文档视界 最新最全的文档下载
当前位置:文档视界 › 电力系统资料

电力系统资料

电力系统资料
电力系统资料

电力系统:由发电厂、升压变电所、输电线路、降压变电所及电力用户所组成的统一整体;

动力系统:电力系统加上带动发电机转动的动力装置构成的整体。

电力网:由各类升压变电所、输电线路、降压变电所组成的电能传输和分配的网络。

分类:

按供电范围、输送功率和电压等级分:地方电力网和区域电力网。

按电压等级电力网分:低压(1kV及以下)、高压(1~330kV)、超高压(330~1000kV)和特高压(1000kV以上)几种。

发电厂:把其他形式的一次能源转变成二次能源的一种特殊工厂。

变电站:变电站是汇集电源、升降电压和分配电力的场所,是联系发电厂和用户的中间环节。

电力系统的优越性

(1)提高了电力网运行的可靠性

(2)提高了供电的稳定性

(3)提高了发电的经济性

一次设备:直接参与生产、输送和分配电能的电气设备称为一次设备

分类:

1)能量转换设备:发电机、变压器、电动机、电容器

2)开关设备:用于电路的接通和开断。断路器、熔断器、负荷开关、隔离开关

3)载流导体:母线、绝缘子和电缆等

4)互感器:电压互感器和电流互感等

5)电抗器和避雷器

接地的种类:

工作接地(系统接地):为电力系统或电气设备运行需要所设的接地(如中性直接接地点或经其他装置接地)。

保护接地:电气设备的金属外壳,配电装置的构架和线路杆塔等当设备绝缘损坏时有可能带电,为防止危及人身和其他设备的安全而对之设立的接地。

雷电保护接地:为雷电保护装置(避雷针、避雷线、避雷器等)向大地泄放雷电流而设的接地。

二次设备 :对一次设备进行测量、控制、监视和保护的设备.主要包括测量仪表,继电保护及自动装置。对电气一次设备的工作状况进行监测、控制和保护的辅助性电气设备称为二次设备。如电气仪表,继电器,自动控制设备,信号及控制电缆等。

高压断路器:是电力系统中最重要最复杂的电气设备之一,它具有完善的灭弧装置和高速传动机构,能接通和断开各种情况下高压电路中的电流,用以完成主接线运行方式的改变和尽快切除故障电路。

高压断路器作用:正常运行时,接通和断开负荷电流;故障时,用来迅速断开短路电流,切除故障电路。

高压断路器类型

根据安装地点分类:户内和户外。

按灭弧介质分类:(1)油断路器:(2)空气断路器(3)SF6断路器(4)真空断路器等

断路器种类:

S-“少”油式 D-“多”油式 K-压缩”空”气式

Z-“真”空式 L-“六”氟化硫式

断路器的型号 SW6-110 SN10—10 KW5-220 SF6--35

高压熔断器的型号:

RN5、RN6 RW3 RW7

RW3-10 RN1—10 RW10-10 RW10-35

隔离开关的主要作用:

1、隔离电源:使电路形成明显断点

2、切换母线:主要用于双母线倒闸

3、开断小容量的空载电路和小电流回路:

例:(1)接通或断开电压互感器。

(2)接通或断开阀型避雷器。

(3)可以拉合励磁场电流不超过 2A的空载变压器。

(4)用屋外三联隔离开关,可以拉,合电压在10kV以下,电流在15A 下的负荷.

(5)接通或断开电力变压器中性点的接地线(系统中有接地故障不允许操作)

隔离开关无灭弧装置,不能带负荷操作;需与断路器配合使用,由断路器完成电路的通断.

有动、静触头和可见断点

送电时,先合隔离开关,后合断路器;断电时先断断路器,后断隔离开关(隔离开关“先合后断”)。

接地刀闸的作用:检修时断开主刀闸后,利用接地刀闸将隔离开关待检修的一侧设备接地,以保证检修工作的安全.

接地刀闸和主闸刀的操作顺序:断开电路时先分主闸刀,再合接地刀闸;接通电路时先分接地刀闸,再合主闸刀.二者状态相反.

双柱式隔离开关

三柱式隔离开关

单柱式隔离开关

隔离开关的型号

GW6-220 GN6-10 GN23-20

熔断器的型号

RW3-10型RW2-35 RN1—10 20/10 RW10-35

母线:当电源数和出线数不相等时,为了便于电能的汇集和分配,采用母线作为中间环节,可使接线简单清晰,运行方便,有利于扩建

单母线接线

QF—断路器;QS—隔离开关;W—母线;L—线路

单母线接线适用范围

因单母线接线可靠性和灵活性差,这种接线只适用于6~220KV系统中只有一个电源,且出现回路少的小型发电厂或多数箱式变电站中。

单母线分段接线适用范围

一般来说单母线分段接线应用在电压等级为6~10KV、出线在6回及以上时,每段所接容量不宜超过25MW;电压等级为35~60KV时,出线数不超过8回;电

压等级110~220KV时,出线数不宜超过4回。

单母线带旁路母线接线

单母线带旁路母线接线适用范围

由于旁路系统造价昂贵,同时使配电装置和运行复杂,所以规程规定:

电压为35kV而出线在8回以上,110kV、6回以上,220kV、4回以上的屋外配电装置都可加设旁路母线。

6~10kV屋内配电装置,因为其负荷小、供电距离短,容易取得备用电源;并且出线大多采用电缆馈线,事故分闸次数少;特别是:目前采用成套配电装置,加上采用灭弧室不需检修的真空断路器一般不装设旁路母线。

新设计规程中指出:“当断路器为六氟化硫(SF6)型时,可不设旁路设施”倒母线操作

保证隔离开关“先通后断”或在等电位状态下运行。通电时先通母线侧隔离开关,后通线路侧隔离开关;断电时相反;

任一电源或出线回路由工作母线切换到备母线,或各种运行方式之间转换的基本操作称为倒母线操作,通过倒母线操作,任一回路将不会停电。

倒母线操作的基本原则是:

A.首先母联断路器一定要合上,并取下母联断路器的操作保险,使其成为一“死开关”,以保证操作中两条母线始终并列为等电位,以实现隔离开关的等电位切换。

B.然后必需先依次合上所有回路与备用母线相连的隔离开关,再依次断开与工作母线相连的隔离开关。这里隔离开关的“先合后断”也是为了保证隔离开关在等电位下进行操作,而不会产生电弧。

倒母线:当双母线接线采用一组母线工作、一组母线备用的方式运行时,需检修工作母线,可将工作母线经倒闸操作转换为备用状态之后,进行母线停电检修工作,这个操作称为倒母线。

将工作母线转换为备用状态的基本操作:

1)合母联断路器两侧隔离开关

2)合母联断路器向备用母线充电,检验备用母线是否完好;

3)切断母联断路器控制回路电源

4)依次合入与II组母线连接的母线隔离开关(除母联断路器外)

5)依次断开与I组母线连接的母线隔离开关(除母联断路器外)

6)投入母联断路器控制回路电源,拉开母联断路器及两侧隔离开关

双母线接线适用范围

广泛应用于大、中型发电厂和变电所中。一般适用于引出线和电源较多、输送和穿越功率较大、要求可靠性和灵活性较高的以下场合:

1)短路容量大,出线带电抗器的6~10kV配电装置。

2)35~66kV出线数目超过8回且连接电源较多、负荷较大的装置。

3)110~220kV出线5回以上或者在系统中居重要位置,出线为4回及以上的装置。

双母线接线的倒闸操作(母线侧

隔离开关检修)

I组母线为工作母线、II组母线

为备用母线时,需要检修电源1

的母线隔离开关1QSI的基本操作:

1)拉开断路器1QF和隔离开关1QSI;

2)按照倒母线的操作步骤将电源2和全部出线转移到II母线上工作;

3)拉开母联断路器及两侧隔离开关

双母线接线的倒闸操作

I组母线为工作母线、II组母线为备用母线时,出线断路器1QF拒动,利用母联断路器切断该出线的基本操作:

1)利用倒母线的操作步骤只将出

线WL1转移到II母线上工作;

2)这时出线WL1的工作电流由I

母线经母联断路器及两侧隔离开关到

1QS3、1QF及1QS2送出;

3)拉开母联断路器及两侧隔离开

关,可切断出线WL1。

单母线分段带旁路

1QF检修,WL1不停电倒闸操作:

a、投入1QFp的瞬时继电保护;

b、合1QFp两边的隔离开关;

c、合1QFp向旁路母线充电,检查旁路母线WBp有无故障;

d、若旁路母线WBp良好,先将1QFp断开,退出1QFp的瞬时继电保护再投入定值与该线路继电保护装置的定值相同的保护,然后重新合入旁路断路器1QFp;

e、合1QSp;

f、拉开1QF;

g、拉开1QS2及1QS1

单母线分段带旁路

1QF检修后,恢复线路WL1送电的倒闸操作:

1)投入1QF 的继电保护;

2)合1QS1及1QS2;

3)合1QF

3)拉开1QSp;

4)拉开1QFp

5)拉开1QFp两边的隔离开关

旁路母线的作用

断路器经过长期运行或开断一定次数的短路电流之后,其机械性能和灭弧性能都会下降,必须进行检修以恢复其性能。设置旁路母线的目的就是可以不停电地检修任一台出线断路器。

旁路断路器在同一时间只能代替一个线路断路器的工作。

但母线出现故障或检修时,仍会造成整个主母线停止工作。

凝汽式发电厂主接线

变电站电气主接线

热电厂主接线

内桥接线适用于输电线路较长,发生故障的可能性较大,而变压器操作不频繁的场合;

外桥形接线适用于输电线路较短、变压器又操作频繁或双回线路接入系统环网、系统有穿越功率流经本厂的场合。

角形接线适用于最终规模明确的发电厂或变电所110kV以上的配电装置中。角形接线不宜超过六角。

大容量水电厂主接线图

水电厂电气主接线

厂用电:为发电厂的主机(锅炉、汽轮机、发电机等)和辅助设备服务的厂用机械以及全厂的运行操作、热工和电气试验、机械修配、电气照明、电焊机等用电设备的总耗电量,统称为厂用电。

直流系统是应用于水力、火力发电厂,各类变电站和其它使用直流设备的用户,为给信号设备、保护、自动装置、事故照明、应急电源及断路器分、合闸操作提供直流电源的电源设备。

对直流操作电源的基本要求

(1)应保证供电的可靠性:最好装设独立的直流操作电源,以免交流系统故障而影响操作电源的正常供电。

(2)具备足够的容量:满足全厂(所)事故停电时,直流电源负荷、最大冲击负荷及1h事故照明等用电需要;且能保证直流母线电压在规定的额定值(正常运行时,操作电源母线电压波动范围小于5%额定值;事故时操作电源母线电压不低于90%额定值;失去浮充电源后,在最大负载下的直流电压不低于80%额定值),波纹系数小于5%。

(3)满足经济和实用的要求:要求其使用寿命长、维护工作量小、投资省、占地面积小、噪声干扰小等。

发电厂及变电站的直流负载,按其用电特性的不同分为经常负载、事故负载和冲击负载三类。

直流系统接地接地原因分析

(1)、设备损坏造成;

(2)、气候原因如下雨等,导致室外直流系统绝缘下降,从而导致接地。

(3)、因工作人员疏忽造成的接地。

(4)、小动物爬入或小金属零件掉落在元件上造成直流接地故障。

直流接地的危害

直流接地故障中,危害较大的是两点接地,可能造成严重后果。一点接地可能造成保护及自动装置误动或者拒动;而两点接地,除可能造成继电保护、信号、自动装置误动或拒动外,还可能造成直流保险熔断,使保护及自动装置、控制回路失去电源,在复杂保护回路中同极两点接地,还可能将某些继电器短接

直流接地查找方法

①分清接地故障的极性,分析故障发生的原因。

②若站内二次回路有工作,或有设备检修试验,应立即停止。拉开其工作电源,看信号是否消除。

③用分网法缩小查找范围,将直流系统分成几个不相联系的部分。不能使保护失去电源,操作电源尽量用蓄电池带。

④对于不太重要的直流负荷及不能转移的分路,可用“瞬时停电”的方法,检查该分路中所带回路有无接地故障。

⑤对于重要的直流负荷,用转移负荷法,检查该分路所带回路有无接地故障。

交直流系统的区别?能否共用同一条电缆

因交直流回路是各自的独立系统,直流回路是绝缘系统,而交流回路则是接地系统。因此,交直流回路不能共用一条电缆。若共用一条电缆,两者之间容易发生短路或发生互相干扰,降低直流回路电阻。

什么是配电装置

根据发电厂或变电所电气主接线中的各种电气设备、载流导体及其部分辅助设备的安装要求,将这些设备按照一定方式建造、安装而成的电工建筑物,通常称为配电装置。配电装置是电气主接线的实际布置与体现。

按主接线图,由开关设备、保护电器、测量仪表、母线和必要的辅助设备所组成的用以接受和分配电能的装置称为配电装置。

选择配电装置

选择配电装置的类型,应考虑它在电力系统中地位、作用、地理情况及环境条件等因素,要因地制宜、尽量节约用地,并且结合便于安装、维护、检修和操作等要求,通过技术经济比较后确定。在一般情况下:

35kV及以下配电装置宜采用屋内式。

110~220kV配电装置,在地震基本烈度8度及以上地区或土地贫瘠地区,可采用屋外式中型;有条件时配电装置可采用屋外式半高型或高型;在大城市中心或场地特别狭窄的地区、污秽特别严重的沿海地区、高海拔地区、历年最低气温在—40℃以下对断路器有特殊要求的地区的配电装置,经技术经济论证,也可采用SF6全封闭组合电器。

330~500kV配电装置,在大气严重污秽地区或场地受限制时,可以采用SF6全封闭组合电器。

4 5 6

导体和电器在运行中常遇到两种工作状态:

(1)正常工作状态

(2)短路工作状态

三相短路时中间相(V相)所受电动力最大

母线:在发电厂和变电站的各级电压配电装置中,将发电机、变压器等大型电气设备与各种电器装置连接的导体。

母线的作用:汇集、分配和传送电能

母线包括:一次设备部分的主母线和设备连接线、站用电部分的交流母线、直流系统的直流母线、二次部分的小母线等。

矩形截面母线常用在35kV及以下、持续工作电流在4000A及以下的屋内配电装置中。

圆形截面母线用在110kV及以上的户外配电装置中以防止发生电晕。

槽形截面母线散热条件好,集肤效应小,安装简单,连接方便。当工作电流超过最大截面的单条母线之允许电流时,每相可用两条或三条矩形母线固定在支持绝缘子上,每相矩形母线的条数不宜超过三条。

管形截面母线常用在110kV及以上,持续工作电流在8000A以上的配电装置中。优点:集肤效应小,电晕放电电压高,机械强度高,散热条件好。

绞线圆形软母线钢芯铝绞线由多股铝线绕单股或多股钢线的外层构成,一般用于35kV及以上屋外配电装置中。组合导线由多根铝绞线固定在套环上组合而成,用于发电机与屋内配电装置或屋外主变压器之间的连接。

母线的选择

配电装置中的母线,应根据具体使用情况按下列条件选择和校验:

①母线材料、截面形状和布置方式;

②母线截面尺寸;

③电晕;④热稳定;⑤动稳定;⑥共振频率。

矩形母线的布置方式

竖放式:散热条件好,母线的额定允许电流较其他放置方式要大,但机械强度不是很好。

平放式:载流量不大,机械强度较高

电力系统分析复习资料

1. 电力系统的定义。(把生产、输送、分配和消费电能的各种电气设备连接在一起而组成的整体称为电力系统。) 2. 电力生产的主要特点。(电能不能大量存储,电能生产、输送、分配与消费同时进行;暂态过程非常短促,从一种运行状态到另一种运行 状态的过度极为迅速;与国民经济及人民日常生活关系密切) 3. 对电力系统的基本要求。(简单:安全、优质、经济、环保) (问答题回答:1.保证安全可靠的供电2.要有合乎要求的电能质量3.要有良好的经济性4.减小对生态环境的有害影响.) 4. 无备用网络(放射式网络, 干线式网络, 树状网络)和有备用网络(双回路,环形网络,两端供电网络)分别包括哪几种接线形式,分别适合 什么情况和什么负荷类型的供电。(采用哪一类接线,取决于负荷的性质,无备用接线只适合用于向第三级负荷供电.对于低一级和第二级负荷占比较大比重的用户,应由有备用网络供电.) 5. 变压器的主要参数包括哪几个,掌握参数计算公式和等值电路。变压器主要参数包括:电阻T R 、电抗T X 、电导T G 、电纳T B 、变压比 T K Ω??= 32210N N s T S V P R ,Ω??=3210100%N N S T S V V X ,S V P G N o T 32 10-??=,S V S I B N N o T 3210100%-??=,N N T V V K 21= 线路的主要参数包括哪几个,掌握参数计算公式和等值电路。单位长度的电阻r,电抗x,电容b S r /ρ=sb eq D D x lg 1445.0= ? ?? ? ??-= 12ln 20 s D l l π μ 分裂导线的特点和优点。(1.减少电抗。2,增大电容。3.增加临界电压) 6. 有名单位制和标幺制的概念。(用实际有名单位表示物理量的方法称为有名单位制。)(标幺制是相对单位制的一种,在标幺制中各物 理量都用标幺值表示,标幺值等于有名值除以基准值) 7. 标幺值的计算公式,为什么要采用标幺制?(标幺值=实际有名值/基准值)(1.易于比较电力系统各元件的特性及参数,2,采用标幺 制能够简化计算公式3.采用标幺制能在一定程度上简化计算工作) 单相系统和三相系统基准值的选取必须满足的方程式,单相电路基准值的选取必须满足的方程式三相电路基准值的选取必须满足的方程 8. 单相系统和三相系统标幺值的计算公式 9. 同步电机的基本方程包括d,q,0坐标系下同步电机的(电势方程)和(磁链方程)。 10. 派克变换的概念和物理意义。(采用派克变换,实现从a ,b ,c 坐标系到d ,q ,o 坐标系的转换,把观察者的立场从静止的定子上转 到了转子,定子的三相绕组被两个同转子一起旋转的等效dd 绕组和qq 绕组所代替,变换后,磁链方程的系数变为常说,大大简化计算) 11. 节点导纳矩阵的主要特点。(1,导纳矩阵的元素很容易根据网络接线图和支路参数直观地求得,形成节点导纳矩阵的程序比较简单2, 导纳矩阵是稀疏矩阵,它的对角线元素一般不为零,但在非对角线元素中则存在不少零元素。) 12. 节点导纳矩阵中自导纳和互导纳的物理意义。(自导纳是当k=i 时,节点i 以外的所有节点都接地时节点i 对地的总导纳)(互导纳是, 当k ≠i 时,节点k 以外的所有节点都接地时,从节点i 流入网络的电流同施加于节点k 的电压之比即是节点k ,i 之间的互导纳) 13. 短路的概念。(一切不正常的相与相之间或相与地之间发生通路的情况) 14. 短路的类型。(三相短路,两相短路,单相短路,两相接地短路) 15. 短路的危险后果。(1.短路点附近的支路中出现大电流,短路设备点动力效应导致导体和支架遭破坏,设备发热增加,长时间会导致 过热以致损坏。2,系统电压大幅度下降影响用户,电动机电磁转矩显著减小,转速下降3. 短路点距电源不远,持续时间长,发电厂失去同步,破坏系统稳定导致大面积停电,4. 不对称短路:不平衡电流,在邻近的电路中感应很大的电动势,影响附近的通讯线路/铁道讯号系统) 16. 短路计算的目的。(1.选择有足够机械稳定度和热稳定度的电气设备,2,为了合理地配置各种继电保护装置并正确整定其参数,必须 对电力网中发生各种短路进行计算和分析,3,在设计和选择发电厂和电力系统电气主接线时,比较各种不同方案的接线图,确定是否需要采用限制短路电流的措施,4. 电力系统暂态稳定计算,研究短路对用户工作的影响) 17. 同步发电机发生短路电流最大的时间和条件。(时间,短路电流的最大瞬时值在短路发生后约半个周期出现。条件,当电路参数已知, 短路电流周期分量的幅值是一定的,而短路电流的非周期分量则是按指数规律单调衰减的直流,因此,非周期电流的初值越大,暂态过程中短路全电流的最大瞬时值也就越大) 18. 短路冲击系数的选取范围和取值。(当时间常数Ta 的数值由零变到无限大时,冲击系数的变化范围是1≤K im ≤2。在使用计算中,当 短路发生在发电机电压母线时,取K im =1.9;在发电厂高压侧母线时取K im =1.85;在其他地点短路是,取K im =1.8) 19. 互阻抗(节点阻抗矩阵)和转移阻抗的概念有何区别(异:互阻抗在任何一对节点之间均有定义。转移阻抗只在电势源节点和短路点 之间,或电势源节点与电势源节点之间才有实际意义。同:它们都是网络中某处电压和另一处电流的复数比例系数,具有阻抗的量纲,但不代表实际的阻抗,即使网络中不存在负电阻元件,互阻抗和转移阻抗都可能出现负的实数部分) 计算题为习题4-1和例6-10。计算题为习题4-1和例1-2。

电力系统分析总结(复习资料)

1、由发电厂中的电气部分、各类变电所、输配电线路及各种类型的用电器组成的整体,对电能进行不间断的生产和分配,称为电力系统。由变压器、电力线路等变换、输送、分配电能设备所组成的部分成为电力网络。 2、额定频率指按国家标准规定,我国所有交流电力系统的额定频率为50Hz。 3、按电压等级的高低,电力网可分为:1低压网络(<1kV)2中亚电网(1-10kV)3高压电网(35-220kV) 4、超高压电网(330-750kV) 5、特高压电网(>1000kV) 4、用电设备容许电压偏移一般为±5%;沿线路的电压降落一般为10%;;在额定负荷下,变压器内部的电压降落约为5%。 5、负荷的分类:1按物理性能分:有功负荷、无功负荷2按电力生产与销售过程分:发电负荷、供电负荷和用电负荷3按用户性质分:工业、农业、交通运输业和人民生活用电负荷4按负荷供电的可靠性分:一级、二级、三级负荷。 6、我过电力系统常用的4种接地方式:1中性点不接地2中性点经消弧线圈接地3中性点直接接地4中性点经电阻和电抗接地小电流接地方式:优点:①可靠性能高②单相接地时,不易造成人身或轻微的人身和设备安全事故缺点:经济性差、容易引起谐振,危机电网的安全运行大接地电流接地方式:优点:①能快速的切除故障、安全性能好②经济性好。缺点:系统的供电可靠性差(任何一处故障全跳)。 7、消弧线圈的工作原理:单相接地时,可以线圈的电流Il补偿接地点的容性电流消除接地的不利影响。补偿方式:①全补偿:Ik=Il时,Ie=0.容易发生谐振,一般不用②负补偿,IlIk时,Ie为纯感性,一般采用过补偿方法。 8、发电机组的数学模型:发电机组在约束的上、下限运行。通常以两个变量表示,即发出的有功功率和端电压的大小或者发出的有功功率和无功功率的大小。 9、架空线的组成:①导线②避雷线③杆塔④绝缘子⑤金具 10、电力网的参数一般分为两类:一类是由元件结构和特性所决定的参数,称为网络参数,如R、G、L等;另一类是系统的运行状态所决定的参数,称为运行参数,如I、V、P等。 11、分裂导线用在什么场合,有什么用处?一般用在大于350kv的架空线路中。可避免电晕的产生和增大传输容量。 12、导线是用来反映的架空线路的泄漏电流和电晕所引起的有功损耗的参数。 13、三绕组变压器的绕组排列方式:①中、低、高②低、中、高排列方式的原则是为了绝缘结构的合理,一般的是将低压、中压绕组排在最里面,高压绕组必须在最外面。 14、标幺值:是指实际有名值与基准值的比值。优点:可以用来简化计算缺点:同一实际值可能对应着多个不同的标幺值。基准值的选取原则:①基准值的单位应与有名值的单位相同 ②所选取的基准值物理量之间应符合电路的基本关系 15、短路:指一切不正常的相与相之间的或相与地之间的通路。三相系统中发生的短路有四种基本类型:三相短路、两相短路、单相接地短路和两相接地短路。短路的主要原因:是电力系统中电气设备载流导体的绝缘损坏。 16、短路计算的任务:在选择电气设备时,要保证电气设备有足够的动稳定性和热稳定性,这都要以短路计算为依据。为了合理地配置各种继电保护装置,并正确整定其参数,必须进行短路电流的计算。③在设计发电厂的变电所的主接线时,需要对各种可能的设计方案进行详细的技术经济比较,以便确定最优设计方案,这也要以短路计算为依据。④进行电力系统暂态稳定的计算,也包含一些电流计算的内容。 17、无穷大电源:是一种为了理论上简化分析的需要,所假定的可以输出无穷大功率的电源。无穷大电源是一种理想电源,它的特点:①电源功率为无穷大;无限大功率电源的频率是恒定的,端电压也是恒定的。②电源的内阻为零。 18、短路要做的假设:①由无穷大电源供电②短路前处于稳态③电路三相对称。

武汉大学电力系统分析实验报告

电气工程学院 《电力系统分析综合实验》2017年度PSASP实验报告 学号: 姓名: 班级:

实验目的: 通过电力系统分析的课程学习,我们都对简单电力系统的正常和故障运行状态有了大致的了解。但电力系统结构较为复杂,对电力系统极性分析计算量大,如果手工计算,将花费 大量的时间和精力,且容易发生错误。而通过使用电力系统分析程序PSASP,我们能对电 力系统潮流以及故障状态进行快速、准确的分析和计算。在实验过程中,我们能够加深对电力系统分析的了解,并学会了如何使用计算机软件等工具进行电力系统分析计算,这对我们以后的学习和工作都是有帮助的。 潮流计算部分: 本次实验潮流计算部分包括使用牛顿法对常规运行方式下的潮流进行计算,以及应用PQ分解法规划运行方式下的潮流计算。在规划潮流运行方式下,增加STNC-230母线负荷的有功至1.5.p.u,无功保持不变,计算潮流。潮流计算中,需要添加母线并输入所有母线 的数据,然后再添加发电机、负荷、交流线、变压器、支路,输入这些元件的数据。对运行方案和潮流计算作业进行定义,就可以定义的潮流计算作业进行潮流计算。 因为软件存在安装存在问题,无法使用图形支持模式,故只能使用文本支持模式,所以 无法使用PSASP绘制网络拓扑结构图,实验报告中的网络拓扑结构图均使用Visio绘制, 请见谅。 常规潮流计算: 下图是常规模式下的网络拓扑结构图,并在各节点标注电压大小以及相位。 下图为利用复数功率形式表示的各支路功率(参考方向选择数据表格中各支路的i侧母

线至j侧),因为无法使用图形支持模式,故只能通过文本支持环境计算出个交流线功率,下图为计算结果。

船舶综合电力系统

浅析船舶综合电力系统 1.引言 船舶综合电力系统是船舶动力的发展方向,是造船技术发展史上的又一个革命性的跨越,其主要特点是将推进动力与电站动力合二为一。该项技术正在逐步成熟、完善。以美、英、法为代表的发达国家率先引入综合电力系统这一概念,并积极开展研究、试验和应用到船艇。 2.综合电力系统概述 综合电力系统的思想基础是降低未来船舶的总成本,优化船舶总体、系统和设备的组成。其设计理念是突出系统化、集成化和模块化。在船舶平台上的具体实现途径是将全船所需的能源以电力的形式集中提供,统一调度、分配和管理。 美国海军提出的综合电力系统主要包括发电、配电、电力变换、电力控制、平台负载、推进电机、能量储存等七个模块。其中,发电模块将其它形式的能量转化为电能,经全船环形电网向各区域配电系统供电;电力控制模块对配电模块实行电能分配和监控;配电模块将电力输送到电力负荷中心,再分配到各用电设备;电力变换模块将一种形式的配电模块转化为另一种形式的配电模块;推进电机模块用于船舶推进;平台负载模块是一个或多个配电模块的用户;能量储存模块用于储存电能,维持整个供电系统的稳定。 采用综合电力系统的船舶与传统船舶比较,具有的主要优势为: 便于采用分段和模块化建造,使用维护费用低,经济性好;噪音低,可提高船舶的安静性和舒适性,提高舰艇的战斗力和生命力;调速性能好,控制方便,倒车简便、迅速,提高船舶的机动性;布置灵活、设计方便、可靠性高,可维修性好、生命力强;便于实现自动化,减少船员;适用性强,可广泛采用各种电子设备和先进的推进技术,对于舰艇而言,可以使用诸如激光武器、电磁炮等高能武器。 3.综合电力系统的发展现状 近十来年,船舶的电力推进技术已进入应用阶段。目前,不同类型的船舶,如一些科考船、破冰船以及邮轮采用了电力推进系统。推进电机采用直流、交流同步电动机或交流感应电动机。研究报告显示,虽然商船的综合电力推进系统提高了船的建造费用,但其运行和支持费用,及其生命周期里的整个费用却降低了。上世纪九十年代,一些商船业公司,如ALSTOM、ABB、SIEMENS等,已形成了企业内部的商船业电力推进标准。有人统计,八十年代后期建造的1000吨以上的商船中采用柴-电推进的约占25%,到九十年代中期,此类船舶中有35%以上采用电力推进,且该比例正在呈逐年上升的趋势。据统计,到2000年,全世界商船电力推进的装机总容量约为4200MW。 美国海军于1980年建立了综合电力驱动计划,希望通过将船舶日用电力系统和推进电力系统合而为一,进一步提高战船的性能。1990年后,美国海军将注意力转到提高船舶的能购性上,研究计划转为综合电力系统(IPS:Integrated Power System)项目。针对当时水面战斗舰艇(SC-21,现转型为DD(X))的概念设计,美海军完成了费用和效能评估。2002年4月29日,美国海军宣布英格尔斯造船公司、诺斯罗普格鲁曼船舶系统公司为DD(X)的设计主承包商,设计承包合同总价款为28亿多美元,执行期至2005财政年度。DD(X)设计合同的签署意味着美国海军水面舰艇革命性变革的开始。综合电力系统强调的主要技术目标为增加可操作性和支持柔性设计。美海军计划2003年开始,用3年多时间完成11个工程开发模块的建造和试验,并通过充分的陆试和海试去降低技术风险,争取2005年技术定型,2012

电路基础总复习题(全面)

11级电路总复习题 一、判断 1.电路中没有电压的地方就没有电流,没有电流的地方也就没有电压。(Х) 2.当欧姆定律写成U=-RI时,电压参考方向与电流参考方向为非关联参考方向。(√) 3.叠加定理既可以用于计算电路中的电流和电压,也可以用于计算功率。(Х) 4.电阻的串联实现分压,电阻的并联实现分流。(√)5.两种电源模型等效时,Is的参考方向与Us从负极指向正极的方向一致。(√) 6.两种电源模型等效时对电源内部及内部功率是不等效的(√)。7.理想电压源与理想电流源之间可以等效变换。(Х) 8.等效变换过程中,待求量的所在支路不能参与等效。(√)9.一个电路的等效电路有且仅有一个。(Х) 10.电压源供电时的功率为P=-IU。( X ) 11.选择不同的参考点,电路中各点的电位将变化(√) 12.电路中两点间的电压与参考点有关。(Х)13.在直流电路中,电容元件相当于短路。(Х)14.在换路的一瞬间,电容上的电压和电流等都不能跃变。(Х)15.在换路瞬时,电感两端电压不能突变。(Х)16.几个电容并联,总电容是越并越大。(√)17.几个电容串联,总电容是越串越大。(Х)

18.一阶电路的三要素为:初始值、瞬态值、时间常数。( Х) 19.正弦交流电流是交流电流中的一种。 (√ ) 20. 电感元件两端的电压大小与电流的变化率成正比。 (√ ) 21.无功功率的单位是V.A 。 ( Х ) 22.有一正弦电流 i= -14.12sin(314t+45 )A, 其初相为450 (Х ) 23.V 314sin 2220 1t u =的相位超前V )45628sin(3112?-=t u 45°。 (Х ) 24、两个正弦量的初相之差就为两者的相位差。 ( Х ) 25、正弦量可以用相量来表示,因此相量等于正弦量。 (Х ) 26、交流电的有效值是它的幅值的0.707倍。 ( Х ) 27、万用表的电压档测出的电压值是交流电压的最大值。 (Х ) 28、电容元件电压相位超前于电流π/2 rad 。 ( Х ) 29.在RLC 串联电路中,公式 C L R U U U U ++= 是正确的。(Х ) 30、有功功率加无功功率不等于视在功率。 (√ ) 31、串联电路的总电压相位超前电流时,电路一定呈感性。 ( √ ) 32、电阻电感相并联,I R =3A ,I L =4A ,则总电流等于5A 。 (√ ) 33、正弦电流通过串联的两个元件时,若U 1=10V, U 2=15V, 则总电压U= U 1+ U 2=25V 。(Х ) 34、电容元件上的电流、电压方向为关联参考方向时其伏安特性为i=Cdu/dt 。( √ ) 35、交流电路中负载获得最大功率的条件是负载阻抗等于电源内阻抗。( Х ) 36、任何一个线性二端网络对外电路来说都可以用一个等效的电压源与电阻串联模型代替。(√)

电力系统复习提纲

1 电力系统概述 1 1 电力系统及其发展 1 1 1 电力系统 知道电力系统的概念 1 1 2 电力系统发展简史和我国的电力系统 1 1 3 电力系统的负荷和负荷曲线 1 1 4 电力系统中的发电厂 1 1 5 电力网的结构与结线 知道电力网结线的方式 1 1 6 电压等级和额定也压 了解电力系统额定电压等级 1 1 7 电力系统运行的特点和要求 1 1 8 电力系统中性点接地方式 答:中性点直接接地或经小阻抗接地;中性点不接地或经消弧线圈接地,或者经大阻抗接地。 1 1 9 直流输电与柔性交流输电 1 2 电力系统基本元件概述 简要了解各基本元件的概念组成即可 2 电力系统元件数学模型 2 1 三相电力线路 2 1 1 电力线路电阻 2 1 2 电力线路电感 2 1 3 电力线路并联电导 2 1 4 电力线路并联电容 以上大致了解即可 2 1 5 电力线路的稳态方程和等值电路 这部分有计算,重点关注例2.3,同时要知道特征阻抗,自然功率等概念 ①除非截面积特别大,否则一般用直流电阻代替有效电阻。 ②一般三相导线之间距离不相等,三相之间的互感不相同,所以较长的架空线路普

遍采用整换位循环。 ③为什么采用分裂导线?答:a.增大导线截面积,提高输电能力;b.分裂导线的圆半径req明显大于每根导体的半径r,故正序电抗x1变小,同时也改变了导线周围的电场分布,等效的增大了导线半径,从而增大了每相导线的电纳b1,从而使特征阻抗Zc减小,自然功率Pe升高,使输电能力提高;c.减少了电晕放电,减少了无线电干扰. ④等值阻抗Z1=电阻r1+j正序电抗x1;等值对地导纳Y1=等值对地电导g1+j正序电纳b1. ⑤特征阻抗Zc=(Z1/Y1)?,传播系数γ=(Z1*Y1)?=β+jα. ⑥无损耗电路(g1=0,r1=0)末端接纯有功功率负荷,则功率Pe=U22/Zc称为自然功率. ⑦提高输电电路输电能力的方法:1.提高输电电压等级2.降低特征阻抗,一是输电线路采用紧凑型布局,二是采用分裂导线。 ⑧在线路输送功率不等于自然功率时,线路各点电压有效值将不再相同,当P>Pe 时,线路中间电压将降低,线路两端将输送无功功率,当P<Pe时,则相反. ⑨例2.3,π型等值电路,计算. 2 2 变压器 了解三相变压器绕组连接方式,知道变压器分接头的概念及常见的分接头种类 知道变压器短路电压,绕组漏抗的概念和计算方法(后面有用) 了解容量比的概念 自耦变压器不做要求 ①电力变压器有一侧的三相绕组为△接法时,能有效的削弱变压器中的三次谐波分量,所以得到广泛应用。 ②升压变压器由于功率是从低压侧送往中、高压测所以希望低压绕组与高压和中压绕组都有紧密的耦合,以减小电压降落,所以缠绕在铁芯上由内及外分别为中压绕组、低压绕组、高压绕组;降压变压器的功率流向是由高压侧流向中、低压侧,一般中压侧

电力系统分析实验报告四(理工类)

西华大学实验报告(理工类) 开课学院及实验室: 实验时间 : 年 月 日 一、实验目的 1)初步掌握电力系统物理模拟实验的基本方法。 2)加深理解功率极限的概念,在实验中体会各种提高功率极限措施的作用。 3)通过对实验中各种现象的观察,结合所学的理论知识,培养理论结合实际及分析问题的能力。 二、实验原理 所谓简单电力系统,一般是指发电机通过变压器、输电线路与无限大容量母线联接而且不计各元件的电阻和导纳的输电系统。 对于简单系统,如发电机至系统d 轴和g 轴总电抗分别为d X ∑和q X ∑,则发电机的功率特性为 当发电机装有励磁调节器时,发电机电势q E 随运行情况而变化,根据一般励磁调节器的性能,可认为保持发电机'q E (或' E )恒定。这时发电机的功率特性可表示成 或 这时功率极限为 随着电力系统的发展和扩大,电力系统的稳定性问题更加突出,而提高电力系统稳定性和输送能力的最重要手段之一,就是尽可能提高电力系统的功率极限。从简单电力系统功率极限的表达式看,要提高功率极限,可以通过发电机装设性能良好的励磁调节器,以提高发电机电势、增加并联运行线路回路数;或通过串联电容补偿等手段,以减少系统电抗,使受端系统维持较高的运行电压水平;或输电线采用中继同步调相机、中继电力系统等手段以稳定系统中继点电压。 (3)实验内容 1)无调节励磁时,功率特性和功率极隈的测定 ①网络结构变化对系统静态稳定的影响(改变戈): 在相同的运行条件下(即系统电压U-、发电机电势E 。保持不变.罚芳赆裁Ll=E 。),分别 测定输电线单回线和双回线运行时,发电机的功一角特性曲线,&豆甍辜授冁蝮和达到功率极 限时的功角值。同时观察并记录系统中其他运行参数(如发电极端毫玉萼蔫交化。将两种 情况下的结果加以比较和分析。 实验步骤如下: a)输电线路为单回线; b)发电机与系统并列后,调节发电机,使其输出的有功和无ZZ 蔓专零: c)功率角指示器调零; d)逐步增加发电机输出的有功功率,而发电机不调节震磁: e)观察并记录系统中运行参数的变化,填入表1.3中: f)输电线路为双回线,重复上述步骤,将运行参数填入表l 。毒=:

电力系统综合实践总结

电力系统综合实践总结 导语:古之立大事者,不惟有超世之才,亦必有坚忍不拔之志。以下小编为大家介绍文章,欢迎大家阅读参考! 电力系统综合实践总结1 暑假期间应院团号召提高自己的社会实践能力,我前往电力建设公司开一个二十天实践活动。活动期间,我参加了公司里的各工作,内容涉及安全用电发电厂的运行和调试;和优质服务等各个方面。活动中公司内的工作人员给予了我大力的支持。现将本次实践活动的有关情况报告如下: 一、社会实践内容: 1.发电厂安全用电教育及实践任务。我到电建公司的第一天师傅就给我讲了很多关于电安全方面的注意事项。例如,我在进入电厂时必须要带安全帽穿实习服;在雨天进入电厂是要穿一些带有绝缘设备的衣服进入现场要穿绝缘靴带绝缘手套等;进入现场是禁止在套管上行走休息和长时间的停留。未经师傅的允许下不得私自合拉闸等。同时给我讲了关于这次实践的主要任务及目的,理论和生产实际相结合。通过实习全面了解电能生产过程,巩固和扩大所学知识,并为以后学好专业课打下一定的基础;学习热力部分和电气部分各个主要系统,学习电厂有关运行的基本知识和操作技能;了解火力发电厂火电机组的特点;了解发电厂的组织,管理

和主要技术经济指标;学习在电力系统中的高度组织性,纪律性,安全性及培养正确的劳动观点,经济观点;了解火力发电厂的电能生产流程,火力发电厂的基本结构;了解燃料,锅炉部分,汽轮机和电气部分的基本构成和工作原理,各部分在发电过程中的作用;了解电气主接线的工作原理、主要运行方式和倒闸操作方法;了解励磁系统、并列装置、备用电源自动投入、继电 保护装置、防雷和接地装置作用;了解厂用电系统的电气原理图;了解主变压器参数,电抗器和电容器的作用等。梁部长让我好好珍惜这次实践活动,通过这次理论和实践的学习,对工作会有很大的帮助,实践活动不仅在有形方面可以提高自己的实际动手能力,而且在无形方面可以高自身对待事情的一些态度和观点。这些对以后不论从事任何工作有很大的帮助。 2.发电厂的运行和调试。 为满足生产需要,发电厂中安装有各种电气设备。通常把生产和分配电能的设备,如发电机、变压器和断路器等称为一次设备。它们包括: 、生产和转换电能的设备:例如发电机将机械能转换成电能,电动机将电能转换成机械能,变压器将电压升高或降低,以满足输配电需要。这些都是发电厂中最主要的设备。 、接通或断开电路的开关电器:例如:断路器、隔离开

电路分析基础复习提纲

第一章 1.参考电压和参考电流的表示方法。 (1)电流参考方向的两种表示: A)用箭头表示:箭头的指向为电流的参考方向。(图中标出箭头) B)用双下标表示:如i AB , 电流的参考方向由A指向B。(图中标出A、B) (2) 参考电压方向: 即电压假定的正方向,通常用一个箭头、“+”、”-”极性或“双下标”表示。 (3)电路中两点间的电压降就等于这两点的电位差,即U ab = V a- V b 2.关联参考方向和非关联参考方向的定义 若二端元件上的电压的参考方向与电流的参考方向一致(即参考电流从参考电压的正极流向负极),则称之为关联参考方向。否则为非关联参考方向。 3.关联参考方向和非关联参考方向下功率的计算公式: (1)u, i 取关联参考方向:p = u i (2)u, i 取非关联参考方向:p =- ui 按此方法,如果计算结果p>0,表示元件吸收功率或消耗功率;p<0,表示发出功率或产生功率。 关联参考方向和非关联参考方向下欧姆定律的表达式: (1)电压与电流取关联参考方向:u = Ri

d ()d () ()()()d d q t u t q t C u t i t C t t =??= =(2)电压与电流取非关联参考方向: u =–Ri 。 4.电容元件 (1)伏安特性 (2)两端的电压与与电路对电容的充电过去状况有关 (3)关联参考方向下电容元件吸收的功率 (4)电容元件的功率与储能 5.电感元件 (1)电感元件的电压-电流关系——伏安特性 (2)电感两端的电压与流过的电流无关,而与电流的变化率成正比 (3)电感元件的功率与储能 6.实际电压源随着输出电流的增大,端电压将下降,可以用理想电压源U S 和一个内阻R 0串联来等效。 d () ()()()() d C u t p t u t i t C u t t =?=?21 ()d d () 2C C W p t t C u u C u t ==?=???d () ()()()() d L i t p t u t i t L i t t =?=?21 ()d d ()2 L L W p t t L i i L i t ==?= ???

电力系统复习试题汇总(2011_4_)

1.什么是电力系统日负荷曲线?日负荷曲线有什么特点? 电力系统日负荷曲线是描述一天 24 小时有功负荷的变化情况的曲线。 特点是:由于企业生产情况及作息制度不一样,不同行业用户的日负荷曲线形状可能有很大的差异。 2 ,何谓负荷率和最小负荷系数? 日平均负荷: 240 12424d av W P Pdt ==? (GW ,kW ) (9-2) 负荷率: max av m P k P = (无量纲) (9-3) 最小负荷系数:min max P P α= (无量纲) (9-4) 3.什么是年最大负荷曲线? 年最大负荷曲线描述一年内每月(或每日)最大有功功率负荷变化的情况,主要用来安排发电设备的检修计划,同时为制订发电机组或发电厂的扩建或新建计划提供依据。 4.什么是年持续负荷曲线? 年持续负荷曲线:按一年中系统负荷的数值大小及其持续小时数顺序排列而绘制成的曲线。 5.什么是年最大负荷利用小时数?你知道各类用户年最大负荷利用小时数的数值范围吗? 根据年持续负荷曲线可以确定系统负荷的全年耗电量为 8760 0W Pdt =? (9-3) 若P=Pmax ,经过Tmax 小时后所消耗的电能恰好等于全年的实际耗电量W ,则称Tmax 为最大负荷利用小时数,即 8760max 0max max 1W T Pdt P P ==? (9-4) 各类用户年最大负荷利用小时数的数值范围:见表9-2。 6.各类负荷曲线在电力系统运行中有什么用处。 日负荷曲线是电力系统安排发电计划和确定运行方式的重要依据。 年最大负荷曲线主要用来安排发电设备的检修计划,也为制订发电机组或发电厂的扩建或新建计划提供依据。 7.什么是负荷的电压静态特性? 频率维持额定值不变,负荷功率与电压的关系称为负荷的电压静态特性。 8.什么是负荷的频率静态特性? 负荷端电压维持额定值不变时,负荷功率与频率的关系称为负荷的频率静态特性。 9.电力系统计算中综合负荷常采用哪儿种等值电路? 最常采用的综合负荷等值电路有:含源等值阻抗(或导纳)支路,恒定阻抗(或导纳)支路,异步电动机等值电路(阻抗值随转差而变的阻抗支路)以及这些电路的不同组合。

自考电力系统基础复习资料

自考电力系统基础复习资料 一、电力系统的构成 一个完整的电力系统由分布各地的各种类型的发电厂、升压和降压变电所、输电线路及电力用户组成,它们分别完成电能的生产、电压变换、电能的输配及使用。 二.电力网、电力系统和动力系统的划分 电力网:由输电设备、变电设备和配电设备组成的网络。 电力系统:在电力网的基础上加上发电设备。 动力系统:在电力系统的基础上,把发电厂的动力部分(例如火力发电厂的锅炉、汽轮机和水力发电厂的水库、水轮机以及核动力发电厂的反应堆等)包含在内的系统。 三.电力系统运行的特点 一是经济总量大。目前,我国电力行业的资产规模已超过2万多亿,占整个国有资产总量的四分之一,电力生产直接影响着国民经济的健康发展。 二是同时性,电能不能大量存储,各环节组成的统一整体不可分割,过渡过程非常迅速,瞬间生产的电力必须等于瞬间取用的电力,所以电力生产的的发电、输电、配电到用户的每一环节都非常重要。 三是集中性,电力生产是高度集中、统一的,无论多少个发电厂、供电公司,电网必须统一调度、统一管理标准,统一管理办法;安全生产,组织纪律,职业品德等都有严格的要求。 四是适用性,电力行业的服务对象是全方位的,涉及到全社会所有人群,电能质量、电价水平与广大电力用户的利益密切相关。 五是先行性,国民经济发展电力必须先行。 四、电力系统的额定电压 电网电压是有等级的,电网的额定电压等级是根据国民经济发展的需要、技术经济的合理性以及电气设备的制造水平等因素,经全面分析论证,由国家统一制定和颁布的。 我们国家电力系统的电压等级有220/380V、3 kV、6 kV、10 kV、20 kV、35 kV、66 kV、110 kV、220 kV、330 kV、500 kV。随着标准化的要求越来越高,3 kV、6 kV、20 kV、66

电力系统分析(下)考试复习资料(精简版)

1.综合负荷的定义答:系统中所有电力用户的用电设备所消耗的电功率总和就是电力系统的负荷,亦称电力系统的综合用电负荷。它是把不同地区、不同性质的所有的用户的负荷总加起来而得到的。 2. 综合负荷、供电负荷和发电负荷的区别及关系答:综合用电负荷加上电力网的功率损耗就是各发电厂应该供给的功率,称为电力系统的供电负荷。供电负荷再加上发电厂厂用电消耗的功率就是各发电厂应该发出的功率,称为电力系统的发电负荷。 2.日负荷曲线和年负荷曲线的慨念答:负荷曲线按时间长短分,分为日负荷曲线和年负荷曲线。日负荷曲线描述了一天24小时负荷的变化情况;年负荷曲线描述了一年内负荷变化的情况。 习题9-1:某系统典型日负荷曲线如题图所示,试计算:日平均负荷;负荷率m k ,最小负荷系数a 以及峰谷差m P ?。 解:(1)日平均负荷 85MW MW 24 2 7041204902804100280450270=?+?+?+?+?+?+?+?= av p (2)负荷率 7083.0120 85 max === P P k av m (3)最小负荷系数4167.0120 50 max min === P P a (4)峰谷差MW 70MW )50120(min max =-=-=?P P P m 9-3某工厂用电的年待续负荷曲线如题图9-3所示。试求:工厂全年平均负荷,全年耗电量及最大负荷利用小时数T max 。 解:(1)全年平均负荷 MW 548.06MW 8760 3760 403000602000100)(=?+?+?= y av p (2)全年耗电量 h kW 10304.5 h kW 10)3760403000602000100(838760 ??=???+?+?==? Pdt W (3)最大负荷利用小时数 h 5304h 1010010304.5W 138 max 87600max max =??===?P Pdt P T ? 2.电压降落、电压损耗、电压偏移的定义有所不同 答:网络元件的电压降落是指元件首末端两点电压的相量差,即12()V V R jX I -=+;把两点间电压绝对值之差称为电压损耗,用V ?表示,12V V V ?=-;电压偏移是指网络中某点的实际电压同网络该处的额定电压之差,可以用KV 表示,也可以用额定电压的百分数表示。若某点的实际电压为V ,该处的额定电压为N V ,则用百分数表示的电压偏移为,电压偏移(%)100N N V V V -= ? ? 3.电压降落公式的分析(为何有功和相角密切相关,无功和电压密切相关?); 答: 从电压降落的公式可见,不论从元件的哪一端计算,电压降落的纵、横分量计算公式的结构都是一样的,元件两端的电压幅值差主要由电压降落的纵分量决定,电压的相角差则由横分量确定。高压输电线的参数中,电抗要比电阻题图9-3年持续负荷曲线

浙江大学电力系统分析综合实验1

实验报告 课程名称:__电力系统综合分析使实验__ 指导老师:____成绩:__________________ 实验名称:____同步发电机准同期并列实验___实验类型:_______同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一.实验目的 1、加深理解同步发电机准同期并列原理,掌握准同期并列条件; 2、掌握微机准同期控制器及模拟式综合整步表的使用方法; 3、熟悉同步发电机准同期并列过程; 4、观察、分析有关波形(*)。 二.原理与说明 将同步发电机并入电力系统的合闸操作通常采用准同期并列方式。准同期并列要求在合闸前通过调整待并机组的电压和转速,当满足电压幅值和频率条件后,根据“恒定越前时间原理”,由运行操作人员手动或由准同期控制器自动选择合适时机发出合闸命令,这种并列操作的合闸冲击电流一般很小,并且机组投入电力系统后能被迅速拉入同步。根据并列操作自动化程度的不同,又分为:手动准同期、半自动准同期和全自动准同期三种方式。 正弦整步电压是不同频率的两正弦电压之差,其幅值作周期性的正弦规律变化。它能反映两个待并系统间的同步情况,如频率差、相角差以及电压幅值差。 线性整步电压反映的是不同频率的两方波电压间相角差的变化规律,其波形为三角波。它能反映两个待并系统间的频率差和相角差,并且不受电 压专业:电气工程及其自动化 姓名:___xxxxx____ 学号:__0000000__ 日期:__2012.9.19___ 地点:________________

电力系统综合课程设计

电力系统分析 综合课程设计报告 电力系统的潮流计算和故障分析 学院:电子信息与电气工程学院 专业班级: 学生姓名: 学生学号: 指导教师: 2014年 10月 29 日

目录 一、设计目的 (1) 二、设计要求和设计指标 (1) 2.1设计要求 (1) 2.2设计指标 (2) 2.2.1网络参数及运行参数计算 (2) 2.2.2各元件参数归算后的标么值: (2) 2.2.3 运算参数的计算结果: (2) 三、设计内容 (2) 3.1电力系统潮流计算和故障分析的原理 (2) 3.1.1电力系统潮流计算的原理 (2) 3.1.2 电力系统故障分析的原理 (3) 3.2潮流计算与分析 (4) 3.2.1潮流计算 (4) 3.2.2计算结果分析 (8) 3.2.3暂态稳定定性分析 (8) 3.2.4暂态稳定定量分析 (11) 3.3运行结果与分析 (16) 3.3.1构建系统仿真模型 (16) 3.3.2设置各模块参数 (17) 3.3.3仿真结果与分析 (21) 四、本设计改进建议 (22) 五、心得总结 (22) 六、主要参考文献 (23)

一、设计目的 学会使用电力系统分析软件。通过电力系统分析软件对电力系统的运行进行实例分析,加深和巩固课堂教学内容。 根据所给的电力系统,绘制短路电流计算程序,通过计算机进行调试,最后成一个切实可行的电力系统计算应用程序,通过自己设计电力系统计算程序不仅可以加深学生对短路计算的理解,还可以锻炼学生的计算机实际应用能力。 熟悉电力系统分析综合这门课程,复习电力系统潮流计算和故障分析的方法。了解Simulink 在进行潮流、故障分析时电力系统各元件所用的不同的数学模型并在进行不同的计算时加以正确选用。学会用Simulink ,通过图形编辑建模,并对特定网络进行计算分析。 二、设计要求和设计指标 2.1设计要求 系统的暂态稳定性是系统受到大干扰后如短路等,系统能否恢复到同步运行状态。图1为一单机无穷大系统,分析在f 点发生短路故障,通过线路两侧开关同时断开切除线路后,分析系统的暂态稳定性。若切除及时,则发电机的功角保持稳定,转速也将趋于稳定。若故障切除晚,则转速曲线发散。 图1 单机无穷大系统 发电机的参数: SGN=352.5MWA,PGN=300MW,UGN=10.5Kv,1=d x ,25.0'=d x ,252.0''=x x ,6.0=q x , 18.0=l x ,01.1'=d T ,053.0"=d T ,1.0"0=q T ,Rs=0.0028,H(s)=4s;TJN=8s,负序电抗:2.02=x 。 变压器T-1的参数:STN1=360MVA,UST1%=14%,KT1=10.5/242; 变压器T-2的参数:STN2=360MVA,UST2%=14%,KT2=220/121;

电路分析基础_复习题

电路分析基础复习题及答案 1、测量正弦交流电路中的电压时,应先选好电压表的量程,再将电压表并联接入电路中。( ) 知识点:基本知识及电压电流的参考方向;章节1.1 ;题型:判断题; 难易程度:易 答案:√ 2、理想电流源的输出电流和电压是恒定的,不随负载变化。( ) 知识点:基本知识及电压电流的参考方向;章节1.1 ;题型:判断题; 难易程度:易 答案:× 3、导体中的电流由电子流形成,故规定电子流的方向就是电流正方向。( ) 知识点:基本知识及电压电流的参考方向;章节1.1 ;题型:判断题; 难易程度:易 答案:× 4、从定义上看,电位和电压相似,电位改变,电压也跟着改变。( ) 知识点:基本知识及电压电流的参考方向;章节1.1 ;题型:判断题; 难易程度:易 答案:× 5、导体的长度和截面都增大一倍,其电阻值也增大一倍。( ) 知识点:基本知识及电压电流的参考方向;章节1.1 ;题型:判断题; 难易程度:易 答案:× 6、电压的实际方向规定为( )指向( ),电动势的实际方向规定为由( )指向( )。 知识点:基本知识及电压电流的参考方向;章节1.1 ;题型:填空题; 难易程度:易 答案:高电压,低电压,低电压,高电压 7、测量直流电流的直流电流表应串联在电路当中,表的 端接电流的流入端,表的 端接电流的流出端。 知识点:基本知识及电压电流的参考方向;章节1.1 ;题型:填空题; 难易程度:易 答案:正,负 8、工厂中一般动力电源电压为 ,照明电源电压为 。 以下的电压称为安全电压。如果考虑相位差,设?∠=? 10220A U ,则? B U = , ? C U = 。 知识点:基本知识及电压电流的参考方向;章节1.1 ;题型:填空题; 难易程度:易 答案:380伏,220伏,36伏,?-∠=? 110220B U ?∠=? 130220C U 9、用交流电表测得交流电的数值是其 值。受控源是大小方向受电路中其他地方的电压或电流控制的电源。受控源有四种模型,分别是: ; ; ;和 。

电力系统复习题(新)

暂态 第1章稳态习题 1. 什么是电力系统?有哪些特点和基本要求? 答:电力系统是由发电机、变压器、输电线路、用电设备(负荷)组成的网络,它包括通过电的或机械的方式连接在网络中的所有设备。 电力系统的特点是:电能不能大量储存,发电、供电、用电必须同时完成,过渡过程非常迅速。对电能质量要求很高,电能质量的优劣,直接影响各行各业。电力生产的事故,也是其它行业的灾难。 电力系统的基本要求:①保证可靠地持续供电;②保证良好的电能质量;③保证系统运行的经济性。 2.我国电力系统的现状如何? 答:①发电装机容量、发电量持续增长。截止2007年底,全国新增装机容量10,009万千瓦,总量达到71,329万千瓦。其中,水电新增1,306.5万千瓦,火电新增8,158.35万千瓦。同时,华能玉环电厂、华电邹县电厂、国电泰州电厂共七台百万千瓦超超临界机组的相继投运,标志着中国已成功掌握世界先进的火力发电技术,电力工业已经开始进入―超超临界‖时代。此外,中国电网建设快速发展,新增220千伏及以上输电线路回路长度4.15万公里,新增220千伏及以上变电设备容量18,848万千伏安。 ②电源结构不断调整。上大压小的举措提高了火电行业平均单机装机容量,增强了行业的 总体经济效益,提高了环境效益。对于新能源的各项政策及规划,将引导降低火电在电力中的占比,增加水电、核电、风电的比例,优化电力结构。 ③西电东送和全国联网发展迅速。我国能源资源和电力负荷分布的不均衡性,决定了―西电 东送‖是我国的必然选择。西电东送重点在于输送水电电能。按照经济性原则,适度建设燃煤电站,实施西电东送。 目前,西电东送已进入全面实施阶段:贵州到广东500千伏交、直流输变电工程已先后投产运行,向广东送电规模已达1088万千瓦。三峡到华东、广东±500千伏直流输变电工程先后投产。蒙西、山西、陕西地区向京津唐电网送电能力逐步增加。华北与东北、福建与华东、川渝与华中等一批联网工程已经投入运行, 2003年跨区交换电量达到862亿千瓦时。 截至2005年7月,除海南外已经初步实现了全国联网,初步实现了跨区域资源的优化配置,区域电网间的电力电量交换更加频繁,交易类型出现了中长期、短期、超短期、可中断交易等多种模式,呈现多样化的良好局面,由于跨区跨省电力交易比较活跃,部分联网输电通道长期保持大功率送电。西电东送、全国联网工程对调剂电力余缺、缓解电力供应紧张和促进资源优化配置起到重要作用。 ④可再生能源发电取得进步:A.风力发电建设规模逐步扩大。从―七五‖开始建设风电场, 到2004年底,内地已建成43个风电场,累计装机1292台,总装机容量达到76.4万千瓦,占全国电力装机的0.17%。单机容量达到2000千瓦。B.地热发电得到应用。到1993年底,西藏地热发电的总装机达到28.13兆瓦,约占全国地热发电装机(包括台湾在内)的94%;年发电量9700万千瓦时,占拉萨电网约20%。C.太阳能发电开始起步。至1999年,光伏发电系统累计装机容量超过13兆瓦。2004年建成容量为1兆瓦的太阳能发电系统,这是目前中国乃至亚洲总装机容量第一的并网光伏发电系统,同时,也是世界上为数不多的兆瓦级大型太阳能光伏发电系统之一。D.小水电建设取得巨大成绩。截止到2000年底,全国已建成小水电站4万多座,装机达2485万千瓦,占全国水电装机的32,4%,占世界小水电开发量的40%以上,年发电量800亿千瓦时,占全国水电发电量的36.27%。 ⑤结构性矛盾突出,技术升级任重道远:A. 电源结构有待优化;B. 电力生产主要技术指 标与国际水平还有一定差距。 3.电力系统有哪些控制?各种控制的特点是什么?

相关文档