值点. ①求实数a 的值; ②对121,,3x x e ???∈???? (e 为自然对数的底数),不等式 ()() 1211 f x g x k -≤-恒成立,求实数k 的取值范围.

5.已知函数2 12 ()()ln ()f x a x x a R =-+∈. (1)当1a =时,01[,]x e ?∈使不等式0()f x m ≤,求实数m 的取值范围; (2)若在区间1(,)+∞,函数()f x 的图象恒在直线2y ax =的下方,求实数a 的取值范围.

函数三要素教案

(一)教学目标 1.知识与技能 (1)了解函数三要素的含义,掌握根据函数的三要素判定两个函数是否为同一个函数的方法. (2)会求简单函数的定义域和函数值. 2.过程与方法 通过示例分析,让学生掌握求函数定义域的基本题型及方法,进一步加深对函数概念的理解.通过求出函数的函数值,加深对应法则的认识. 3.情感、态度与价值观 通过动手实践研究数学问题,提高分析问题,解决问题能力;体会成功地解答数学问题的学习乐趣,培养钻研精神. (二)教学重点与难点 重点:掌握函数定义域的题型及求法. 难点:理解函数由定义域与对应法则确定函数这一基本原则.

二、授课内容: 【知识要点】 ⑴定义域———自变量x 的取值范围 函数三要素 ⑵值 域———函数值的集合 ⑶对应法则——自变量x 到对应函数值y 的对应规则 注意:①核心是对应法则;②值域是由定义域与对应法则所确定了的,故确定一个函数只需确定其定义域、对应法则则即可;③如何判断“两个”函数为同一函数;④函数()12-= x x f 的对应法则f :x (平方再 减1整体再开平方)y 。而在此基础上的函数()1+=x f y ,其自变量为式中的x 而不是1+x ,其对应法则x (加1再取f 运算)y ,即x (加1整体平方再整体减1再整体开方)y ,故此时()1)1(12-+=+x x f 。 【典型例题】 1.函数定义域求法 ⑴已知函数的解析式求定义域时需要注意: ①()x f 是整式,则定义域为R ; ②()x f 是分式,则令分母不为0的值为定义域; ③()x f 是偶次根式,则函数定义域为使被开方式为非负数的自变量集合; ④若()x f 由几个部分式子构成,则定义域是使几个部分式子都有意义的值的集合; ⑤函数[]2 )(x f y =的定义域()x f 0≠; ⑥对数函数()x f y a log =(0>a ,且1≠a )的定义域要求()x f >0; ⑵求函数()[]x g f 的定义域,()x g 相当于()x f 中的x 。 ⑶当函数由实际问题给出时,还应考虑实际意义。 例1:求下列函数的定义域 ①()0 2 )1(4--= x x x f ; ②()1 21 12 2+-+ ++=x x x x x f ; ③()x x f 11111++ = 042 ≥-x 22≤≤-x 解析:①由 ? ∴函数定义域为[)(]2,11,2?- 01≠-x 1≠x 012 ≥++x x (Ⅰ) ② 12 ++x x 的判别式0

函数的极值与导数教学设计一等奖

函数的极值与导数 作者单位:宁夏西吉中学作者姓名:蒙彦强联系电话: 一.教材分析 本节课选自高中数学人教A版选修2-2教材函数的极值与导数,就本册教材而言本节既是前面所学导数的概念、导数的几何意义、导数的计算、函数的单调性与导数等内容的延续和深化,又为下节课最值的学习奠定了知识与方法的基础,起着承上启下的作用.就整个高中教学而言,函数是高中数学主要研究的内容之一,而导数又是研究函数的主要工具,同时导数在化学、物理中都有所涉及可见它的重要性. 二.教学目标 1. 了解极大值、极小值的概念,体会极值是函数的局部性质; 2. 了解函数在某点取得极值的必要条件与充分条件; 3. 会用导数求函数的极值; 4. 培养学生观察、分析、探究、推理得出数学概念和规律的学习能力; 5. 感受导数在研究函数性质中的一般性和有效性,体会导数的工具作用.三.重点与难点 重点是会用导数求函数的极值. 难点是导函数的零点是函数极值点的必要不充分条件的理解. 四.学情分析 基于本班学生基础较差,思维水平参差不齐,所以备课上既要考虑到薄弱同学的理解与接受,又要考虑到其他同学视野的拓展,因此在本节课中我设置了许多的问题,来引导学生怎样学,以问答的方式来激发学生的学习兴趣,同时让更多的学生参与到教学中来.学生已经学习了函数的单调性与导数的关系,学生已经初步具备了运用导数研究函数的能力,为了进一步培养学生的这种能力,体会导数的工具作用,本节进一步研究函数的极值与导数. 五.教具教法 多媒体、展台,问题引导、归纳、类比、合作探究发现式教学 六.学法分析 借助多媒体辅助教学,通过观察函数图像分析极值的特征后,得出极值的定义;通过函数图像上极值点及两侧附近导数符号规律的探究,归纳出极值与导数的关系;通过求极值的问题归纳用导数求函数极值的方法与步骤. 七.教学过程 1.引入 让学生观察庐山连绵起伏的图片思考“山势有什么特点”并结合诗句“横看成岭侧成峰,远近高低各不同”,由此联想庐山的连绵起伏形成好多的“峰点”与“谷点”,这就是数学上研究的函数的极值引出课题. 【设计意图】从庐山美景出发并结合学生熟悉的诗句来激发学生学习兴趣,让学生在愉快中知道学什么.

关于函数恒成立问题的解题策略

关于恒成立问题的解题策略 整理人:凌彬 一、恒成立问题的基本类型 在数学解题中经常碰到在给定条件下某些结论恒成立的命题. 函数在给定区间上某结论成立问题,其表现形式通常有: ①在给定区间上某关系恒成立;②某函数的定义域为全体实数R ; ③某不等式的解为一切实数; ④某表达式的值恒大于a ,等等 ┅ 恒成立问题,涉及到一次函数、二次函数的性质、图像,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查综合解题能力,是历届高考的热点之一. 恒成立问题在解题过程中大致可分为以下几种类型: ①一次函数型;②二次函数型;③变量分离型;④根据函数的奇偶性、周期性等性质; ⑤直接根据函数的图像. 二、恒成立问题解决的基本策略 A 、两个基本思想解决“恒成立问题” 思路1:()m f x ≥在x D ∈上恒成立max [()]m f x ?≥; 思路2:()m f x ≤在x D ∈上恒成立min [()]m f x ?≤. 如何在区间D 上求函数()f x 的最大值或者最小值问题,可以通过题目的实际情况,采取合理有效的方法进行求解,通常可以考虑利用函数的单调性、函数的图像、二次函数的配方法、三角函数的有界性、均值定理、函数求导,等等方法求函数()f x 的最值. 此类问题涉及的知识比较广泛,在处理上也有许多特殊性,希望大家多多注意积累. B 、赋值型——利用特殊值求解 等式中的恒成立问题,常常用赋值法求解,特别是对解决填空题、选择题能很快求得. 例1.由等式43243212341234(1)(1)(1)(1)x a x a x a x a x b x b x b x b ++++=++++++++; 定义映射f :12341234(, , , )a a a a b b b b →+++,则f :(4,3,2,1)_____→ 解:取0x =,则412341a b b b b =++++,又由已知41a =,所以12340b b b b +++=. 例2.如果函数()sin 2cos2y f x x a x ==+的图像关于直线8x π=- 对称,那么____a = 解:取0x =及4x π=-,则(0)()4 f f π=-,即1a =-. 此法体现了数学中从特殊到一般的转化思想.

导数中恒成立问题(最值问题)

导数中恒成立问题(最值问题) 恒成立问题是高考函数题中的重点问题,也是高中数学非常重要的一个模块,不管是小题,还是大题,常常以压轴题的形式出现。 知识储备(我个人喜欢将参数放左边,函数放右边) 先来简单的(也是最本质的)如分离变量后,()a f x ≥恒成立,则有max ()a f x ≥ ()a f x ≤恒成立,则有min ()a f x ≤ (若是存在性问题,那么最大变最小,最小变最大) 1.对于单变量的恒成立问题 如:化简后我们分析得到,对[],x a b ?∈,()0f x ≥恒成立,那么只需min ()0f x ≥ [],x a b ?∈,使得()0f x ≥,那么只需max ()0f x ≥ 2.对于双变量的恒成立问题 如:化简后我们分析得到,对[]12,,x x a b ?∈,12()()f x g x ≥,那么只需min max ()()f x g x ≥ 如:化简后我们分析得到,对[]1,x a b ?∈,[]2,x c d ?∈使12()()f x g x ≥,那么只需 min min ()()f x g x ≥ 如:化简后我们分析得到,[]1,x a b ?∈,[]2,x c d ∈使12()()f x g x ≥,那么只需max min ()()f x g x ≥ 还有一些情况了,这里不一一列举,总之一句话(双变量的存在性与恒成立问题,都是先处理一个变量,再处理另一个变量) 3.对于带绝对值的恒成立问题,我们往往先根据函数的单调性,去掉绝对值,再转变成恒成立问题(201 4.03苏锡常镇一模那题特别典型) 今天呢,我会花很多时间来讲解一道二次函数,因为二次函数是最本质的,(甚至我提出这样一个观点,所有导数的题目95%归根结底就是带参数二次函数在已知定义域上根的讨论,3%是 ax b +与3ax b +这种形式根的讨论,2%是观察法得到零点,零点通常是1 1,,e e 之类) ,所以如果我们真正弄清楚了二次函数,那么对于千变万化的导数题,我们还会畏惧吗。 那么我们先从一道练习题说起 一.二次函数型(通常方法是讨论对称轴,根据图像求最值) 例题1.已知()f x =R ,求a 的取值范围 思考:① 引入定义域(非R ) ②参数在二次项,就需考虑是否为0 ③引入高次(3次,4次,1 x ,ln x ,x e 等等) ④引入2a ,3a 等项(导致不能分离变量)

高考数学压轴难题归纳总结提高培优专题2.8 函数图象高与低差值正负恒成立

2.8 函数图象高与低差值正负恒成立 【题型综述】
数形结合好方法:
对于函数 f (x) 与 g(x) 的函数值大小问题,常常转化为函数 y f x 的图象在 y g x 上方(或下
方)的问题解决,而函数值的大小论证则常以构造函数 y f (x) g(x) ,即利用作差法,转化为论证恒成
立问题. 【典例指引】
例 1.设函数 f x 1 mxln 1 x .
(1)若当 0 x 1时,函数 f x 的图象恒在直线 y x 上方,求实数 m 的取值范围;
(2)求证:
e

1001 1000
1000.4
.
【思路引导】
(1)将问题转化为不等式 1 mx ln 1 x x 在 0 x 1上恒成立,求实数 m 的取值范围的问题。可构
造函数 F x f x x 1 mx ln 1 x x ,经分类讨论得到 F x 0 恒成立时 m 的取值范围即可。
(2)先证明对于任意的正整数 n ,不等式 1
1 n
n 2 5
e
恒成立,即

n
2 5

ln
1
1 n

1
0 恒成立,也

1
2 5n

ln 1
1 n

1 n
0
恒成立,结合(1)③的结论,当
m2 5

1 x0 2

F
x
1
2 5
x

ln
1
x
x
0

x

0,
1 2

上成立,然后令
x 1 n 2
n
可得

n
2 5

ln
1
1 n

1
0
成立,再令
n
1000
即可得不等式成立。
1

函数的三要素学生版

一、函数与映射的基本概念判断 1. 设:f M N →是集合M 到N 的映射,下列说法正确的是 A 、M 中每一个元素在N 中必有象 B 、N 中每一个元素在M 中必有原象 C 、N 中每一个元素在M 中的原象是唯一的 D 、N 是M 中所在元素的象的集合 2. 设集合{1,0,1},{1,2,3,4,5}M N =-=,映射:f M N →满足条件“对任意的x M ∈, ()x f x +是奇数” ,这样的映射f 有____个 3. 设2:x x f →是集合A 到集合B 的映射,若B={1,2},则B A 一定是_____ 4. 若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“值同函数”,那么解析式为2y x =,值域为{4,1}的“值同函数”共有______个 5. 以下各组函数表示同一函数是________________ (1)f (x )=2x ,g (x )=33x ; (2)f (x )=x x ||,g (x )=? ??<-≥;01,01x x (3)f (x )=x 1+x ,g (x )=x x +2; (4)f (x )=x 2-2x -1,g (t )=t 2-2t -1。 二、函数的定义域 1.求下列函数的定义域 (1)2161x x y -+= ;(2 )34x y x +=- 2.(1) 已知)(x f 的定义域为]30(,,求)2(2x x f +定义域。 (2)若函数()x f 23-的定义域为[]2,1-,求函数()x f 的定义域 (3)已知)1(+x f 的定义域为)32[,-,求 2f x y -的定义域。 3. 求函数()f x = 4. 若函数()f x = 3 442++-mx mx x 的定义域为R ,则实数m 的取值范围是 ( )

二元函数的极值与最值

二元函数的极值与最值 二元函数的极值与最值问题已成为近年考研的重点,现对二元函数的极值与最值的求法总结如下: 1.二元函数的无条件极值 (1) 二元函数的极值一定在驻点和不可导点取得。对于不可导点,难以判断是否是极值点;对于驻点可用极值的充分条件判定。 (2)二元函数取得极值的必要条件: 设),(y x f z =在点),(00y x 处可微分且在点),(00y x 处有极值,则0),('00=y x f x ,0),('00=y x f y ,即),(00y x 是驻点。 (3) 二元函数取得极值的充分条件:设),(y x f z =在),(00y x 的某个领域内有连续上二阶偏导数,且=),('00y x f x 0),('00=y x f y ,令A y x f xx =),('00, B y x f xy =),('00,C y x f yy =),('00,则 当02<-AC B 且 A<0时,f ),(00y x 为极大值; 当02<-AC B 且A>0,f ),(00y x 为极小值; 02 >-AC B 时,),(00y x 不是极值点。 注意: 当B 2-AC = 0时,函数z = f (x , y )在点),(00y x 可能有极值,也可能没有极值,需另行讨论 例1 求函数z = x 3 + y 2 -2xy 的极值. 【分析】可能极值点是两个一阶偏导数为零的点,先求出一阶偏导,再令其为零确定极值点即可,然后用二阶偏导确定是极大值还是极小值,并求出相应的极值. 【解】先求函数的一、二阶偏导数: y x x z 232 -=??, x y y z 22-=??. x x z 62 2 =??, 22 -=???y x z , 2 2 2 =??y z . 再求函数的驻点.令x z ??= 0,y z ??= 0,得方程组???=-=-. 022,0232x y y x 求得驻点(0,0)、),(3 2 32. 利用定理2对驻点进行讨论:

(完整版)函数恒成立问题(端点效应)

函数恒成立 专题01:可求最值型 基础知识:(1)不等式0)(≥x f 在定义域内恒成立,等价于()0≥min x f ; (2)不等式0)(≤x f 在定义域内恒成立,等价于()0≤max x f 。 【例1】【重庆文】若对任意的0>x ,24423ln 12)(c c x x x x f ->--=恒成立,求c 的取值范 围。 【例2】函数1)1ln()1()(+-++=kx x x x f 在区间),1(+∞-上恒有0)(>x f ,求k 可以取到的最 大整数。 【变式1】函数)0(ln )(,42)(2>=+-=a x a x g x x x f ,若)(4)(x g x x f -≤恒成立,求a 的取值 范围。 【变式2】【2012新课标文】设函数()2--=ax e x f x Ⅰ 求)(x f 的单调区间; Ⅱ 若1=a ,k 为整数,且当0>x 时,01)()(>++'-x x f k x ,求k 的最大值。 【变式3】【2012新课标理】已知函数)(x f 满足212 1)0()1()(x x f e f x f x +-'=- Ⅰ 求)(x f 的解析式及单调区间; Ⅱ 若b ax x x f ++≥2 2 1)(,求b a )1(+的值。

专题02:分离变量型 基础知识:分离变量的核心思想就是为了简化解题,希望同学通过以下例子有所感悟 【例1】【2010天津】函数1)(2-=x x f ,对任意 )(4)1()(4)(,,232m f x f x f m m x f x +-≤-?? ? ???+∞∈ 恒成立,求实数m 的取值范围。 【变式1】【2010安徽】若不等式0)1)((22≤++-x x a a 对一切(]2,0∈x 恒成立,求a 的取值范 围。 【例2】若函数x ax x x f 1)(2++=在?? ? ???+∞,21上单调递增,求a 的取值范围。 【变式2】【2012湖北】若)2ln(2 1 )(2++-=x b x x f 在),1(+∞-上是减函数,求b 的取值范围。 【变式3】【2014江西】已知函数)(21)()(2R b x b bx x x f ∈-++=,若)(x f 在区间)3 1 ,0(上单 调递增,求b 的取值范围。

导数与函数极值、最值问题(解析版)

【高考地位】 导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试卷难度考查较大. 【方法点评】 类型一利用导数研究函数的极值 使用情景:一般函数类型 解题模板:第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步求方程'()0f x =的根; 第三步 判断'()f x 在方程的根的左、右两侧值的符号; 第四步 利用结论写出极值. 例1 已知函数x x x f ln 1 )(+= ,求函数()f x 的极值. 【答案】极小值为1,无极大值. 【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于( ) A .11或18 B .11 C .18 D .17或18 【答案】C 【解读】

试卷分析:b ax x x f ++='23)(2,???=+++=++∴1010232 a b a b a ???-==????=----=?114012232b a a a a b 或???=-=33 b a .当???=-=3 3 b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值. 当???-==11 4b a 时, )1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,3 11 (<'- ∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意. 所以???-==114b a .181622168)2(=+-+=∴f .故选C . 考点:函数的单调性与极值. 【变式演练2】设函数()21 ln 2 f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为 ( ) A .()1,0- B .()1,-+∞ C .()0,+∞ D .()(),10,-∞-+∞ 【答案】B 【解读】 考点:函数的极值. 【变式演练3】函数x m x m x x f )1(2)1(2 1 31)(23-++-=在)4,0(上无极值,则=m _____. 【答案】3 【解读】 试卷分析:因为x m x m x x f )1(2)1(2 1 31)(23-++-= , 所以()()2'()(1)2(1)21f x x m x m x x m =-++-=--+,由()'0f x =得2x =或1x m =-,又因为

关于函数恒成立问题的解题

恒成立问题 二、恒成立问题解决的基本策略 A 、两个基本思想解决“恒成立问题” 思路1:()m f x ≥在x D ∈上恒成立max [()]m f x ?≥; 思路2:()m f x ≤在x D ∈上恒成立min [()]m f x ?≤. 如何在区间D 上求函数()f x 的最大值或者最小值问题,可以通过题目的实际情况,采取合理有效的方法进行求解,通常可以考虑利用函数的单调性、函数的图像、二次函数的配方法、三角函数的有界性、均值定理、函数求导,等等方法求函数()f x 的最值. 此类问题涉及的知识比较广泛,在处理上也有许多特殊性,希望大家多多注意积累. C 、分清基本类型,运用相关基本知识,把握基本的解题策略 1、一次函数型 若原题可化为一次函数型,则由数形结合思想利用一次函数知识求解,十分简捷. 给定一次函数() (0)y f x ax b a ==+≠,若()y f x =在[, ]m n 恒有()0f x >,则等价于:()0()0f m f n >??>?;同理,若在[, ]m n 恒有()0f x <,则等价于:()0()0f m f n +恒成立的x 的取值围. 解:原不等式转化为:2(1)210x a x x -+-+>在2a ≤时恒成立, 设2()(1)21f a x a x x =-+-+,则()f a 在[2, 2]-上恒大于0, 故有:(2)0(2)0f f ->??>?即2243010 x x x ?-+>??->??,解得:3111x x x x ><-?或或; ∴1x <-或3x >,即x ∈(-∞,-1)∪(3,+∞). 2、二次函数型 例4.若函数()f x =R ,数a 的取值围. 解:由题意可知,当x R ∈时,222(1)(1)01 a x a x a -+-+≥+恒成立, ①当210a -=且10a +≠时,1a =;此时,222(1)(1)101a x a x a -+-+ =≥+,适合;

函数的概念练习题

函数的概念练习题 一、填空题 1、函数的 、 、 统称函数的三要素 2、下列几组函数相等的是 。 ①11 12+=--=x y x x y 与②1112+?-=-=x x y x y 与 ③x x y x y +?-=-=1112与④x y x y ==与2⑤x y x y ==与2)( 3、若函数,1)(2+-=x x x f 则=)1(f ,=--+)1()1(n f n f 。 4、函数)(x f y =与a x =的交点个数为 。 5、函数2233x x x x y -+-= 的定义域为 ,函数24x y -=的定义域 为 。 6、函数)3,1[,12)(2-∈+-=x x x x f ,则函数=+)2(x f 。 7、函数)(x f 的定义域为)3,2[-,则)()()(x f x f x g -+=的定义域为 。 8、函数1)(22+=x x x f ,则=)2 1()2(f f 。 二、解答题 9、下列对应那些能称为函数?并说明理由。 (1)R x x x ∈→,1,(2),y x →这里R y R x x y ∈∈±=+,, (3),y x →这里R y R x x y ∈∈= +,,(4),.12R x x x ∈+→ 10、求下列函数的定义域 (1)3 21)(-=x x f (2)22)(x x x f -=

(3)2232)(2 ++--=x x x x f 11、求下列函数的值域。 (1)]3,0[,32)(2∈--=x x x x f (2)),0[,113)(+∞∈+-=x x x x f (3)123 2)(22+-+-=x x x x x f ( 4)x x y 21-+= 12、

高中数知识讲解_函数的极值与最值提高

导数的应用二------函数的极值与最值 【学习目标】 1. 理解极值的概念和极值点的意义。 2. 会用导数求函数的极大值、极小值。 3. 会求闭区间上函数的最大值、最小值。 4. 掌握函数极值与最值的简单应用。 【要点梳理】 要点一、函数的极值 (一)函数的极值的定义: 一般地,设函数)(x f 在点0x x =及其附近有定义, (1)若对于0x 附近的所有点,都有)()(0x f x f <,则)(0x f 是函数)(x f 的一个极大值,记作 )(0x f y =极大值; (2)若对0x 附近的所有点,都有)()(0x f x f >,则)(0x f 是函数)(x f 的一个极小值,记作 )(0x f y =极小值. 极大值与极小值统称极值. 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值. 要点诠释: 由函数的极值定义可知: (1)在函数的极值定义中,一定要明确函数y=f(x)在x=x 0及其附近有定义,否则无从比较. (2)函数的极值是就函数在某一点附近的小区间而言的,是一个局部概念;在函数的整个定义域内可能有多个极值,也可能无极值.由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小. (3)极大值与极小值之间无确定的大小关系.即一个函数的极大值未必大于极小值.极小值不一定是整个定义区间上的最小值. (4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点.而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点. (二)用导数求函数极值的的基本步骤: ①确定函数的定义域; ②求导数)(x f ';

恒成立问题——最值分析

恒成立问题——最值分析法 最值法求解恒成立问题是三种方法中最为复杂的一种,但往往会用在解决导数综合题目中的恒成立问题。此方法考研学生对所给函数的性质的了解,以及对含参问题分类讨论的基本功。是导数中的难点问题。 一、基础知识: 1、最值法的特点: (1)构造函数时往往将参数与自变量放在不等号的一侧,整体视为一个函数,其函数含参 (2)参数往往会出现在导函数中,进而参数不同的取值会对原函数的单调性产生影响——可能经历分类讨论 2、理论基础:设()f x 的定义域为D (1)若x D ?∈,均有()f x C ≤(其中C 为常数),则()max f x C ≤ (2)若x D ?∈,均有()f x C ≥(其中C 为常数),则()min f x C ≥ 3、技巧与方法: (1)最值法解决恒成立问题会导致所构造的函数中有参数,进而不易分析函数的单调区间,所以在使用最值法之前可先做好以下准备工作: ① 观察函数()f x 的零点是否便于猜出(注意边界点的值) ② 缩小参数与自变量的范围: 通过代入一些特殊值能否缩小所求参数的讨论范围(便于单调性分析) 观察在定义域中是否包含一个恒成立的区间(即无论参数取何值,不等式均成立),缩小自变量的取值范围

(2)首先要明确导函数对原函数的作用:即导函数的符号决定原函数的单调性。如果所构造的函数,其导数结构比较复杂不易分析出单调性,则可把需要判断符号的式子拿出来构造一个新函数,再想办法解决其符号。 (3)在考虑函数最值时,除了依靠单调性,也可根据最值点的出处,即“只有边界点与极值点才是最值点的候选点”,所以有的讨论点就集中在“极值点”是否落在定义域内。 二、典型例题: 例1:设()222f x x mx =-+,当[)1,x ∈-+∞时,()f x m ≥恒成立,求m 的取值范围 思路:恒成立不等式为2220x mx m -+-≥,只需()2min 220x mx m -+-≥,由于左端是关于x 的二次函数,容易分析最值点位置,故选择最值法 解:恒成立不等式为2220x mx m -+-≥,令()222g x x mx m =-+-则对称轴为x m = (1)当1m ≤-时,()g x 在[)1,-+∞单调递增, ()()m i n 11220g x g m m ∴=-=++-≥ 3m ∴≥-即[]3,1m ∈-- (2)当1m >-时,()g x 在()1,m -单调递减,在(),m +∞单调递增 ()()22min 22021g x g m m m m m ∴==-+-≥?-≤≤ (]1,1m ∴∈- 终上所述:[]3,1m ∈- 小炼有话说:二次函数以对称轴为分解,其单调性与最值容易分析。所以二次恒成立不等式往往可考虑利用最值法,此题中对称轴是否在

函数概念及三要素

函数概念及三要素 1.函数的概念: 设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的 任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数(function ). 记作: y=f(x),x ∈A . 其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域(domain );与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域(range ). 2.分段函数:在定义域内不同的区间上有不同的 。注:分段函数是 个函数,而不是多个函数。 3.复合函数:若(),(),(,)y f u u g x x m n ==∈,那么[]()y f g x =称为复合函数,u 称为中间变量,它的取值范围是()g x 的值域。 方法一:函数定义域的求法 关注:分母、根号、指对数底数对数真数、tan 、零次方的底数 例题:)35lg(lg x x y -+= 的定义域为_______ 方法二:求函数解析式的常用方法 1、配凑法 2、待定系数法 3、换元法 4、解方程组法 例1、已知2(1)23f x x x -=--,则()f x = 。

例2、已知2 (31)965f x x x +=-+,则()f x = 。 例3、已知()f x 是一次函数,且(1)(1)23f x f x x +--=+,则()f x = 。 例4、已知()2()32f x f x x +-=-,则()f x = 。 例5、已知()f x 是奇函数,()g x 是偶函数,并且()()1f x g x x +=+,则()g x = 。 方法三:分段函数 分段函数在其定义域的不同子集上,因对应关系不同,而分别用几个不同的式子来表示,这种函数就称之为分段函数.分段函数虽然有几个部分组成,但它表示的是一个函数.近几年高考考察的频率较高. 1.函数 22, 0,()log , 0.x x f x x x ?=?>?≤则1()4f =____;方程1()2f x -=的解是____. 2. 已知函数11,02()ln ,2 x f x x x x ?+<≤?=??>?,如果关于x 的方程()f x k =有两个不同的实根,那么实数k 的取 值范围是( ) (A ) (1,)+∞ (B )3[,)2+∞ (C )32[,)e +∞ (D )[ln 2,)+∞

相关文档
相关文档 最新文档