文档视界 最新最全的文档下载
当前位置:文档视界 › 基本不等式培优专题(学生版)

基本不等式培优专题(学生版)

基本不等式培优专题(学生版)
基本不等式培优专题(学生版)

一元一次不等式培优专题

一元一次不等式综合 【例题求解】 【例题1】(1)已知关于x 的不等式组 5 2x 0 无解,则a 的取值范围是是 ______________________ x a 0 思路点拨:从数轴上看,原不等式组种两个不等式的解集没有公共部分。 (2)已知不等式3x a 0的正整数解恰好是1、2、3,贝y a 的取值范围是 思路点拨:由题意,结合数轴,理解 a x 3 7x m 0 的整数解仅为1、2、3,那么适合这个不等 6x n 0 式组的整数 m 和n 的值是多少。 【例题3】解下列不等式(组) (1) 2m 3 3x n (2) x 2 10 【例题2】如果关于x 的不等式组 思路点拨:借助数轴,分别建立 m n 的不等式,确定整数 m n 的值。

(3 )求不等式x 1 x 2 3的所有整数解。 思路点拨:与方程类似,解含有字母系数的不等式(组)需要对字幕系数进行讨论;解含有绝对值符号的不等式(组)的关键是去掉绝对值符号,化为一般的不等式求解。 【例题4】已知三个非负数a、b、c满足3a 2b c 5和2a b 3c 1,若m 3a 求m的最大值与最小值。 思路点拨:本体综合了方程、不等式组的丰富知识,解题的关键是通过解方程组, 字母的代数式来表示m,通过解不等式组,确定这个字母的取值范围,在约束条件下,求的最大值与最小值。 b 7c。 用含一个 m 【课堂练习】 1、若关于不等式组心X 1 5 4 的解集为x 4,则m的取值范围是x m 0

2、若不等式组2x a x 2b 1 的解集是1 3 集是1,则(a 1)(b 1)的值是 3 、 已知a 0,且ax ,则2x 6 2的最小值是 4、对于整数a、b、c、d,符号 ab 表示运算ac 5 、 -a<-b B 6 、 若方程组 7 、 dc bd ,已知1 1 b 3,则b+d的值是 0,则下列式子正确的是 4x y x 4y 已知a、b为常数, b2 1 的解满足条件0y 1,则k的取值范围是 ax b 0的解集是-,则bx-a<0的解集是 3

高中数学必修五《基本不等式》培优专题(无答案)

高中数学——基本不等式培优专题 目录 培优(1)常规配凑法 培优(2)“1”的代换 培优(3)换元法 培优(4)和、积、平方和三量减元 培优(5)轮换对称与万能k法 培优(6)消元法(必要构造函数求异) 培优(7)不等式算两次 培优(8)齐次化 培优(9)待定与技巧性强的配凑 培优(10)多元变量的不等式最值问题 培优(11)不等式综合应用

培优(1) 常规配凑法 1.(2018届温州9月模拟)已知242=+b a (a,b ∈R ),则a+2b 的最小值为_____________ 2. 已知实数x,y 满足116 2 2 =+y x ,则22y x +的最大值为_____________ 3.(2018春湖州模拟)已知不等式9)1 1)((≥++y x my x 对任意正实数x,y 恒成立,则正实数m 的最小值 是( ) A.2 B.4 C.6 D.8 4.(2017浙江模拟)已知a,b ∈R,且a ≠1,则b a b a -++ +1 1 的最小值是_____________ 5.(2018江苏一模)已知a ﹥0,b ﹥0,且ab b a =+3 2,则ab 的最小值是_____________ 6.(诸暨市2016届高三5月教学质量检测)已知a ﹥b ﹥0,a+b=1,则 b b a 21 4+ -的最小值是_____________

7.(2018届浙江省部分市学校高三上学期联考)已知a ﹥0,b ﹥0,11 111=+++b a ,则a+2b 的最小值 是( ) A.23 B.22 C.3 D.2 培优(2) “1”的代换 8.(2019届温州5月模拟13)已知正数a,b 满足a+b=1,则b a b 1 +的最小值为_____________此时a=______ 9.(2018浙江期中)已知正数a,b 满足112=+ b a 则b a +2 的最小值为( ) A.24 B.28 C.8 D.9

七年级数学不等式专题培优练习题

不等式培优专题 一.选择 1. 已知不等式3x-a ≤0的正整数解恰好是1,2,3,则a 的取值范围是_______ 2. 已知关于x 的不等式组0 521x a x ->??-≥-?无解,则a 的取值范围是_________ 3. 若关于x 的不等式(a-1)x-2a +2>0的解集为x<2,则a 的值为( ) A 0 B 2 C 0或2 D -1 4. 若不等式组220x a b x ->??->?的解集为11x -<<,则 2006()a b +=_________ 5. 已知关于x 的不等式组的解集4 1320 x x x a +?>+???+- 7. 不等式组951 1x x x m +<+??>+? 的解集是2x >,则m 的取值范围是( ) A. 2m ≤ B. 2m ≥ C. 1m ≤ D. 1m f 10.已知a,b 为常数,若ax+b>0的解集是1 3x <,则的0bx a -<解集是( ) A. 3x >- B 3x <- C. 3x > D. 3x < 11.如果关于x 的不等式组的整70 6 0x m x n -≥??-?p 数解仅为1,2,3,那么适合不等式组的整数(m,n)对共有( )对 A 49 B 42 C 36 D 13 三、解答题 1.求满足下列条件的最小的正确整数,n :对于n ,存在正整数k ,使137 158<+

【2021培优】专题2.2 基本不等式(解析版)

旗开得胜 1 专题2.2 基本不等式 姓名:__________________ 班级:______________ 得分:_________________ 注意事项: 本试卷满分100分,考试时间45分钟,试题共16题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置. 一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的. 1.(2020·浙江高二学业考试)已知实数x ,y 满足2 2 1x y +=,则xy 的最大值是( ) A .1 B 3 C . 22 D . 12 【答案】D 【解析】因为22 2x y xy +≥,所以22 2=1y x x y +≤,得12 xy ≤ . 故选:D. 2.(2020·江门市第二中学高一期中)若实数,a b 满足22a b +=,则93a b +的最小值是( ) A .18 B .9 C .6 D .3【答案】C 【解析】因为90,30a b >>,22a b +=, 所以2293293233236a b a b a b a b ++≥?=?==,

旗开得胜 1 当且仅当233a b =,即1 ,12 a b = =时取等号, 所以93a b +的最小值为6, 故选:C 3.(2020·上海高三其他)下列不等式恒成立的是( ) A .222a b ab +≤ B .222a b ab +≥- C .2a b ab +≥-D .2a b ab +≤【答案】B 【解析】A.由基本不等式可知222a b ab +≥,故A 不正确; B.2222220a b ab a b ab +≥-?++≥,即()2 0a b +≥恒成立,故B 正确; C.当1,0a b =-=时,不等式不成立,故C 不正确; D.当3,1a b ==时,不等式不成立,故D 不正确. 故选:B 4.(2020·全国高一)当1x >时,函数241 x x y x -+=-的最小值为( ) A .4 B .5 C .6 D .7 【答案】B 【解析】依题意24 1 x x y x -+= -4111x x =-++-,由于1,10x x >->,所以

一元一次不等式培优专题训练一

一元一次不等式培优专题训练一 例1 1、 用“>”或“<”填空,并在题后括号内注明理由: (1)∵a >b,∴a -m ________b -m (2)∵a >2b,∴2 a ________ b (3)∵4a >5a,∴a ________0 (4)∵2x -1<9,∴x ________5 2、不等号填空:(1)、x 为任意有理数,x -3____x -4.(2)若a <0,b <0,则a ·b ____ab 2. 变式训练:(七中实验)若b a <,则2ac 2bc ;若22bc ac <,则a b (填不等号) ; 例2、不等式(组)的解法:1、不等式1y ,试求出m 的取值范围. x -y=5m -1, ② 3、(09优等生数学)已知关于x ,Y 的方程组???-=+-=-1 331k y x k y x 的解满足x+y >3k+2,求k 的取值范围

一元一次不等式组培优训练

一元一次不等式培优训练 例1、要使a 5<a 3<a <a 2<a 4成立,则a 的取值范围是( ) A.0<a <1 B. a >1 C.-1<a <0 D. a <-1 例2、已知6<a <10, 2 a ≤ b ≤a 2,b a c +=,则c 的取值范围是 。 例3、若不等式0432b <a x b a -+-)(的解集是49x >,则不等式的解集是0324b >a x b a -+-)( 。 例4、设7321x x x x ,,,, 均为自然数,且76321x x x x x <<<<< ,又2012721=+++x x x ,则21x x +的最大值是 。 例5、设实数a 、b 、c 满足a

当堂练习 一、选择题 1、如果a 、b 表示两个负数,且a <b ,则......................................( ). (A)1>b a (B)b a <1 (C)b a 11< (D)ab <1 2、a 、b 是有理数,下列各式中成立的是........................................( ). (A)若|a |≠|b |,则a ≠b (B)若a 2>b 2,则a >b (C)若a ≠b ,则|a |≠|b | (D)若a >b ,则a 2>b 2 3、|a |+a 的值一定是......................................................................( ). (A)大于零 (B)小于零 (C)不大于零 (D)不小于零 4、若不等式(a +1)x >a +1的解集是x <1,则a 必满足...............( ). (A)a <0 (B)a >-1 (C)a <1 (D)a <-1 5、若由x <y 可得到ax ≥ay ,应满足的条件是...............................( ). (A)a ≥0 (B)a ≤0 (C)a >0 (D)a <0 6、某市出租车的收费标准是:起步价7元,超过3km 时,每增加1km 加收2.4元(不足1km 按1km 计).某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程是x km ,那么x 的最大值是........................................................( ). (A)11 (B)8 (C)7 (D)5 7、若不等式组?? ?>≤+<+1,159m x x x 的解集是x >2,则m 的取值范围是( ). (A)m ≤2 (B)m ≥2 (C)m ≤1 (D)m ≥1 二、填空题 9、对于整数a ,b ,c ,d ,定义bd ac c d b a -=,已知34 11<

4.2 不等式的基本性质 能力培优训练(含答案)

4.2 不等式的基本性质 专题一 不等式的基本性质 1.(2013·淄博)若a b >,则下列不等式不一定成立的是( ) A .a m b m +>+ B .22(1)(1)a m b m +>+ C .22 a b -<- D .22a b > 2.如图, A 、B 两点在数轴上表示的数分别为a 、b ,下列式子成立的是( ) 0 图3b a B A A .ab >0 B .a b +<0 C .(1)(1)b a -+>0 D .(1)(1)b a -->0 3.已知a 、 b 、 c 、d 都是正实数,且d c b a <.给出下列四个不等式: ①d c c b a a +<+; ②b a a d c c +<+; ③b a b d c d +<+; ④d c d b a b +<+;其中不等式正确的是 _____________________________. 4. 5.

状元笔记 【知识要点】 1.不等式的性质:①不等式两边加(或减)同一个数(或式子),不等号的方向不变;②不等式两边乘(或除以)同一个正数,不等号的方向不变;③不等式两边乘(或除以)同一个负数,不等号的方向改变. 2.不等式的传递性:如果,a b b c >>,那么a c >. 【温馨提示】 不等式两边乘(或除以)同一个负数,不等号的方向改变. 【方法技巧】 1.利用不等式的符号变化对乘以或除以的数或式子进行判断正负. 2.对于一些较复杂的变形,遇到两个或者两个以上的性质,一定要依据性质仔细分析,不要因盲目下结论导致判断失误. 参考答案: 1. D 解析:根据不等式的性质“不等式的两边都加上或减去同一个数或整式,不等号的方向不变”,可知选项A 正确;由于m 2+1>0,根据不等式的性质“不等式的两边都乘以(或除以)同一个正数,不等号的方向不变”,可知选项B 正确;根据不等式的性质“不等式的两边都乘以(或除以)同一个负数,不等号的方向改变”,可知选项C 正确;由于a ,b 的正负不明确,故a 2,b 2的大小也不确定,如a =﹣1, b =﹣2时,满足a b >,但a 2<b 2,故选项D 不正确.故应选D . 2. C 解析:根据数轴知-1<a <0,b >1,则a+1>0,b -1>0.因此ab <0,a+b >0,(a+1)( b -1)>0,(a -1)( b -1)<0,故选C . 3. ①③ 解析:因为d c b a <,所以bc ad <,所以a b c d <,所以11+<+a b c d ,所以a a b c d c +<+,即可得 d c c b a a +<+,同样的方法可得d b c d a b ?++,故填①③. 4.

培优专题-不等式培优资料(教师版)

不等式(组)与方程(组)互化 一、方程(组)转化为不等式(组) 例1关于x 的方程 11 a x =+的解是负数,则a 的取值范围是( ) A.1a < ;B.1a <且0a ≠;C.1a ≤;D.1a ≤或0a ≠. 分析:先解关于x 的方程11 a x =+,用含有字母a 的式子表示未知数x ,然后构造不等式组求解. 解:解方程 11 a x =+,得x=a -1. 又由关于x 的方程的解是负数即x<0, 所以?? ?≠<-. 0, 01a a 解得,a<1且0a ≠. 故应选B. 例2如果方程组?? ?=++=+3 3, 13y x k y x 的解x 、y 满足x +y>0,则k 的取值范围是 . 分析:先解方程组,用含有k 的式子表示x 、y 或直接表示x +y ,再根据x +y>0,构造不等式求解. 解:解方程组???=++=+3 3,13y x k y x ,得x +y=4k +1. 又由x +y>0, 所以4 k +1>0,解得,k>-4. 二、不等式(组)转化为方程(组) 例3已知不等式84x x m +>+(m 是常数)的解集是3x <,求m .分析:先解关于x 的不等式,再根据已知的解集构造方程求解. 解:解不等式84x x m +>+,得x<3 8m -. 由3x <,所以 3 8m -=3. 解这个关于m 的方程,得m=-1.

例4(若不等式组?? ?>->-. 02, 2x b a x 的解是-1->-.02,2x b a x ,得?? ? ??<+>.2, 2b x a x 由于这个不等式组有解,所以其解集应为a +20的解集是x<2,则不等式-3x +n<0的解集是_________。解析:虽然不等式与等

(完整版)专题--含参一元一次不等式组(1)

第15讲 一元一次不等式组培优专题 一、含参不等式(组)有关的问题 1. 探讨不等式组的解集(写出,a b 满足的关系式) (1)关于x 的不等式组x a x b >????≤11x m x 无解,则m 的取值范围是 (2)若不等式组121 x m x m <+??>-?无解,则m 的取值范围是

(3)若不等式组???>≤????+-<-3212b x a x 11<<-x )3)(3(+-b a

(2)如果关于x 的不等式组7060 x m x n -≥??-的每一个解都是21122 x -<的解,求a 的取值范围

变式:如果关于x的不等式组 22 4 x a x a >- ? ? <- ? 有解,并且所有解都是不等式组-6<x≤5的解,求a 的取值范围. 4. 若关于x的不等式组 21 1 3 x x x k - ? >- ? ? ?-< ? 的解集为2 x<,求k的取值范围 5.不等式组 12 35 a x a x -<<+ ? ? << ? 的解集是3x <<2 a+,求a的取值范围

专题一 培优点2 基本不等式的综合问题(解析版)

培优点2 基本不等式的综合问题 【要点提炼】 利用基本不等式求最值时,要坚持“一正、二定、三相等”原则,解题时可以对条件灵活变形,满足求最值的条件要求. 【典例】1 (1)已知x 2+y 2 +xy =1,则x +y 的最大值是_________________________. (2)设x ≥0,y ≥0,x 2+y 22=1,则x ·1+y 2的最大值为________. (3)已知x>0,y>0,1x +2y +1 =2,则2x +y 的最小值为________. 【答案】 (1)233 (2)324 (3)3 【解析】 (1)由(x +y)2 =xy +1, 得(x +y)2≤? ????x +y 22+1, 则x +y ≤233(当且仅当x =y =33 时取等号), 故x +y 的最大值为233 . (2)x ·1+y 2=2x ·1+y 22 ≤2·x 2+1+y 222=2·x 2+y 22+122 =324? ?? ??当且仅当x =32,y =22时取等号, 故x ·1+y 2的最大值为324 . (3)∵2x +(y +1)=12? ?? ??1x +2y +1[2x +(y +1)]

=12? ????2+y +1x +4x y +1+2≥4, ∴2x +y =2x +(y +1)-1≥3(当且仅当x =1,y =1时取等号),故2x +y 的最小值为3. 【典例】2 记max{a ,b}为a ,b 两数的最大值,则当正数x ,y(x>y)变化时,t =max ? ?????x 2,25y x -y 的最小值为________. 【答案】 10 【解析】 方法一 由题意知t ≥x 2,t ≥25y x -y , ∴2t ≥x 2 +25y x -y , 又∵x 2+25y x -y ≥x 2+25???? ??y +x -y 22=x 2+100x 2 ≥20,∴2t ≥20,即t ≥10. ∴当正数x ,y(x>y)变化时,t =max ???? ??x 2,25y x -y 的最小值为10. 方法二 由题意知t ≥x 2>0,t ≥25y x -y >0, ∴t 2≥x 2 ·25y x -y , 又∵x 2·25y x -y ≥x 2·25???? ??y +x -y 22=x 2·100x 2 =100,∴t 2 ≥100,即t ≥10. ∴当正数x ,y(x>y)变化时,t =max ??????x 2,25y x -y 的最小值为10. 【方法总结】 (1)运用基本不等式求最值时,可通过配凑变量的系数或加减常数项出现定值,满足基本不等式求最值的条件. (2)将目标函数式中的常数用已知式进行等量代换,或者将目标函数式与已知代数式相乘,然后通过化简变形,

一元一次不等式专题训练一

1 一元一次不等式培优专题训练 1.若(a+1)x >a+1的解集是x <1,则a 必须满足( ) A.a <0 B.a ≤-1 C.a >-1 D.a <-1 2若m >n ,则不等式(n-m)x <0的解集为( ) A.x >0 B.x <n m -1 C.x >n-m D.x <0 3、填空: (1)x 为任意有理数,x -3____x -4. (2)若a <0,b <0,则a ·b ____ab 2. 变式训练: 若b a <, 则2ac 2bc ; 若22bc ac <,则a b (填不等号); 4、解不等式 x x x x +-≤-+-2 23142,求出它的非正整数解,并把解表示在数轴上。 5、 x 取哪些非负整数时,3 12523+-x x 的值不小于与1的差? 6.解不等式,并把解集表示在数轴上。 2 15329323+≤---x x x 2 12.01.03.04.012.0+≤+--x x x 含参数的方程 7、m 取何值时,关于x 的方程 2153166--=--m x m x 的解大于1 8、已知方程组 2x +y=3m +1, ① 中, x -y=5m -1, ② 且满足x>y ,试求出m 的取值范围. 9、 已知关于x ,Y 的方程组???-=+-=-1331 k y x k y x 的解满足x+y >3k+2,求k 的取值范围 10、已知0)3(2422=--+-k y x x ,若y<0, 求k 的取值范围;(2) 若k<0,求y 的取值范围 含参数的不等式 11、已知不等式4 2213x a x +-〉的解集是x>2, 求()a x a -?-231的解集。

不等式与不等式组培优专题

不等式与不等式组培优专题 知识点: 一、不等式(组)的解、解集、解不等式 1、能使一个不等式(组)成立的未知数的一个值叫做这个不等式(组)的一个解。 不等式的所有,叫做这个不等式的解集。 不等式组中各个不等式的叫做不等式组的 解集。 2 ?求不等式(组)的解集的过程叫做解不等式(组)。 二、不等式(组)的类型及解法 1、一元一次不等式: (l)概念:含有未知数并且含未知数的项的次数是的不等式,叫做一元一次不等式。 (2 )解法:与解一元一次方程类似,但要特别注意当不等式的两边同乘以 (或除以)一个负数时,不等号方向要改变。 2、一元一次不等式组: (1)概念:含有的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组。 (2)_________________________________________________________________ 解法:先求出各不等式的解集,再确定解集的_____________________________________ 注:求不等式组的解集一般借助数轴求解较方便。 三、不等式与不等式的性质 1、不等式:用不等号表示的式子。(表不等关系的常用符号:艺<,>)。 2、不等式的性质:

(l) ____________________________________________________ 。用字母表示为:— (2) ____________________________________________________ 。用字母表示为:_ (3) ____________________________________________________ 。用字母表示为:—

基本不等式培优专练参考答案(1)

基本不等式培优专练参考答案 培优点一 常规配凑法 1.答案:0 提示:242a b +=≥20a b ?+≤; 2.答案:94 提示:22 29121682 y x ++=≥= 3.答案:B 提示:柯西不等式知:21 1 ()()(194x my m x y ++ ≥≥?≥ 4.答案:1 提示:11 11111 a b b a a a ++-≥++-≥++ 5.答案:62 23 a b =+≥62≥?ab 6.答案:9 提示:241 ()(2)(21)92a b b a b b +-+≥+=- 7.答案:B 提示:2112[+12(1)]( )3(1311 a b a b a b +=+++-≥-=++培优点二 “1”的代换 8.答案:3,21 提示:311≥++=+b a a b b a b ,当且仅当2 1 ==b a 时取等号 9.答案:D 提示:9)12()2)(12(22 =+≥++=+b a b a b a 10.答案: 49 提示:4 9 )12(41)134)(3(411342=+≥-++-++=-++y x y x y x y x y x y x 11.答案:C 提示:(1)当2≥≥b a 时,由 2431≤≤+b b a 知,231,,max ≥=?????? +a b a b a (2)当b a ≥≥2时,231, ,max ≥=? ?? ? ?? +a b a b a (3)当b a ≥≥2时,23131, ,max ≥+=???? ?? +b a b a b a 故? ?? ???+b a b a 31, ,max 的最小值为2 12. 答案:3 2 2 提示:111221)11(2212222-++=-+-+++=-+++b a b b a a b b a a

初一数学培优之简单的不定方程、方程组

初一数学培优之简单的不定方程、方程组 阅读与思考 如果方程(组)中,未知数的个数多于方程的个数,那么解往往有无穷多个,不能唯一确定,这样的方程(组)称为不定方程(组). 对于不定方程(组),我们常常限定只求整数解,甚至只求正整数解.加上这类限制后,解可能唯一确定,或只有有限个,或无解.这类问题有以下两种基本类型: 1.判定不定方程(组)有无整数解或解的个数; 2.如果不定方程(组)有整数解,求出其全部整数解. 二元一次不定方程是最简单的不定方程,一些不定方程(组)常常转化为二元一次不定方程求其整数解. 解不定方程(组),没有固定的方法可循,需具体问题具体分析,经常用到整数的整除、奇数偶数、因数分解、不等式分析、穷举、分离整数、配方等知识与方法.根据方程(组)的特点进行适当变形,并灵活运用相关知识与方法是解不定方程(组)的基本思路. 例题与求解 【例1】满足222219981997m n +=+ (0<m <n <1 998)的整数对(m ,n )共有_______对. (全国初中数学联赛试题) 解题思路:由方程特点,联想到平方差公式,利用因数分解来解答. 【例2】电影票有10元,15元,20元三种票价,班长用500元买了30张电影票,其中票价为20元的比票价为10元的多( ). A .20张 B .15张 C .10张 D .5张 (“希望杯”邀请赛试题) 解题思路:设购买10元,15元,20元的电影票分别为x ,y ,z 张.根据题意列方程组,整体求出的z -x 值. 【例3】某人家中的电话号码是八位数,将前四位数组成的数与后四位数组成的数相加得14 405,将前三位数组成的数与后五位数组成的数相加得16 970,求此人家中的电话号码. (湖北省武汉市竞赛试题) 解题思路:探索可否将条件用一个式子表示,从问题转换入手. 【例4】一个盒子里装有不多于200粒棋子,如果每次2粒,3粒,4粒或6粒地取出,最终盒内都剩一粒棋子;如果每次11粒地取出,那么正好取完,求盒子里共有多少粒棋子? (重庆市竞赛试题) 解题思路:无论怎样取,盒子里的棋子数不变。恰当设未知数,把问题转化为求不定方程的正整数解. 【例5】 甲组同学每人有28个核桃,乙组同学每人有30个核桃,丙组同学每 人有31个核桃,三组的核桃总数是365个.问:三个小组共有多少名同学? (海峡两岸友谊赛试题) 解题思路:根据题意,列出三元一次不定方程,从运用放缩法求取值范围入手. 【例6】某中学全体师生租乘同类型客车若干辆外出春游,如果每辆车坐22人,就会余下1人;如果开走一辆空车,那么所有师生刚好平均分乘余下的汽车. 问:原先租多少辆客车和学校师生共多少人?(已知每辆车的容量不多于32人)

高三培优 利用基本不等式处理最值问题

高三培优 利用基本不等式处理最值问题 不等式问题始终是高考数学的热点题型之一,而基本不等式法是最为常见、应用十分广泛的方法之一.下面笔者以近几年高考试题及模拟题为例,对高考中考查利用基本不等式解题的基本特征和基本类型作一些分类解析,供参考. I 基础知识 1.(1)若R b a ∈,,则ab b a 22 2 ≥+;(2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当 b a =时取“=”). 2.(1)若00a ,b >>,则ab b a ≥+2 ; (2)若00a ,b >>,则ab b a 2≥+(当且仅当b a =时取“=”); (3)若00a ,b >>,则2 2? ? ? ??+≤b a ab (当且仅当b a =时取“=”). 3.若0x >,则12x x +≥(当且仅当1x =时取“=”);若0x <,则12x x +≤-(当且仅当1x =-时取“=”);若0x ≠,则12x x +≥,即12x x +≥或1 2x x +≤-(当且仅当b a =时取“=”). 4.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”);若0ab ≠,则2a b b a +≥,即 2a b b a +≥或2a b b a +≤-(当且仅当b a =时取“=”). 5.若R b a ∈,,则2 222 2 a b a b 骣++琪£琪 桫(当且仅当b a =时取“=”). II 拓展 1 .一个重要的不等式链:2 112a b a b +≤≤≤ +. 2.()()2222 3()3ab bc ca a b c a b c ++≤++≤++ 3.函数()()0,0b f x ax a b x =+ >>图象及性质 (1)函数()0)(>+=b a x b ax x f 、图象如右图所示: (2)函数()0)(>+=b a x b ax x f 、性质: ①值域: () ,?-∞-+∞? ; ②单调递增区间:,,??-∞+∞ ? ??? ;单调递减区间:0,,0??? ?? ?? ?? . 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”; (2)求最值的条件“一正,二定,三相等”; (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用.

一元一次不等式培优专题

一元一次不等式综合 【例题求解】 【例题1】(1)已知关于x 的不等式组???>-≥-0 025a x x 无解,则a 的取值围是是___________。 思路点拨:从数轴上看,原不等式组种两个不等式的解集没有公共部分。 (2)已知不等式03≤-a x 的正整数解恰好是1、2、3,则a 的取值围是___________。 思路点拨:由题意,结合数轴,理解3 a x ≤ 。 【例题2】如果关于x 的不等式组? ??<-≥-0607n x m x 的整数解仅为1、2、3,那么适合这个不等式组的整数m 和n 的值是多少。 思路点拨:借助数轴,分别建立m 、n 的不等式,确定整数m 、n 的值。 【例题3】解下列不等式(组) (1)n x m +<+332 (2)102≤-x

(3)求不等式321≤-+-x x 的所有整数解。 思路点拨:与方程类似,解含有字母系数的不等式(组)需要对字幕系数进行讨论;解含有绝对值符号的不等式(组)的关键是去掉绝对值符号,化为一般的不等式求解。 【例题4】已知三个非负数a 、b 、c 满足132523=-+=++c b a c b a 和,若c b a m 73-+=。求m 的最大值与最小值。 思路点拨:本体综合了方程、不等式组的丰富知识,解题的关键是通过解方程组,用含一个字母的代数式来表示m ,通过解不等式组,确定这个字母的取值围,在约束条件下,求m 的最大值与最小值。 【课堂练习】 1、 若关于不等式组?????<++>+0 1456m x x x 的解集为4-<-3212b x a x 的解集是11<<-x ,则)1)(1(-+b a 的值是_____________。

北师大八年级不等式培优上课讲义

第一章 一元一次不等式和一元一次不等式组 【知识总结】 一. 不等关系 ※1. 一般地,用符号“<”(或“≤”), “>”(或“≥”)连接的式子叫做不等式. ¤2. 要区别方程与不等式: 方程表示的是相等的关系;不等式表示的是不相等的关系. ※3. 准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语. 非负数 <===> 大于等于0(≥0) <===> 0和正数 <===> 不小于0 非正数 <===> 小于等于0(≤0) <===> 0和负数 <===> 不大于0 二. 不等式的基本性质 ※1. 掌握不等式的基本性质,并会灵活运用: (1) 不等式的两边加上(或减去)同一个整式,不等号的方向不变,即: 如果a>b,那么a+c>b+c, a-c>b-c. (2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即 如果a>b,并且c>0,那么ac>bc, c b c a >. (3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即: 如果a>b,并且c<0,那么ac

七年级数学培优 不等式

专题16 不等式(组) 阅读与思考 客观世界与实际生活既存在许多相等关系,又包含大量的不等关系,方程(组)是研究相等关系的重要手段,不等式(组)是探求不等关系的基本工具,方程与不等式既有相似点,又有不同之处,主要体现在: 1. 解一元一次不等式与解一元一次方程类似,但解题时要注意两者之间的重要区别;等式两边都乘(或除)以同一个数时,只要考虑这个数是否为零,而不等式两边都乘以(或除以)同一个数时,不但要考虑这个数是否为零,而且还要考虑这个数的正负性. 2. 解不等式组与解方程组的主要区别是:解方程组时,我们可以对几个方程进行“代入”或“加减”式的加工,但在解不等组时,我们只能对某个不等式进行变形,分别求出每个不等式的解集,然后再求公共部分.通俗地说,解方程组时,可以“统一思想”,而解不等式组时只能“分而治之”. 例题与求解 【例1】已知关于x 的不等式组?????<-+->-+x t x x x 2 35 35 2恰好有5个整数解,则t 的取值范围是( ) A 、2116-<<-t B 、2116-<≤-t C 、2116-≤<-t D 、2 116-≤≤-t (2013 年全国初中数学竞赛广东省试题) 解题思路:把x 的解集用含t 的式子表示,根据题意,结合数轴分析t 的取值范围. 【例2】如果关于x 的不等式7 10 05)2(< >---x n m x n m 的解集为那么关于x 的不等式)0(≠>m n mx 的解集为 . (黑龙江省哈尔滨市竞赛试题) 解题思路:从已知条件出发,解关于x 的不等式,求出m ,n 的值或m ,n 的关系. 【例3】已知方程组?? ?=+=-6 2 y mx y x 若方程组有非负整数解,求正整数m 的值. (天津市竞赛试题) 解题思路:解关于x ,y 的方程组,建立关于m 的不等式组,求出m 的取值范围. 【例4】已知三个非负数a ,b ,c 满足3a +2b +c =5和2a +b -3c =1,若m =3a +b -7c ,求m 的最大 值和最小值. (江苏省竞赛试题) 解题思路:本例综合了方程组、不等式(组)的知识,解题的关键是用含一个字母的代数式表示m ,通过解不等式组,确定这个字母的取值范围,在约束条件下,求m 的最大值与最小值.

不等式培优训练

一元一次不等式(组)解问题专练 问题一:已知一元一次不等式解集求待定常数取值(基本情形为ax>b(或ax0时,解为a b x >; ②当a=0时,且b<0,则x 取一切实数;当a=0时,且b ≥0,则无解; ③当a<0时, 解为a b x < ; 例1.如果关于x 的不等式(1)1a x a +>+的解集为1x <,则a 的取值范围是________ 练习1.已知关于x 的不等式(1-a)x >2的解集是x < 21a -,则a 的取值范围是_________ 2. 不等式(3)1a x ->的解集是13 x a - ,则a 的取值范围 例2.若方程x x m x m 5)3(1)1(3--=++的解是负数,则m 的取值范围是__________ 练习3.关于x 的方程3(x+2)=k+2的解是正数,则k 的取值范围是_________ 4.不关于x 的方程4132x m x -+=-的解是负数,则m 的取值范围 例3.关于x 的不等式3x ﹣a≤0,只有两个正整数解,则a 的取值范围是 练习5.若不等式x <a 只有4个正整数解,则a 的取值范围是 6.关于x 的不等式4x ﹣2a≤0,只有三个非负正整数解,则a 的取值范围是 例4. 若关于x 的不等式3m -2x <5的解集是x >2,则实数m 的值为________ 练习7.若关于x 的不等式1()23x m m ->-的解集为2x >,则m 的值为____________ 8. 若关于x 的不等式9m -2x <6的解集是x >-1,则实数m 的值为________ 问题二:一元一次不等式组已知解集求待定常数取值 (1) 不等式组?? ?≠>>)(b a b x a x 的解集是________,则b a 与的关系为______ 例1.若关于x 的不等式组???>>m x x 2的解集是2>x ,则m 的取值范围是 练习1. 如果不等式组323 x x a >??>+?的解集是21x a >+,则a 的取值范围是 2. 如果不等式组3621 x a x a >-??>+?的解集是36x a >-,则a 的取值范围是 (2) 不等式组()x a a b x b ?≠?? 的解集是________,则b a 与的关系为______ 例1. 若关于x 的不等式组2x x m ??? 的解集是2x ,则m 的取值范围是

相关文档
相关文档 最新文档