文档视界 最新最全的文档下载
当前位置:文档视界 › 基于Multisim的DSB的调制与解调电路的仿真分析

基于Multisim的DSB的调制与解调电路的仿真分析

基于Multisim的DSB的调制与解调电路的仿真分析
基于Multisim的DSB的调制与解调电路的仿真分析

课程设计报告

题目:基于Multisim的DSB的调制与

解调电路的仿真分析

学生姓名: ***

学生学号: ********

系别:电气信息工程学院

专业:通信工程

届别: 2014届

指导教师: ***

电气信息工程学院制

2013年4月

基于Multisim的DSB的调制与解调电路的仿真分析

学生:***

指导教师:***

电气信息工程学院 通信工程专业

1 课程设计的任务与要求

1.1 课程设计的任务

本课程设计是实现DSB 的调制解调。在此次课程设计中,我将通过多方搜集资料与分析,来理解DSB 调制解调的具体过程和它在multisim 中的实现方法。通过这个阶段学习,更清晰地认识DSB 的调制解调原理,同时加深对multisim 这款通信仿真软件操作的熟练度,并在使用中去感受multisim 的应用方式与特色。利用自主的设计过程来锻炼自己独立思考,分析和解决问题的能力,为我今后的自主学习研究提供具有实用性的经验。

1.2 课程设计的要求

(1)熟悉multisim 的使用方法,掌握DSB 信号的调制解调原理,以此为基础在软件中画出电路图。

(2)绘制出DSB 信号调制解调前后在时域和频域中的波形,观察两者在解调前后的变化,通过对分析结果来加强对DSB 信号调制解调原理的理解。

(3)在老师的指导下,独立完成课程设计的全部内容,并按要求编写课程设计论文,文中能正确阐述和分析设计和实验结果。

1.3 课程设计的研究基础(设计所用的基础理论)

(1)DSB 调制过程的分析:在AM 信号中,载波分量并不携带信息,信息完全有边带传送。如果在AM 调制模型中将直流分量去掉,即可得到一种高调制效率的调制方式—抑制载波双边带信号(DSB-SC ),简称双边带信号(DSB ),表示为:t w t u k t u c a cos )()(0Ω= 显然,它与调幅信号的区别就在于其载波电压振幅不是在0m V 上下按调制信号规律变化。这样,当调制信号)(t u Ω进入负半周时,)(t u o 就变为负值。表明载波电压产生0180相移。因而当)(t u Ω自正值或负值通过零值变化时,双边带调制信号波形均将出现0

180的相移突变。双边带调制信号的包络已不再反映

)(t u Ω的变化,但它仍保持频谱搬移的特性,因而仍是振幅调制波的一种,并可用相乘器作为双边带调制电路的组成模型,如图所示,图中a cm M k V A =。

图1 双边带调制信号组成模型

调制过程的数学表达式:设载波电压为:t w U t u c cM c cos )(=。调制信号为: t M t m Ω=cos )(00。经过模拟乘法器A1后输出电压为抑制载波双边带调制信号,其数学表达式为:

)()()(0t m t u K t Sm c ??=

=t M t w U K c cM Ω??cos cos 0

=[]2)cos()cos(0t w t w M KU c c cM Ω-+Ω+

图3 DSB 调制过程的波形及频谱

(2)DSB 解调过程的分析:调制过程是一个频谱搬移的过程,它是将低频信号的频谱搬移到载频位置。而解调是将位于载频的信号频谱再搬回来,

并且不

失真地恢复出原始基带信号。

双边带解调通常采用相干解调的方式,它使用一个同步解调器,即由相乘器和低通滤波器组成。在解调过程中,输入信号和噪声可以分别单独解调。相干解调的原理框图如图所示:

图2 双边带解调信号组成模型

解调过程的数学表达式:双边带调幅波的电压可表示为:

t w KU t Sm c cM cos )(=

本机载波电压为:

t w U t u c cM c cos )(=

解调波的表达式:

)()()(0t u t Sm K t m ??=

=t S t w U K m c cM Ω??cos cos

=[]

2)cos()cos(t w t w U KS c c M m Ω-+Ω+Ω

2 DSB 的调制与解调系统方案制定

2.1 方案提出(需有系统框图,系统功能参数)

振幅调制方式是用传递的低频信号去控制作为传送载体的高频振荡波(称为载波)的幅度,是已调波的幅度随调制信号的大小线性变化,而保持载波的角频率不变。在振幅调制中,根据所输出已调波信号频谱分量的不同,分为普通调幅(AM )、抑制载波的双边带调幅(DSB )、抑制载波的单边带调幅(SSB )等。AM 的载波振幅随调制信号大小线性变化。DSB 是在普通调幅的基础上抑制掉不携带有用信息的载波,保留携带有用信息的两个边带。SSB 是在双边带调幅的基础上,去掉一个边带,只传输一个边带的调制方式。它们的主要区别是产生的方法和频

谱的结构不同。

这里重点研究抑制载波的双边带调幅(DSB)。下图为DSB调制与解调的系统框图。

图4 DSB调制与解调的系统框图

2.2 方案论证

在现实的环境中,我们所得到的一般信号振幅,频率都比较低,不能满足远距离,高清度的传输要求,必须将信号采用高频载波调制传输。我们在实际的生活中要将声音,图像,语言,文字等这些采集的低频信号进行远距离的传输是不理性的信号。由于要传输的基于低频范围,如果信号直接发射出去,需要的发射和接受天线尺寸太大,辐射效率太低,不易实现。我们知道,天线如果要想有效的辐射,需要天线的尺寸l与信号的波长v可以比拟。即使天线的尺寸为波长的十分之一,即l=v/10,对于频率为10kHz的信号,需要的天线长度为3Km,这样长的天线几乎是无法实现的。若将信号调制到10MHz的载波频率上,需要的天线长度仅为3m,这样的天线尺寸小,实现起来也比较容易。

在模拟调制中,AM调制优点在于系统结构简单,价格低廉,所以至今仍广泛应用于无线但广播。DSB与AM信号相比,因为不存在载波分量,DSB调制效率是100%,即将全部功率都用于信息传输,所以选择DSB调制与解调作为课程设计的题目具有很大的实际意义。

3 DSB的调制与解调系统方案设计

3.1各单元模块功能介绍及电路设计

由于从消息转换过来的调制信号具有频率较低的频谱分量,这种信号在许多信道中不宜传输。因此,在通信系统的发送端通常需要有调制过程,同时在接受端则需要有解调过程从而还原出调制信号。

所谓调制就是利用原始信号控制高频载波信号的某一参数,使这个参数随调制信号的变化而变化。解调是与调制相反的过程,即从接收到的已调波信号中恢

复原调制信息的过程。

图5 DSB的调制电路部分

图6 DSB的解调电路部分

3.2电路参数的计算及元器件的选择

在本次课程设计电路图中,所用到的元器件包括电容、电阻、直流电源、交流电源、单刀双掷开关、集成功放LM741CN、相乘器、示波器等。

3.3 特殊器件的介绍

(1)LM741CN的介绍:LM741CN是一款普通的8脚单通道运算放大器,其工作电压范围7~36V,单位增益带宽1MHz,输入失调电压6mV(最大值)。

图7 实物图图8 外部引脚图

(2)模拟相乘器的介绍:模拟乘法器具有两个输入端(常称X输入和Y 输入)和一个输出端(常称Z输出),是一个三端口网络,电路符号如图所示:如果两个输入信号只能为单极性的信号的乘法器为“单象限乘法器”;一个输入信号适应两种极性,而一个只能是一种单极性的乘法器为“二象限乘法器”;两个输入信号都能适应正、负两种极性的乘法器为“四象限乘法器”。

图9 模拟相乘器

3.4 系统整体电路图

图10 系统整体电路图

4 Multisim软件系统仿真和调试

4.1 仿真软件介绍

Multisim软件前身是加拿大IIT公司在20世纪八十年代后期推出的电路仿真软件EWB(Electronics Workbench),后来,EWB将原先版本中的仿真设计更名为multisim,2005年之后,加拿大IIT公司隶属于美国国家仪器公司(National Instrument,简称NI公司),美国NI公司于2006年初首次推出Multisim9.0版本。目前最新版本是美国NI公司推出的multisim10。包含了电路原理图的图形输入、电路的硬件描述语言输入方式,具有丰富的仿真能力。它具有更形象直观的人机交互界面,并且提供了更加丰富的元件库、仪表库和各种分析方法。完全满足电路的各种仿真需要。

Multisim软件是迄今为止使用最方便、最直观的仿真软件,其基本元件的数学模型是基于Spice版本,但增加了大量的VHDL元件模型,可以仿真更复杂的数学元器件,另外解决了Spice模型对高频仿真不精确的问题。Multisim在保留了EWB形象直观等优点的基础上,大大增强了软件的仿真测试和分析功能,大大扩充了元件库中的元件的数目,特别是增加了大量与实际元件对应得元件模

型,使得仿真设计的结果更加精确、更可靠、更具有实用性。

4.2 系统仿真实现

图11 用乘法器组成的抑制载波双边带(DSB)输入波形及调制波形

图12 同步检波器输入的双边带信号(上)及其输出信号(下)

4.3 系统测试(要求测试环境、测试仪器、测量数据)

由于加性噪声只对已调信号的接收产生影响,因而调制系统的抗噪声性能主要用解调器的抗噪声性能来衡量。为了对不同调制方式下各种解调器性能进行度量,通常采用信噪比增益G (又称调制制度增益)来表示解调器的抗噪声性能。 有加性噪声时解调器的数学模型如图所示。

图中()m t S 为已调信号,()n t 为加性高斯白噪声。 ()m t S 和()n t 首先经过带通滤波器,滤出有用信号,滤除带外的噪声。经过带通滤波器后到达解调器输入端的信号为()m t S 、噪声为高斯窄带噪声()i n t ,显然解调器输入端的噪声带宽与已调信号的带宽是相同的。最后经解调器解调输出的有用信号为()o m t ,噪声为()o n t 。

图13 有加性噪声时解调器的数学模型

设解调器输入信号为

()()cos m c s t m t t ω=

与相干载波cos c t ω相乘后,得

211()cos ()()cos 222

c c m t t m t m t t ωω=+ 经低通滤波器后,输出信号为

1()()2

o m t m t = 因此,解调器输出端的有用信号功率为 221()()4o o S m t m t ==

解调DSB 信号时,接收机中的带通滤波器的中心频率o ω与调制载频c ω相同,因此解调器输出端的窄带噪声()i n t 可表示为

()()cos ()sin i c c s c n t n t t n t t ωω=-

它与相干载波相乘后,得

()cos [()cos ()sin ]

11()[()cos 2()sin 2]22

i c c c s c c c c s c n t t n t t n t t n t n t t n t t ωωωωω=-=+- 经低通滤波器后,解调器最终的输出噪声为

1()()2

o c n t n t = 故输出噪声功率为

2211()()44

o o c o N n t n t n B === 这里,2H B f =,为DSB 信号的带通滤波器的带宽。

解调器输入信号平均功率为

2221()[()cos ]()2

i c m S s t m t t m t ω=== 可得解调器的输入信噪比

21()2i i o m t S N n B

= 同时可得解调器的输出信噪比

221()()414

o o o i m t S m t N n B N == 因此制度增益为

2o

o DSB i i

S N G S N == 由此可见,DSB 调制系统的制度增益为2。也就是说DSB 信号的解调器使信噪比改善了一倍。这是因为采用相干解调,使输入噪声中的正交分量()s n t 被消除的缘故。

4.4 数据分析(对比系统功能及参数与设计要求是否相符)

通过观察调制波形可以得知,示波器中的红线为高频载波,绿线为调制信号,载波信号把调制信号搬移到更高频带处,与书中DSB 信号的调制理论一致。通过观察解调波形可以得知,示波器中的红线为同步检波器输入的双边带信号,绿线为解调输出的信号,与调制信号一致。

综上所述,本电路设计能够实现DSB 信号的调制与解调。

5 总结

5.1 设计小结

模拟调制系统是通信工程专业方向最主要的模块之一,通过在课堂上对理论知识的学习,我们了解到模拟调制系统的基本方式以及其原理。然而,如何将理论在实践中得到验证和应用,是我们学习当中的一个问题。而通过本次课程设计,我们在强大的Multisim平台上对数字信号的调制解调进行了一次仿真,有效的完善了学习过程中实践不足的问题,同时进一步巩固了原先的基础知识。

5.2 收获体会

通过这次的课程设计,一方面,我们对调制和解调有了更进一步的认识,尤其是在系统设计方面,尽管是非常基础的DSB调制与解调的传输,也是经过若干设备协同工作,才能保证信号有效传输,而小到仅仅是一个电容电阻参数,都有可能导致整个仿真过程无法正常运行。

另一方面,我们通过本次的课程设计,着实领教了Multisim强大的功能和实力。通过在Multisim环境下对系统进行模块化设计与仿真,使我们获得两方面具体经验,第一是Multisim中各个功能模块的使用方法,第二是图形化和结构化的系统设计方法。这些经验虽然并不高深,但是对于刚入门的初学者来说,对以后步入专业领域进行设计或研发无疑具有重大的意义。

6 参考文献

[1]电子线路:非线性部分/谢佳奎主编:谢佳奎,宣月清,冯军编.——4版.——北京:高等教育出版社,(2010重印)

[2]通信原理/樊昌信,曹丽娜编著. ——6版.——北京:国防工业出版社,2011.8重印

[3]张肃文,陆兆熊.高频电子线路.第三版.高等教育出版社,1993年

[4]董在望,肖华庭.通信电路原理.高等教育出版社,1989年

[5]黄智伟.基于Multisim2001的电子电路计算机仿真设计与分析.北京电子工业出版社。2004

[6] Multisim7电路设计及仿真应用/熊伟等编著。——北京:清华大学出版社,2005.7

[7] Multisim7 User Guide.Interactive Image Technology Ltd.Canda,3003

[8]曾兴雯,刘乃安,陈健.高频电路原理与分析[M].西安:西安电子科技大学出版社,2003,6.

[9]郑步生,吴渭.Multisim2001电路设计及仿真入门与应用[M].北京:电子工业出版社,2002,2.

7附录

系统主要功能展示图

器件清单

AM,DSB,SSB调制和解调电路的设计。

东北大学分校电子信息系 综合课程设计 基于Multisim的调幅电路的仿真 专业名称电子信息工程 班级学号5081411 学生曹翔 指导教师王芬芬 设计时间2011/6/22

基于Multisim的调幅电路的仿真 1.前言 信号调制可以将信号的频谱搬移到任意位置,从而有利于信号的传送,并且是频谱资源得到充分利用。调制作用的实质就是使相同频率围的信号分别依托于不同频率的载波上,接收机就可以分离出所需的频率信号,不致相互干扰。而要还原出被调制的信号就需要解调电路。调制与解调在高频通信领域有着广泛的应用,同时也是信号处理应用的重要问题之一,系统的仿真和分析是设计过程中的重要步骤和必要的保证。论文利用Multisim提供的示波器模块,分别对信号的调幅和解调进行了波形分析。 AM调制优点在于系统结构简单,价格低廉,所以至今仍广泛应用于无线但广播。与AM信号相比,因为不存在载波分量,DSB调制效率是100%。我们注意到DSB信号两个边带中任意一个都包含了M(w)的所有频谱成分,所以利用SSB调幅可以提高信道的利用率,所以选择SSB调制与解调作为课程设计的题目具有很大的实际意义。 论文主要是综述现代通信系统中AM ,DSB,SSB调制解调的基本技术,并分别在时域讨论振幅调制与解调的基本原理, 以及介绍分析有关电路组成。此课程设计的目的在于进一步巩固高频、通信原理等相关专业课上所学关于频率调制与解调等相关容。同时加强了团队合作意识,培养分析问题、解决问题的综合能力。 本次综合课设于2011年6月20日着手准备。我团队四人:曹翔、婷婷、赖志娟、少楠分工合作,利用两天时间完成对设计题目的认识与了解,用三天时间完成了本次设计的仿真、调试。 2.基本理论 由于从消息转换过来的调制信号具有频率较低的频谱分量,这种信号在许多信道中不宜传输。因此,在通信系统的发送端通常需要有调制过程,同时在接受端则需要有解调过程从而还原出调制信号。 所谓调制就是利用原始信号控制高频载波信号的某一参数,使这个参数随调制信号的变化而变化,最常用的模拟调制方式是用正弦波作为载波的调幅(AM)、调频(FM)、调相 (PM)三种。解调是与调制相反的过程,即从接收到的已调波信号中恢复原调制信息的过程。与调幅、调频、调相相对应,有检波、鉴频和鉴相[1]。 振幅调制方式是用传递的低频信号去控制作为传送载体的高频振荡波(称为

MultisimDSB调制与解调电路仿真研究

课程设计报告 题目:基于Multisim的DSB的调制与 解调电路的仿真分析 学生姓名:*** 学生学号:******** 系别:电气信息工程学院 专业:通信工程 届别:2014届 指导教师:*** 电气信息工程学院制 2013年4月 基于Multisim的DSB的调制与解调电路的仿真分析

学生:*** 指导教师:*** 电气信息工程学院 通信工程专业 1 课程设计的任务与要求 1.1 课程设计的任务 本课程设计是实现DSB 的调制解调。在此次课程设计中,我将通过多方搜集资料与分析,来理解DSB 调制解调的具体过程和它在multisim 中的实现方法。通过这个阶段学习,更清晰地认识DSB 的调制解调原理,同时加深对multisim 这款通信仿真软件操作的熟练度,并在使用中去感受multisim 的应用方式与特色。利用自主的设计过程来锻炼自己独立思考,分析和解决问题的能力,为我今后的自主学习研究提供具有实用性的经验。 1.2 课程设计的要求 (1)熟悉multisim 的使用方法,掌握DSB 信号的调制解调原理,以此为基础在软件中画出电路图。 (2)绘制出DSB 信号调制解调前后在时域和频域中的波形,观察两者在解调前后的变化,通过对分析结果来加强对DSB 信号调制解调原理的理解。 (3)在老师的指导下,独立完成课程设计的全部内容,并按要求编写课程设计论文,文中能正确阐述和分析设计和实验结果。 1.3 课程设计的研究基础(设计所用的基础理论) (1)DSB 调制过程的分析:在AM 信号中,载波分量并不携带信息,信息完全有边带传送。如果在AM 调制模型中将直流分量去掉,即可得到一种高调制效率的调制方式—抑制载波双边带信号(DSB-SC ),简称双边带信号(DSB ),表示为:t w t u k t u c a cos )()(0Ω= 显然,它与调幅信号的区别就在于其载波电压振幅不是在0m V 上下按调制信号规律变化。这样,当调制信号)(t u Ω进入负半周时,)(t u o 就变为负值。表明载波电压产生0180相移。因而当)(t u Ω自正值或负值通过零值变化时,双边带调制信号波形均将出现0 180的相移突变。双边带调制信号的包络已不再反映

DSB 调制与解调仿真

实验3:DSB 调制与解调仿真 一、实验目的 1.掌握DSB 的调制原理和Matlab Simulink 仿真方法 2.掌握DSB 的解调原理和Matlab Simulink 仿真方法 二、实验原理 1. DSB 信号的调制解调原理: 1.1 调制原理:在幅度调制的一般模型中,若假设滤波器为全通网络(H(w) =1),调制信号中无直流分量,则输出的已调信号就是无载波分量的双边带调制信号(DSB)。每当信源信号极性发生变化时,调制信号的相位都会发生一次突变π。SDSB(t)=m(t)coswCt调制的目的就是进行频谱搬移,把调制信号的频谱搬移到所希望的位置上,从而提高系统信息传输的有效性和可靠性。 DSB调制原理框图如下图 1.2 解调原理:DSB只能进行想干解调,其原理框图与AM信号相干解调时 完全相同,利用恢复的载波与信号相乘,将频谱搬移到基带,还原出原基带信号,DSB解调原理框图如下图 三、实验步骤

1、DSB模拟系统调制方式的MATLAB Simulink仿真(1)原理图 (2)仿真图 (3)仿真分析 ①调制器

②调制后信号对比调制前的信号,周期变小,频率变大了,幅度随时间在不断的呈现周期性变化,在0~0.6之间,小于调制前的幅度。 2、DSB解调方式的MATLAB Simulink仿真 (1)原理图 (2)仿真图

(3)仿真分析 ①调制器 ②解调后周期变大,频率变小,幅度会有所减小,在0~0.25之间。 3、用示波器观察DSB调制解调输入和输出信号波形 (1)原理图

(2)仿真图 (3)仿真分析 解调后周期不变,频率也不会改变,幅度会有所减小,在0 ~0.25之间。 4、Zero-Order Hold和Spectrum Scope观察DSB调制仿真前后的频谱图(1)原理图

(完整word版)DSB调制与解调

DSB调制与解调 1 课程设计目的 本课程设计是实现DSB的调制解调。在此次课程设计中,我将通过多方搜集资料与分析,来理解DSB调制解调的具体过程和它在MATLAB中的实现方法。预期通过这个阶段的研习,更清晰地认识DSB的调制解调原理,同时加深对MATLAB 这款通信仿真软件操作的熟练度,并在使用中去感受MATLAB的应用方式与特色。利用自主的设计过程来锻炼自己独立思考,分析和解决问题的能力,为我今后的自主学习研究提供具有实用性的经验。 2 课程设计要求 (1)熟悉MATLAB中M文件的使用方法,掌握DSB信号的调制解调原理,以此为基础用M文件编程实现DSB信号的调制解调。 (2)绘制出SSB信号调制解调前后在时域和频域中的波形,观察两者在解调前后的变化,通过对分析结果来加强对DSB信号调制解调原理的理解。 (3)对信号分别叠加大小不同的噪声后再进行解调,绘制出解调前后信号的时域和频域波形,比较未叠加噪声时和分别叠加大小噪声时解调信号的波形有何区别,由所得结果来分析噪声对信号解调造成的影响。 (4)在老师的指导下,独立完成课程设计的全部内容,并按要求编写课程设计论文,文中能正确阐述和分析设计和实验结果。

3 相关知识 在AM 信号中,载波分量并不携带信息,信息完全由边带传送。如果将载波抑制,只需在将直流0A 去掉,即可输出抑制载波双边带信号,简称双边带信号(DSB )。 DSB 调制器模型如图1所示。 图1 DSB 调制器模型 其中,设正弦载波为 0()cos()c c t A t ω?=+ 式中,A 为载波幅度;c ω为载波角频率;0?为初始相位(假定0?为0)。 调制过程是一个频谱搬移的过程,它是将低频信号的频谱搬移到载频位置。而解调是将位于载频的信号频谱再搬回来,并且不失真地恢复出原始基带信号。 双边带解调通常采用相干解调的方式,它使用一个同步解调器,即由相乘器和低通滤波器组成。在解调过程中,输入信号和噪声可以分别单独解调。相干解调的原理框图如图2所示: 图2 相干解调器的数学模型 信号传输信道为高斯白噪声信道,其功率为2σ。

最新模拟电子电路multisim仿真(很全 很好)资料

仿真 1.1.1 共射极基本放大电路 按图7.1-1搭建共射极基本放大电路,选择电路菜单电路图选项(Circuit/Schematic Option )中的显示/隐藏(Show/Hide)按钮,设置并显示元件的标号与数值等 。 1.静态工作点分析 选择分析菜单中的直流工作点分析选项(Analysis/DC Operating Point)(当然,也可以使用仪器库中的数字多用表直接测量)分析结果表明晶体管Q1工作在放大状态。 2.动态分析 用仪器库的函数发生器为电路提供正弦输入信号Vi(幅值为5mV,频率为10kH),用示波器观察到输入,输出波形。由波形图可观察到电路的输入,输出电压信号反相位关系。再一种直接测量电压放大倍数的简便方法是用仪器库中的数字多用表直接测得。 3.参数扫描分析 在图7.1-1所示的共射极基本放大电路中,偏置电阻R1的阻值大小直接决定了静态电流IC的大小,保持输入信号不变,改变R1的阻值,可以观察到输出电压波形的失真情况。选择分析菜单中的参数扫描选项(Analysis/Parameter Sweep Analysis),在参数扫描设置对话框中将扫描元件设为R1,参数为电阻,扫描起始值为100K,终值为900K,扫描方式为线性,步长增量为400K,输出节点5,扫描用于暂态分析。 4.频率响应分析 选择分析菜单中的交流频率分析项(Analysis/AC Frequency Analysis)在交流频率分析参数设置对话框中设定:扫描起始频率为1Hz,终止频率为1GHz,扫描形式为十进制,纵向刻度为线性,节点5做输出节点。 由图分析可得:当共射极基本放大电路输入信号电压VI为幅值5mV的变频电压时,电路输出中频电压幅值约为0.5V,中频电压放大倍数约为-100倍,下限频率(X1)为14.22Hz,上限频率(X2)为25.12MHz,放大器的通频带约为25.12MHz。 由理论分析可得,上述共射极基本放大电路的输入电阻由晶体管的输入电阻rbe限定,输出电阻由集电极电阻R3限定。 1.1.2共集电极基本放大电路(射极输出器)

用Matlab实现模拟(DSB-AM)调制

前言 调制就是使一个信号(如光、高频电磁振荡等)的某些参数(如振幅、频率等)按照另一个欲传输的信号(如声音、图像等)的特点变化的过程。用所要传播的语言或音乐信号去改变高频振荡的幅度,使高频振荡的幅度随语言或音乐信号的变化而变化,这个控制过程就称为调制。其中语言或音乐信号叫做调制信号,调制后的载波就载有调制信号所包含的信息,称为已调波。 解调是调制的逆过程,它的作用是从已调波信号中取出原来的调制信号。对于幅度调制来说,解调是从它的幅度变化提取调制信号的过程。对于频率调制来说,解调是从它的频率变化提取调制信号的过程。频率解调要比幅度解调复杂,用普通检波电路是无法解调出调制信号的,必须采用频率检波方式,如各类鉴频器电路。关于鉴频器电路可参阅有关资料,这里不再细述。 本课题利用MATLAB软件对DSB信号调制解调系统进行模拟仿真,分别对正弦波进行调制,观察调制信号、已调信号和解调信号的波形和频谱分布。

第一章 设计要求 (1)已知调制信号?? ???≤≤-≤≤=其他,03/23/,23/0,1)(000t t t t t t m (2)调制载波c(t)=)2cos(t f c π (3)设计m 文件实现DSB-AM 调制 (4)设计m 文件绘制消息信号与已调信号的频谱,分析其频谱特征。

第二章 系统组成及工作原理 2.1 DSB-AM 系统构成 在AM 信号中,载波分量并不携带信息,信息完全由边带传送。如果将载波抑制,只需在将直流A0去掉,即可输出抑制载波双边带信号,简称双边带信号(DSB )。 2-1 DSB 调制器模型 调制过程是一个频谱搬移的过程,它是将低频信号的频谱搬移到载频位置。而解调是将位于载频的信号频谱再搬回来,并且不失真地恢复出原始基带信号。 双边带解调通常采用相干解调的方式,它使用一个同步解调器,即由相乘器和低通滤波器组成。相干解调的原理框图如图2-2所示: 2-2 DSB 相干解调模型 2.2DSB 调制原理 在消息信号m(t)上不加上直流分量,则输出的已调信号就是无载波分量的双边带调制信号,或称抑制载波双边带调制信号,简称双边带(DSB )信号。DSB 调制器模型如图2-1,可见DSB 信号实质上就是基带信号与载波直接相乘。 )cos()(t t t m S c DSB ω=)( (式2-1) )]()([2/1c c DSB F F S ωωωωω++-=)( (式2-2) 除不再含有载频分量离散谱外,DSB 信号的频谱与AM 信号的完全相同,仍由上下对称的两个边带组成。故DSB 信号是不带载波的双边带信号,它的带宽与AM 信号相同,也为基带信号带宽的两倍,DSB 信号的波形和频谱分别如图2-3:

实验八multisim电路仿真

电子线路设计软件课程设计报告 实验内容:实验八multisim电路仿真 一、验目的 1、进一步熟悉multisim的操作和使用方法 2、掌握multisim做电路仿真的方法 3、能对multisim仿真出的结果做分析 二、仿真分析方法介绍 Multisim10为仿真电路提供了两种分析方法,即利用虚拟仪表观测电路的某项参数和利用Multisim10 提供的十几种分析工具,进行分析。常用的分析工具有:直流工作点分析、交流分析、瞬态分析、傅立叶分析、失真分析、噪声分析和直流扫描分析。利用这些分析工具,可以了解电路的基本状况、测量和分析电路的各种响应,且比用实际仪器测量的分析精度高、测量范围宽。下面将详细介绍常用基本分析方法的作用、分析过程的建立、分析对话框的使用以及测试结果的分析等内容 1、直流工作点分析 直流工作点分析也称静态工作点分析,电路的直流分析是在电路中电容开路、电感短路时,计算电路的直流工作点,即在恒定激励条件下求电路的稳态值。在电路工作时,无论是大信号还是小信号,都必须给半导体器件以正确的偏置,以便使其工作在所需的区域,这就是直流分析要解决的问题。了解电路的直流工作点,才能进一步分析电路在交流信号作用下电路能否正常工作。求解电路的直流工作点在电路分析过程中是至关重要的。 执行菜单命令Simulate/Analyses,在列出的可操作分析类型中选择DC Operating Point,则出现直流工作点分析对话框,如图所示。直流工作点分析对话框包括3页。

Output 页用于选定需要分析的节点。 左边Variables in circuit 栏内列出电路中各节点电压变量和流过电源的电流变量。右边Selected variables for 栏用于存放需要分析的节点。 具体做法是先在左边Variables in circuit 栏内中选中需要分析的变量(可以通过鼠标拖拉进行全选),再点击Plot during simulation 按钮,相应变量则会出现在Selected variables for 栏中。如果Selected variables for 栏中的某个变量不需要分析,则先选中它,然后点击Remove按钮,该变量将会回到左边Variables in circuit 栏中。Analysis Options页 点击Analysis Options按钮进入Analysis Options页,其中排列了与该分析有关的其它分析选项设置,通常应该采用默认的 Summary页

Multisim数字电路仿真快速上手教程

Multisim快速上手教程 每一次数电实验都要疯了有木有!!!全是线!!!全是线!!!还都长得要命!!!完全没地方收拾啊!!!现在数电实验还要求做开放实验,还要求最好先仿真!!!从来没听说过仿真是个什么玩意儿的怎么破!!! 以下内容为本人使用仿真软件的一些心路历程,可供参考。 所谓仿真,以我的理解,就是利用计算机强大的计算能力,结合相应的电路原理(姑且理解为KVL+KCL)来对电路各时刻的状态求解然后输出的过程。相较于模拟电路,数字电路的仿真轻松许多,因为基本上都转化为逻辑关系的组合了。有人用minecraft来做数字电路,都到了做出8bitCPU的水平(https://www.docsj.com/doc/7c207669.html,/v_show/id_XMjgwNzU5MDUy.html、https://www.docsj.com/doc/7c207669.html,/v_show/id_XNjEwNTExODI4.html)。这个很神奇。 以下进入正文 首先,下载Multisim安装程序。具体链接就不再这里给出了(毕竟是和$蟹$版的软件),可以到BT站里搜索,有一个Multisim 12是我发的,里面有详细的安装说明,照着弄就没问题了。 好,现在已经安装上Multisim 12了。 然后运行,在Circuit Design Suite12.0里,有一个multisim,单击运行。 进去之后就是这样的。 那一大块白的地方就是可以放置元件的地方。 现在来以一个简单的数字逻辑电路为例:

菜单栏下一排是这些东西,划线的是数字电路仿真主要用得上的元件。 来个7400吧 点击TTL那个图标(就是圈里左边那个)。出来这样一个东西: 红圈里输入7400就出来了,也可以一个一个看,注意右边“函数”栏目下写的“QUAD 2-INPUT NAND”即是“四个双输入与非门”的意思。 点击确认,放置元件。 A、B、C、D在这里指一块7400里的四个双输入与非门,点击即可放置。 看起来很和谐,那就做个RS触发器吧。 这里输出用的是一种虚拟器件PROBE,在Indicators组,图标就是个数码管的那个。功能相当于实验箱上那些LED,也是高电平就点亮。元件旋转方向的方法是选中元件然后按Ctrl+R(otate)。还可以选中元件后点击右键,选择“水平翻转”等。

DSB信号的仿真分析

《MATLAB课程设计》报告题目:基于MATLAB的DSB调制与解调分析专业班级: 通信1104班 学生姓名: 指导教师:

MATLAB课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 基于MATLAB的DSB调制与解调分析 设计内容和要求 DSB信号的仿真分析 调制信号:分别为300Hz正弦信号和矩形信号;载波频率:30kHz; 解调:同步解调; 要求:画出以下三种情况下调制信号、已调信号、解调信号的波形、频谱以及解调器输入输出信噪比的关系曲线; 1)调制信号幅度=×载波幅度;2)调制信号幅度=载波幅度; 3)调制信号幅度=×载波幅度; 时间安排 2013年12月25日:复习DSB的原理,初步构想设计的流程。 2013年12月26日至28日:程序编写及调试。 2013年12月29日:写报告。 指导教师签名:年月日

目录

摘要 调制在通信系统中有十分重要的作用。通过调制,不仅可以进行频谱搬移,把调制信号的频谱搬移到所希望的位置上,从而将调制信号转换成适合于传播的已调信号,而且它对系统的传输有效性和传输的可靠性有着很大的影响,调制方式往往决定了一个通信系统的性能。MATLAB软件广泛用于数字信号分析,系统识别,时序分析与建模,神经网络、动态仿真等方面有着广泛的应用。本课题利用MATLAB软件对DSB 调制解调系统进行模拟仿真,分别利用300HZ正弦波和矩形波,对30KHZ正弦波进行调制,观察调制信号、已调信号和解调信号的波形和频谱分布,并在解调时引入高斯白噪声,对解调前后信号进行信噪比的对比分析,估计DSB调制解调系统的性能。 Abstract Modulation in communication systems have an important role. Through the modulation, not only can move the spectrum, the modulated signal spectrum move to the desired position, which will convert into a modulated signal suitable for transmission of modulated signals, and that its transmission system, the effectiveness and reliability of transmission has a great impact, the modulation method is often decided on a communication system performance. MATLAB software is widely used in digital signal analysis, system identification, time series analysis and modeling, neural networks, dynamic simulation have a wide range of applications. This topic using MATLAB software DSB modulation and demodulation system simulation, use, respectively, 300HZ sine wave and rectangular wave, sine wave modulation of the 30KHZ observed modulated signal modulated signal and demodulate the signal waveform and spectrum distribution, and in the solution white Gaussian noise introduced when adjusted for demodulating the signal-noise ratio before and after the comparative analysis, it is estimated DSB modulation and demodulation performance of the system.

multisim 电路仿真 课程设计

4.1 仿真设计 1、用网孔法和节点法求解电路。 如图4.1-1所示电路: 3Ω (a)用网孔电流法计算电压u的理论值。 (b)利用multisim进行电路仿真,用虚拟仪表验证计算结果。(c)用节点电位法计算电流i的理论值。 (d)用虚拟仪表验证计算结果。 解: 电路图: (a) i1=2 解得 i1=2 5i2-31-i3=2 i2=1 i3=-3 i3=-3 u=2 v (b)如图所示: (c)列出方程 4/3 U1- U2=2 解得 U1=3 v U2=2 v 2A1Ω _ + 1Ω 2V - 3A 图4.1-1 i

2U 1- U 2=2 i=1 A 结果:计算结果与电路仿真结果一致。 结论分析:理论值与仿真软件的结果一致。 2、叠加定理和齐次定理的验证。 如图4.1-2所示电路: (a)使用叠加定理求解电压u 的理论值; (b)利用multisim 进行电路仿真,验证叠加定理。 (c)如果电路中的电压源扩大为原来的3倍,电流源扩大为原来的2倍,使用齐次定理,计算此时的电压u ; (d)利用multisim 对(c )进行电路仿真,验证齐次定理。 电路图: (a ) I 1=2 7 I 2-2 I 1- I 3=0 3 I 3- I 2-2 I 4=0 解得 U 1=7(V ) I 4=-3 U 1 U 1=2(I 1- I 2) 如图所示电压源单独作用时根据网孔法列方程得: 3 I 1-2 I 2- I 3= 4 I 2=-3 U 2 7 I 3 - I 1=0 解得 U 2=9(V ) U 2=4-2 I 3 所以 U= U 1+ U 2=16(V ) (b )如图所示。 2Ω 1Ω 2Ω 4Ω 2A 3u + 4V - + u - 图4.1-2

DSB调制与解调

DSB调制与解调 1课程设计目的 本课程设计是实现DSB的调制解调。在此次课程设计中,我将通过多方搜集资料与分析,来理解DSB调制解调的具体过程和它在MATLAB中的实现方法。预期通过这个阶段的研习,更清晰地认识DSB的调制解调原理,同时加深对MATLAB 这款通信仿真软件操作的熟练度,并在使用中去感受MATLAB的应用方式与特色。利用自主的设计过程来锻炼自己独立思考,分析和解决问题的能力,为我今后的自主学习研究提供具有实用性的经验。 2课程设计要求 (1)熟悉MATLAB中M文件的使用方法,掌握DSB信号的调制解调原理,以此为基础用M文件编程实现DSB信号的调制解调。 (2)绘制出SSB信号调制解调前后在时域和频域中的波形,观察两者在解调前后的变化,通过对分析结果来加强对DSB信号调制解调原理的理解。 (3)对信号分别叠加大小不同的噪声后再进行解调,绘制出解调前后信号的时域和频域波形,比较未叠加噪声时和分别叠加大小噪声时解调信号的波形有何区别,由所得结果来分析噪声对信号解调造成的影响。 (4)在老师的指导下,独立完成课程设计的全部内容,并按要求编写课程设计论文,文中能正确阐述和分析设计和实验结果。

3相关知识 在AM 信号中,载波分量并不携带信息,信息完全由边带传送。如果将载波抑制,只需在将直流0A 去掉,即可输出抑制载波双边带信号,简称双边带信号(DSB )。 DSB 调制器模型如图1所示。 图1 DSB 调制器模型 其中,设正弦载波为 0()cos()c c t A t ω?=+ 式中,A 为载波幅度;c ω为载波角频率;0?为初始相位(假定0?为0)。 调制过程是一个频谱搬移的过程,它是将低频信号的频谱搬移到载频位置。而解调是将位于载频的信号频谱再搬回来,并且不失真地恢复出原始基带信号。 双边带解调通常采用相干解调的方式,它使用一个同步解调器,即由相乘器和低通滤波器组成。在解调过程中,输入信号和噪声可以分别单独解调。相干解调的原理框图如图2所示: 图2 相干解调器的数学模型 信号传输信道为高斯白噪声信道,其功率为2σ。

MATLAB实现DSB调制与解调

MATLAB 实现DSB 调制与解调 学生:黄文伯 班级:通信112 指导老师:文欢 一、研究的主要内容和研究的意义 通过本次课设更深入的了解DSB 调制和解调的基本原理以及利用MATLAB 软件对DSB 信号的调制解调,深入地理解调制解调技术在通信工程专业系列课程中的理论基础地位、作用和意义;加深对基本概念和基本原理的理解,并能够用所学知识进行调制解调仿真及性能分析。 二、DSB 调制与解调原理 DSB 是AM 调制的一种,AM 信号通过信道后自然会叠加有燥声,经过接收天线进入带通滤波器。 BPF 的作用有两个,一是让AM 信号直接通过,二是滤出带外噪声。AM 信号通过BFP 后与本地载波相乘后。进入LPF ,LPF 的截止频率设定为一个定值,它不允许频率大于截止频率的成分通过,因此LPF 的输出仅为与要的信号。 三、高斯白噪声 在实际信号传输过程中,通信系统不可避免的会遇到噪声,例如自然界中的各种电磁波噪声和设备本身产生的热噪声、散粒噪声等,它们很难被预测。而且大部分噪声为随机的高斯白噪声,所以在设计时引入噪声,才能够真正模拟实际中信号传输所遇到的问题,进而思考怎样才能在接受端更好地恢复基带信号。信道加性噪声主要取决于起伏噪声,而起伏噪声又可视为高斯白噪声,因此我在此环节将对双边带信号添加高斯白噪声来观察噪声对解调的影响情况。 四、模拟仿真结果分析 通过MATLAB 对DSB 调制和解调系统的模拟仿真,观察各波形和频谱,在波形上,已调信号的幅度随基带信号的规律呈正比地变化;在频谱结构上,它的频谱完全是基带信号频谱在频域内的简单搬移,若调制信号频率为 ,载波频率,调制后信号频率搬移至处。通过在已调信号中加入高斯白噪声,通过解调器解调,根据对输入输出信噪比关系曲线绘制观察,在理想情况下,输出信噪比为输入信噪比的二倍,即DSB 信号的解调器使信噪比改善s m c

Multisim电路仿真

Multisim电路仿真 示例1.直流电路分析 步骤一:文件保存 打开Multisim 软件,自动产生一个名为Design1的新文件。 打开菜单File>>Save as…,将文件另存为“CS01”(自动加后缀) 步骤二:放置元件 打开菜单Place>>Component… 1.选择Sources(电源)Group (组),选择POWER_SOURCES(功率源)Family(小组),在元件栏中用鼠标双击DC_POWER,将直流电源放置到电路工作区。 说明:所有元件按Database -> Group -> Family 分类存放

2.继续放置元件: Sources Group –>POWER_SOURCES Family->ROUND(接地点 Basic Group->RESISTOR Family(选择5个电阻) 3.设定元件参数。采用下面两种方式之一 1)在放置元件时(在一系列标准值中)选择; 2)在工作区,鼠标右键点击元件,在Properties (属性)子菜单中设定。 步骤三.根据电路图连线 用鼠标拖动元件到合适位置,如果有必要,鼠标右键点击元件,可对 其翻转(Flip)或旋转(Rotate)。连线时先用鼠移至一个元件的接线端, 鼠标符号变成叉形,然后拖动到另一结点,点击右键确认连线。 若需显示全部节点编号,在菜单 Option>>Sheet Properties>>Sheet visibility 的Net names 选板中选中show all。

步骤四.电路仿真 选择菜单Simulate>>Analyses>>DC operating point…(直流工作点分析) 在DC operating point analysis窗口中,选择需要分析的变量(节点电压、元件电流或功率等)。

基于Multisim的电路仿真

模拟电子技术实验《信号放大器的设计》 班级: 姓名: 指导老师: 2013年12月10日至12日

1.实验目的 (1)掌握分立或集成运算放大器的工作原理及其应用。 (2)掌握低频小信号放大电路和功放电路的设计方法。 (4)通过实验培养学生的市场素质,工艺素质,自主学习的能力,分析问题解决问题的能力 以及团队精神。 (5)通过实验总结回顾所学的模拟电子技术基础理论和基础实验,掌握低频小信号放大电路 和功放电路的设计方法 2.实验任务和要求 2.1实验任务 1)已知条件: 信号放大电路由“输入电路”、“差分放大电路”、“两级负反馈放大电路”、“功率放大器”、“扬声器”几部分构成。 图2-1 信号放大器的系统框图 2)性能指标: a)输入信号直接利用RC 正弦波振荡电路产生。 b) 前置放大器: 输入信号:Uid ≤ 10 mV 输入阻抗:Ri ≥ 100 k c) 功率放大器: 最大不失真输出功率:Pomax ≥1W 负载阻抗:RL= 8; 电源电压:+ 5 V ,+ 12V ,- 12V d) 输出功率连续可调 直流输出电压 ≤ 50 mV 信号产生 差分放大 共射级放大 功率放大 负反馈 输出信号

静态电源电流≤100 mA 2.2实验要求 1)选取单元电路及元件 根据设计要求和已知条件,确定信号产生电路、前置放大电路、功率放大电路的方案, 计算和选取单元电路的原件参数。 2)前置放大电路的组装与调试测量前置放大电路的差模电压增益AU、共模电压增益AUc、共模抑制比KCMR、带宽BW、输入电压Ri等各项技术指标,并与设计要求值进行比较。 3)有源带通滤波器电路的组装与调试 测量有缘带通滤波器电路的差模电压增益AUd、带通BW,并与设计要求进行比较。 4)功率放大电路的组装与调试 功率放大电路的最大不失真输出功率Po,max、电源供给功率PDC、输出效率η、直流输 出电压、静态电源电流等技术指标。 5)整体电路的联调 6)应用Multisim软件对电路进行仿真分析。 2.3选用元器件 电容电阻若干、双踪示波器1个、信号发生器一个、交流毫伏表1个、数字万用表等仪器、晶体三极管 2N3906 1个,2N2222A 5个,2N2222 2个,2N3904 2个,1N3064 1个。 3、实验内容 1、总电路图 (一)实验总体电路图

Multisim仿真混沌电路

Multisim仿真—混沌电路 1104620125

Multisim仿真—混沌电路 一、实验目的 1、了解非线性电阻电路伏安特性,以及其非线性电阻特征的测量方法; 2、使用示波器观察混沌电路的混沌现象,通过实验感性地认识混沌现象,理解非线性科学中“混沌”一词的含义;; 3、研究混沌电路敏感参数对混沌现象的影响 二、实验原理 1、蔡氏电路 本实验采用的电路图如图9-16 所示,即蔡氏电路。蔡氏电路是由美国贝克莱大 学的蔡少棠教授设计的能产生混沌行为的最简单的一种自制电路。R 是非线性电 阻元件,这是该电路中唯一的非线性元件,是一个有源负阻元件。电容C2 与电 感L 组成一个损耗很小的振荡回路。可变电阻1/G 和电容C1 构成移相电路。最 简单的非线性元件R 可以看作由三个分段线性的元件组成。由于加在此元件上的 电压增加时,故称为非线性负阻元件。 三、实验内容 为了实现有源非线性负阻元件实,可以使以下电路,采用两个运算放大器(1 个双运放TL082)和六个配置电阻来实现,其电路如图1,这主要是一个正反馈电路,能输出电流以维持振荡器不断震荡,而非线性负阻元件能使振荡周期产生分岔和混沌等一系列非线性现象。 1、实验电路如下图,电路参数:1、电容:100nf 一个,10nf 一个; 2、线性电阻6 个:

200Ω二个,22kΩ二个,2.2kΩ一个,3.3kΩ一个;3、电感:18mH 一个;4、运算放大器:五端运放TL083 二个;5、可变电阻:可变电阻一个;6、稳压电源:9V 的VCC 二个,-9V 的VEE 二个; 图1 选好元器件进行连接,然后对每个元器件进行参数设置,完成之后就可以对 蔡氏电路进行仿真了。双击示波器,可以看到示波器的控制面板和显示界面,在 控制面板上可以通过相关按键对显示波形进行调节。 下面是搭建完电路的截图: 2、将电压表并联进电路,电流表串联进电路可以直接测出加在非线性负阻的电压、电流, U/V I/mA U/V I/mA 12 0.1579 -1 -0.76917 11 2.138 -2 -1.44352 10 4.601 -3 -1.84752

DSB调制解调系统设计与仿真

课程设计报告 题目:DSB调制解调通信系统的设计与仿真 学生姓名:陈家宝 学生学号: 1008030205 系别:电气信息工程 专业:电子信息工程 届别: 2014届 指导教师:王千春 电气信息工程学院制 2013年3月

DSB调制解调通信系统的设计与仿真 学生:陈家宝 指导教师:王千春 电气信息工程学院电子信息工程专业 1课程设计的任务与要求 1.1课程设计任务 本课程设计是实现DSB的调制解调。在课程设计中,来理解DSB调制解调的具体过程和它在MATLAB中的实现方法。通过这个练习,认识DSB的调制解调原理,感受MATLAB的操作使用方法。 1.2课程设计要求 (1)熟悉MATLAB中M文件的使用方法,掌握DSB信号的调制解调原理,以此为基础用M文件编程实现DSB信号的调制解调。 (2)绘制出SSB信号调制解调前后在时域和频域中的波形,观察两者在解调前后的变化,通过对分析结果来加强对DSB信号调制解调原理的理解。 (3)对信号分别叠加大小不同的噪声后再进行解调,绘制出解调前后信号的时域和频域波形,比较未叠加噪声时和分别叠加大小噪声时解调信号的波形有何区别,由所得结果来分析噪声对信号解调造成的影响。 2系统方案制定 2.1 DSB信号的模型 在AM信号中,载波分量并不携带信息,信息完全由边带传送。如果将载波抑制,只需在将直流0A去掉,即可输出抑制载波双边带信号,简称双边带信号(DSB)。在消息信号m(t)上不加上直流分量,则输出的已调信号就是无载波分量的双边带调制信号,或称抑制载波双边带(DSB-SC)调制信号,简称双边带(DSB)信号。DSB调制器模型如图1,可见DSB信号实质上就是基带信号与载波直接相乘。[1]DSB调制器模型[1]如图1所示。

multisim电路仿真图

一.直流叠加定理仿真 图1.1 图1.2 图1.3 结果分析:从上面仿真结果可以看出,V1和I1共同作用时R3两端的电压为36.666V;V1和I1单独工作时R3两端的电压分别为3.333V和33.333V,这两个数值之和等于前者,符合叠加定理。 二.戴维南定理仿真 戴维南定理是指一个具有直流源的线性电路,不管它如何复杂,都可以用一个电压源UTH与电阻RTH串联的简单电路来代替,就它们的性能而言,两者

是相同的。 图2.1 如上图2.1电路所示,可以看出在XMM1和XMM2的两个万用表的面板上显示出电流和电压值为:IRL=16.667mA,URL=3.333V。 图2.2 如上图2.2所示电路中断开负载R4,用电压档测量原来R4两端的电压,记该电压为UTH,从万用表的面板上显示出来的电压为UTH=6V。

图2.3 在图2.2所测量的基础之上,将直流电源V1用导线替换掉,测量R4两端的的电阻,将其记为RTH,测量结果为RTH=160Ω。 图2.4

在R4和RTH之间串联一个万用表,在R4上并接一个万用表,这时可以读出XMM1和XMM2上读数分别为:IRL1=16.667mA,URL1=3.333V。 结果分析:从图2.1的测试结果和图2.4的测试结果可以看出两组的数据基本一样,从而验证了戴维南定理。 三.动态电路的仿真 1、一阶动态电路: 图3.1 2、二阶动态电路分析: 图3.2 2、二阶动态电路: 图3.3

一阶动态电路中V2随时间的变化可以看出,在0~500ms之间随时间的增大而非线性增大,大于500ms后趋于稳定。 图3.4 当R1电位器阻值分别为500Ω,2000Ω,4700Ω时,输出瞬态波形的变化如上图所示。 四.交流波形叠加仿真 图4.1

电路分析multisim仿真实验二

电路分析Multisim仿真实验二 验证欧姆定律 1.实验要求与目的 (1)学习使用万用表测量电阻。 (2)验证欧姆定律。 2. 元器件选取 (1)电源:Place Source→POWER_SOURCES→DC_POWER,选取直流电源,设置电源电压为12V。 (2)接地:Place Source→POWER_SOURCES→GROUND,选取电路中的接地。(3)电阻:Place Basic→RESISTOR,选取R1=10Ω,R2=20Ω。 (4)数字万用表:从虚拟仪器工具栏调取XMM1。 (5)电流表:Place Indicators→AMMETER,选取电流表并设置为直流档。 3. 仿真实验电路 图1 数字万用表测量电阻阻值的仿真实验电路及数字万用表面板

图2 欧姆定律仿真电路及数字万用表面板 4.实验原理 欧姆定律叙述为:线性电阻两端的电压与流过的电流成正比,比例常数就是这个电阻元件的电阻值。欧姆定律确定了线性电阻两端的电压与流过电阻的电流之间的关系。其数学表达式为U=RI,式中,R为电阻的阻值(单位为Ω);I为流过电阻的电流(单位为A);U为电阻两端的电压(单位为V)。 欧姆定律也可以表示为I=U/R,这个关系式说明当电压一定时电流与电阻的阻值成反比,因此电阻阻值越大则流过的电流就越小。 如果把流过电阻的电流当成电阻两端电压的函数,画出U(I)特性曲线,便可确定电阻是线性的还是非线性的。如果画出的特性曲线是一条直线,则电阻式线性的;否则就是非线性的。 5.仿真分析 (1)测量电阻阻值的仿真分析 ①搭建图1所示的用数字万用表测量电阻阻值的仿真实验电路,数字万用表按图设置。 ②单击仿真开关,激活电路,记录数字万用表显示的读数。 ③将两次测量的读数与所选电阻的标称值进行比较,验证仿真结果。 (2)欧姆定律电路的仿真分析 ①搭建图2所示的欧姆定律仿真电路。 ②单击仿真开关,激活电路,数字万用表和电流表均出现读数,记录电阻R1两

基于MATLAB的DSB系统的研究与仿真

课程设计 班级:姓名:学号:指导教师:成绩:原理 数字 课程设计报告 电子与信息工程学院 信息与通信工程系

课程设计评分标准 评分项目得分 报告书写及格式具有题目、摘要、目录、正文、参考文献(5分) 正文格式,图、表、参考文献引用等正确,排版美观(5分) 基础原理报告中是否体现被仿真系统的原理以及原理框图(5分) 仿真目的,仿真方法,仿真结果的意义表述清楚(5分) M文件仿真 做出信源,调制信号,解调信号波形(10分) 仿真参量丰富(如对频谱,信噪比,误码率等的分 析),仿真波形直观。(10分) Simulink仿真是否实现设计功能,各个模块的设计参数是否清晰(10分) 框图直观,有对不同参数条件下的仿真对比及结论(10分) 仿真参量丰富(如对频谱,信噪比,误码率等的分析),仿真波形直观。(10分) 答辩是否存在抄袭(10分) 对所仿真系统原理的提问回答情况(10分)对仿真过程提问的回答情况(10分) 总分

基于MATLAB的DSB系统的研究与仿真 摘要 本课程设计主要运用MATLAB集成环境下的Simulink仿真平台设计进行DSB系统的仿真。也就是用于实现DSB信号的调制解调过程。调制过程是一个频谱搬移的过程,它是将低频信号的频谱搬移到载频位置。解调是调制的逆过程,即是将已调制的信号还原成原始基带信号的过程。信号的接收端就是通过解调来还原已调制信号从而读取发送端发送的信息。双边带DSB信号的解调采用相干解调法,这种方式被广泛应用在载波通信和短波无线电话通信中。 关键字:Simulink;DSB;调制;相干解调

目录 1背景知识 (5) 2仿真系统模型的设计 (5) 3仿真的目的 (7) 4使用MATLAB编程完成系统的仿真 (8) 4.1DSB调制过程仿真代码 (8) 4.2高斯白噪声信道分析 (9) 4.3DSB调制解调系统的抗噪声性能 (12) 5用simulink实现如上的系统 (17) 5.1调制模块仿真结果 (17) 5.2高斯白噪声信道仿真结果 (18) 5.3解调模块仿真结果 (20) 5.4总体模型仿真结果 (20) 6心得体会 (22) 7参考文献 (22)

相关文档
相关文档 最新文档