文档视界 最新最全的文档下载
当前位置:文档视界 › 基于Matlab的模拟信号传输系统实验报告

基于Matlab的模拟信号传输系统实验报告

基于Matlab的模拟信号传输系统实验报告
基于Matlab的模拟信号传输系统实验报告

实验七、基于Matlab 的模拟信号传输系统实验报告幅度的调制解调

1,AM 调制原理2,AM 的解调原理

Sam(t

)Sp(t)Sd(t)c(t)=coswc

t

相干解调的一般模型

%041210308AM 调制解调部分代码close all ;

clear;

clc;

……

figure;

yin=awgn(y1,3);

subplot(2,1,1);

plot(t,yin);title('加噪后信号');%%加噪声后的信号

axis([1e-34e-3-55]);

fcutsb=[16000175002250024000];%%接收机前端带通滤波

magsb=[010];

devsb=[0.050.010.05];

[nb,Wnb,betab,ftypeb]=kaiserord (fcutsb,magsb,devsb,fs);

hhb=fir1(nb,Wnb,ftypeb,kaiser(n b+1,betab),'noscale');%带通滤波器;[Hb,f]=freqz(hhb,1,1024,fs);st_pb=fftfilt(hhb,yin);subplot(2,1,2);plot(t,st_pb);title('加噪后频谱');axis([1e-34e-3-55]);

figure;

st_noise=st_pb.*xc;

subplot(2,1,1);

plot(t,st_noise);title('带通滤波后');

axis([1e-34e-3-22]);fcutsl=[250030000];%%混频后低通滤波magsl=[10];devsl=[0.010.05];[nl,Wnl,betal,ftypel]=kaiserord(fcutsl,magsl,devsl,fs);hhl=fir1(nl,Wnl,ftypel,kaiser(n l+1,betal),'noscale');st_pl=fftfilt(hhl,st_noise);subplot(2,1,2);plot(t,st_pl);title('带通滤波后频谱');axis([1e-34e-301]);grid;

LPF

角度的调制解调

FM的解调原理

窄带的相干解调原理框图如下所示:

Sfm(t)Si(t)

C(t)

窄带信号的相干解调

FM的非相干解调模型

%041210308FM调制解调部分代码

……w1=0;w2=0;

for m=1:length(t)

w1=mt(m)+w2;

w2=mt(m)+w1;

fi(m)=w1/(2*fs);

end

fi=fi*2*pi/max(abs(fi));

HI=cos(kfm*fi);

HQ=sin(kfm*fi);

yo=A*cos(2*pi*fc*t).*HI-A*sin(2 *pi*fc*t).*HQ;

subplot(2,1,1);

plot(t,yo);title('时域波形'); axis([1e-34e-3-22]);

Yo=fft(yo);

subplot(2,1,2);

plot(f,fftshift(abs(Yo))/1e6); title('频谱图');%%载波频谱

axis([-4e44e401]);

figure;

%%添加噪声

yoo=awgn(yo,30);

subplot(3,1,1);

plot(t,yoo);title('加噪后波形');%%加噪声后的信号

axis([1e-34e-3-22]);

%%带通滤波

KSband=2*(3+1)*f0;

fcutsb=[fc-KSband-2000

fc-KSband fc+KSband fc+KSband+2000];%%接收机前端带通滤波

magsb=[010];

devsb=[0.050.010.05];

[nb,Wnb,betab,ftypeb]=kaiserord (fcutsb,magsb,devsb,fs);

hhb=fir1(nb,Wnb,ftypeb,kaiser(n b+1,betab),'noscale');%带通滤波器;

st_pb=fftfilt(hhb,yoo);

%subplot(3,1,2);

st_pb=st_pb/1e6;

%plot(t,st_pb);

%axis([1e-34e-3-2e-62e-6]);

%figure;

%Yst_pb=fft(st_pb);

%subplot(2,1,1);

%plot(f,fftshift(abs(Yst_pb))); %%载波频谱

BPF LPF微分

%axis([-4e44e401e6]);

%figure('Name','FM解调波形')

%微分器设计

for i=1:length(t)-1%接收信号通过微分器处理

diff_st_pb(i)=(st_pb(i+1)-st_pb (i))/dt;

end

st_noise=abs(hilbert(diff_st_pb) );

subplot(3,1,2);

plot(t,[st_noise*200]);title('

解调后波形');

axis([1e-34e-304]);

%%隔直

%KSbandh=2*(3+1)*f0;

fcutsh=[0.013000];

magsh=[01];

devsh=[0.010.05];

[nh,Wnh,betah,ftypeh]=kaiserord (fcutsh,magsh,devsh,fs);

hhh=fir1(nh,Wnh,ftypeh,kaiser(n h+1,betah),'noscale');

st_out=fftfilt(hhh,st_noise*20) ;

subplot(3,1,3);

plot(t,[st_out0]);title('解调后波形');

axis([1e-34e-3-22]);

Matlab通信系统仿真实验报告

Matlab通信原理仿真 学号: 2142402 姓名:圣斌

实验一Matlab 基本语法与信号系统分析 一、实验目的: 1、掌握MATLAB的基本绘图方法; 2、实现绘制复指数信号的时域波形。 二、实验设备与软件环境: 1、实验设备:计算机 2、软件环境:MATLAB R2009a 三、实验内容: 1、MATLAB为用户提供了结果可视化功能,只要在命令行窗口输入相应的命令,结果就会用图形直接表示出来。 MATLAB程序如下: x = -pi::pi; y1 = sin(x); y2 = cos(x); %准备绘图数据 figure(1); %打开图形窗口 subplot(2,1,1); %确定第一幅图绘图窗口 plot(x,y1); %以x,y1绘图 title('plot(x,y1)'); %为第一幅图取名为’plot(x,y1)’ grid on; %为第一幅图绘制网格线 subplot(2,1,2) %确定第二幅图绘图窗口 plot(x,y2); %以x,y2绘图 xlabel('time'),ylabel('y') %第二幅图横坐标为’time’,纵坐标为’y’运行结果如下图: 2、上例中的图形使用的是默认的颜色和线型,MATLAB中提供了多种颜色和线型,并且可以绘制出脉冲图、误差条形图等多种形式图: MATLAB程序如下: x=-pi:.1:pi; y1=sin (x); y2=cos (x); figure (1); %subplot (2,1,1); plot (x,y1); title ('plot (x,y1)'); grid on %subplot (2,1,2); plot (x,y2);

HFSS天线仿真实验报告

HFSS天线仿真实验报告 半波偶极子天线设计 通信0905 杨巨 U200913892 2012-3-7

半波偶极子天线仿真实验报告 一、实验目的 1、学会简单搭建天线仿真环境的方法,主要是熟悉HFSS软件的使用方法 2、了解利用HFSS仿真软件设计和仿真天线的原理、过程和方法 3、通过天线的仿真,了解天线的主要性能参数,如驻波比特性、smith圆图特性、方向图 特性等 4、通过对半波偶极子天线的仿真,学会对其他类型天线仿真的方法 二、实验仪器 1、装有windows系统的PC一台 2、HFSS13.0软件 3、截图软件 三、实验原理 1、首先明白一点:半波偶极子天线就是对称阵子天线。 2、 对称振子是中间馈电,其两臂由两段等长导线构成的振子天线。一臂的导线半径为a,长度为l。两臂之间的间隙很小,理论上可以忽略不计,所以振子的总长度L=2l。对称振子的长度与波长相比拟,本身已可以构成实用天线。 3、 在计算天线的辐射场时,经过实践证实天线上的电流可以近似认为是按正弦律分布。取图1的坐标,并忽略振子损耗,则其电流分布可以表示为: 式中,Im为天线上波腹点的电流;k=w/c为相移常数、根据正弦分布的特点,对称振子的末端为电流的波节点;电流分布关于振子的中心店对称;超过半波长就会出现反相电流。 4、 在分析计算对称振子的辐射场时,可以把对称振子看成是由无数个电流I(z)、长度为dz的电流元件串联而成。利用线性媒介中电磁场的叠加原理,对称振子的辐射场是这些电流元辐射场之矢量和。

电流元I(z)dz所产生的辐射场为 图2 对称振子辐射场的计算 如图2 所示,电流元I(z)所产生的辐射场为 其中 5、方向函数 四、实验步骤 1、设计变量 设置求解类型为Driven Model 类型,并设置长度单位为毫米。 提前定义对称阵子天线的基本参数并初始化 2、创建偶极子天线模型,即圆柱形的天线模型。 其中偶极子天线的另外一个臂是通过坐标轴复制来实现的。 3、设置端口激励 半波偶极子天线由中心位置馈电,在偶极子天线中心位置创建一个平行于YZ面的矩形面作为激励端口平面。 4、设置辐射边界条件 要在HFSS中计算分析天线的辐射场,则必须设置辐射边界条件。这里创建一个沿Z轴放置的圆柱模型,材质为空气。把圆柱体的表面设置为辐射边界条件。 5、外加激励求解设置 分析的半波偶极子天线的中心频率在3G Hz,同时添加2.5 G Hz ~3.5 G Hz频段内的扫频设置,扫频类型为快速扫频。

信号与系统仿真实验报告

信号与系统仿真实验报告1.实验目的 了解MATLAB的基本使用方法和编程技术,以及Simulink平台的建模与动态仿真方法,进一步加深对课程内容的理解。 2.实验项目 信号的分解与合成,观察Gibbs现象。 信号与系统的时域分析,即卷积分、卷积和的运算与仿真。 信号的频谱分析,观察信号的频谱波形。 系统函数的形式转换。 用Simulink平台对系统进行建模和动态仿真。 3.实验内容及结果 3.1以周期为T,脉冲宽度为2T1的周期性矩形脉冲为例研究Gibbs现象。 已知周期方波信号的相关参数为:x(t)=∑ak*exp(jkω),ω=2*π/T,a0=2*T1/T,ak=sin(kωT1)/kπ。画出x(t)的波形图(分别取m=1,3,7,19,79,T=4T1),观察Gibbs现象。 m=1; T1=4; T=4*T1;k=-m:m; w0=2*pi/T; a0=2*T1/T; ak=sin(k*w0*T1)./(k*pi); ak(m+1)=a0; t=0:0.1:40; x=ak*exp(j*k'*w0*t); plot(t,real(x)); 3.2求卷积并画图 (1)已知:x1(t)=u(t-1)-u(t-2), x2(t)=u(t-2)-u(t-3)求:y(t)=x1(t)*x2(t)并画出其波形。 t1=1:0.01:2; f1=ones(size(t1)); f1(1)=0; f1(101)=0; t2=2:0.01:3; f2=ones(size(t2)); f2(1)=0; f2(101)=0; c=conv(f1,f2)/100;

t3=3:0.01:5; subplot(311); plot(t1,f1);axis([0 6 0 2]); subplot(312); plot(t2,f2);axis([0 6 0 2]); subplot(313); plot(t3,c);axis([0 6 0 2]); (2)已知某离散系统的输入和冲击响应分别为:x[n]=[1,4,3,5,1,2,3,5], h[n]=[4,2,4,0,4,2].求系 统的零状态响应,并绘制系统的响应图。 x=[1 4 3 5 1 2 3 5]; nx=-4:3; h=[4 2 4 0 4 2]; nh=-3:2; y=conv(x,h); ny1=nx(1)+nh(1); ny2=nx(length(nx))+nh(length(nh)); ny=[ny1:ny2]; subplot(311); stem(nx,x); axis([-5 4 0 6]); ylabel('输入') subplot(312); stem(nh,h); axis([-4 3 0 5]); ylabel('冲击效应') subplot(313); stem(ny,y); axis([-9 7 0 70]); ylabel('输出'); xlabel('n'); 3.3 求频谱并画图 (1) 门函数脉冲信号x1(t)=u(t+0.5)-u(t-0.5) N=128;T=1; t=linspace(-T,T,N); x=(t>=-0.5)-(t>=0.5); dt=t(2)-t(1); f=1/dt; X=fft(x); F=X(1:N/2+1); f=f*(0:N/2)/N; plot(f,F)

MATLAB仿真实验报告

MATLAB 仿真实验报告 课题名称:MATLAB 仿真——图像处理 学院:机电与信息工程学院 专业:电子信息科学与技术 年级班级:2012级电子二班 一、实验目的 1、掌握MATLAB处理图像的相关操作,熟悉相关的函数以及基本的MATLAB语句。 2、掌握对多维图像处理的相关技能,理解多维图像的相关性质 3、熟悉Help 命令的使用,掌握对相关函数的查找,了解Demos下的MATLAB自带的原函数文件。 4、熟练掌握部分绘图函数的应用,能够处理多维图像。 二、实验条件

MATLAB调试环境以及相关图像处理的基本MATLAB语句,会使用Help命令进行相关函数查找 三、实验内容 1、nddemo.m函数文件的相关介绍 Manipulating Multidimensional Arrays MATLAB supports arrays with more than two dimensions. Multidimensional arrays can be numeric, character, cell, or structure arrays. Multidimensional arrays can be used to represent multivariate data. MATLAB provides a number of functions that directly support multidimensional arrays. Contents : ●Creating multi-dimensional arrays 创建多维数组 ●Finding the dimensions寻找尺寸 ●Accessing elements 访问元素 ●Manipulating multi-dimensional arrays操纵多维数组 ●Selecting 2D matrices from multi-dimensional arrays从多维数组中选择二维矩 阵 (1)、Creating multi-dimensional arrays Multidimensional arrays in MATLAB are created the same way as two-dimensional arrays. For example, first define the 3 by 3 matrix, and then add a third dimension. The CAT function is a useful tool for building multidimensional arrays. B = cat(DIM,A1,A2,...) builds a multidimensional array by concatenating(联系起来)A1, A2 ... along the dimension DIM. Calls to CAT can be nested(嵌套). (2)、Finding the dimensions SIZE and NDIMS return the size and number of dimensions of matrices. (3)、Accessing elements To access a single element of a multidimensional array, use integer subscripts(整数下标). (4)、Manipulating multi-dimensional arrays

实验二电磁波发射天线的模拟仿真

实验二电磁波发射天线的模拟仿真电动力学实验报告电磁波发射天线的模拟仿真 学院: 应用科学学院专业班级: 学生姓名: 某某某 学号: 指导教师: 完成时间: 2013年7月2号 一、实验目的 1(熟悉并了解CST 的软件环境。 2(通过实验掌握天线的实际画法及步骤。 3(了解电磁波发射天线的模拟仿真过程,进一步了解电磁波发射现象。 二、实验原理及要求 在CST微波工作室中,通常采用瞬态求解器来计算天线,典型的天线特性,如S参量(S参数)、主瓣方向、增益、效率等,都将被自动计算和显11 示。按照如下图的天线模型形自行设计可接受2GHz左右的电磁波信号的天线并仿真出结果,同时作出一定分析。(碳纳米管的半径为R,轴向方向沿z轴,长度为L,中间馈电端口缝隙为D) 三、实验步骤 1、选择天线模板 启动CST,在弹出的“Welcome”对话框中点击“OK” 按钮,创建一个新项目。然后会看到选择模板对话框,选择 Antenna(Horn,Waveguide),并点击OK按钮。 2、设置单位

用鼠标左键单击主菜单上的按钮,在下拉菜单中 选择,然后在弹出的对话框中将单位设置值更改为: mm,GHz,ns,然后点击OK按钮。 3、设置背景材料 假设天线在理想的真空环境中。用鼠标左键单击主菜单 上的按钮,在下拉菜单中选择,然后在弹出的对话框中设置各参数。 4、定义天线结构 用鼠标左键单击主菜单上的按钮,在下拉菜单中 选择 ,然后在弹出的对话框中设置各参数。其中 a,,。 5、建立模型 天线为圆柱结构,用鼠标左键单击主菜单上的按钮,在下拉菜单中选择,在出现的子菜单中选择,然后再按下键盘上的ESC键,在出现在对话框中输入碳纳米管天线的半径、长度、材料特性等参数。设置完成后点击OK按钮。 用鼠标左键单击主菜单上的按钮,在下拉菜单中选择 ,在出现的子菜单中选择,然后再按下键盘上的ESC键,在出现在对话框中输入碳纳米管天线的半径、长度、材料特性等参数。设置完成后点击OK按钮。 6、定义激励端口 为了给天线提供馈电端口,设置柱体中间部分为馈电缝隙,采用中心馈电。用鼠标左键单击主菜单上的按钮,在下拉菜单中选择,在出现的子菜单中选择,然后再按下键盘上的ESC键,在出现在对话框中输入碳纳米管天线的半径、长度、材料特性等参数,设置完成后点击OK按钮。

信号与系统 MATLAB实验报告

《信号与系统》MATLAB实验报告 院系:专业: 年级:班号: :学号: 实验时间: 实验地点:

实验一 连续时间信号的表示及可视化 实验题目: )()(t t f δ=;)()(t t f ε=;at e t f =)((分别取00<>a a 及); )()(t R t f =;)()(t Sa t f ω=;)2()(ft Sin t f π=(分别画出不同周期个数的波形)。 解题分析: 以上各类连续函数,先运用t = t1: p:t2的命令定义时间围向量,然后调用对应的函数,建立f 与t 的关系,最后调用plot ()函数绘制图像,并用axis ()函数限制其坐标围。 实验程序: (1))()(t t f δ= t=-1:0.01:3 %设定时间变量t 的围及步长 f=dirac(t) %调用冲激函数dirac () plot(t,f) %用plot 函数绘制连续函数 axis([-1,3,-0.5,1.5]) %用axis 函数规定横纵坐标的围 (2))()(t t f ε= t=-1:0.01:3 %设定时间变量t 的围及步长 f=heaviside(t) %调用阶跃函数heaviside () plot(t,f) %用plot 函数绘制连续函数 title('f(t)=heaviside(t)') %用title 函数设置图形的名称 axis([-1,3,-0.5,1.5]) %用axis 函数规定横纵坐标的围 (3)at e t f =)( a=1时:

t=-5:0.01:5 %设定时间变量t 的围及步长 f=exp(t) %调用指数函数exp () plot(t,f) %用plot 函数绘制连续函数 title('f=exp(t)') %用title 函数设置图形的名称 axis([-5,5,-1,100]) %用axis 函数规定横纵坐标的围 a=2时: t=-5:0.01:5 f=exp(2*t) % 调用指数函数exp () plot(t,f) title('f=exp(2*t)') axis([-5,5,-1,100]) a=-2时: t=-5:0.01:5 f=exp(-2*t) plot(t,f) title('f=exp(-2*t)') axis([-5,5,-1,100]) (4))()(t R t f = t=-5:0.01:5 f=rectpuls(t,2) % 用rectpuls(t,a)表示门函数,默认以零点为中心,宽度为a plot(t,f) title('f=R(t)') axis([-5 5 -0.5 1.5]) (5))()(t Sa t f ω= ω=1时: t=-20:0.01:20 f=sin(t)./t % 调用正弦函数sin (),并用sin (t )./t 实现抽 样函数 plot(t,f)

自动控制原理MATLAB仿真实验报告

实验一 MATLAB 及仿真实验(控制系统的时域分析) 一、实验目的 学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性; 二、预习要点 1、 系统的典型响应有哪些? 2、 如何判断系统稳定性? 3、 系统的动态性能指标有哪些? 三、实验方法 (一) 四种典型响应 1、 阶跃响应: 阶跃响应常用格式: 1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。 2、),(Tn sys step ;表示时间范围0---Tn 。 3、),(T sys step ;表示时间范围向量T 指定。 4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。 2、 脉冲响应: 脉冲函数在数学上的精确定义:0 ,0)(1)(0 ?==?∞ t x f dx x f 其拉氏变换为:) ()()()(1)(s G s f s G s Y s f === 所以脉冲响应即为传函的反拉氏变换。 脉冲响应函数常用格式: ① )(sys impulse ; ② ); ,();,(T sys impulse Tn sys impulse ③ ),(T sys impulse Y = (二) 分析系统稳定性 有以下三种方法: 1、 利用pzmap 绘制连续系统的零极点图; 2、 利用tf2zp 求出系统零极点; 3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析 Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.

电磁兼容天线仿真实验报告

电磁场与电磁兼容 实验报告 学号: 姓名: 院系: 专业: 教师: 05月20日

半波对称振子天线阵最大辐射方向控制 实验工具 ?Expert MININEC Classic电磁场数值仿真软件 实验目的 根据要求的参数,利用仿真软件设计和分析自由空间或地面上的细、直线天线的电磁场数值,并完成以下要求: ?改变每幅天线馈电电流的相位控制最大增益的方向:要求的最大增益方向是:1. 00 ;2. 400;3. 800 (选择与自己学号后2位数最近的度数) ?根据运行结果指出: 1.增益方向性图; 2.最大增益; 3.最大增益方向。 实验参数 ?频率 f = 300MHz,波长λ = 1m ?四分之一波长单极子天线L=0.25λ,四个半波长对称振子排列在一条直线上,相邻两幅天线的间隔是四分之一波长 实验过程 ?建立几何模型:点—> 线,尺寸,环境,坐标等 半波对称振子放在 YOZ 平面内,相邻振子的间距是四分之一波长 0.25m。

图1 问题描述图2 –图4 几何模型 图3 图4 ?定义电特性:频率,电压,当前节点 ZENITH(DEG) 对应球坐标系中的θ, AZIMUTH (DEG) 对应球坐标系中的φ 图5 电特性—频率图6 馈电电流相位设置

图7 球坐标参数θ、ψ以及间隔设置 ?选择模式:辐射模式 ?求解项:近场 ?调试、运行 表格中出现“No detected violations ”表明设置正确 图8 选择运行平面图9 调试结果 ?显示结果 3D display 显示所设计天线的图形 天线增益方向性图中给出了最大增益值和最大增益方向、以及半功率增益带宽的计算结果。

交通仿真实验报告

交通仿真实验报告 篇一:交通仿真实验报告 目录 1 上机性质与目的.................................. 2 2 上机内容....................................... 2 3 交叉口几何条件、信号配时和交通流数据描述.......... 3 3.1 交叉口几何数据................................ 3 3.2 交叉口信号配时系统............................ 3 3.3 交叉口交通流数据.............................. 4 4 交叉口交通仿真.................................. 4 4.1 交通仿真步骤.................................. 4 4.2 二维输出..................................... 13 4.3 3D输出...................................... 14 5 仿真结果分析................................... 15 6 实验总结和体会 (15) 实验上机名称:信号交叉口仿真 1 上机性质与目的 本实验属于计算机仿真实验,借助仿真系统模拟平面信号交叉口场景,学生将完成从道路条件设计到信号相位配置等一系列仿真实验。 实验目的: 1. 了解平面信号交叉口在城市交通中的地位; 2. 了解平面信号交叉口的主要形式、规模等基本情况; 3. 了解交叉口信号相位配时及对交叉口通行能力的影响;

MATLAB Simulink系统建模与仿真 实验报告

MATLAB/Simulink 电力系统建模与仿真 实验报告 姓名:****** 专业:电气工程及其自动化 班级:******************* 学号:*******************

实验一无穷大功率电源供电系统三相短路仿真 1.1 无穷大功率电源供电系统仿真模型构建 运行MATLAB软件,点击Simulink模型构建,根据电路原理图,添加下列模块: (1)无穷大功率电源模块(Three-phase source) (2)三相并联RLC负荷模块(Three-Phase Parallel RLC Load) (3)三相串联RLC支路模块(Three-Phase Series RLC Branch) (4)三相双绕组变压器模块(Three-Phase Transformer (Two Windings)) (5)三相电压电流测量模块(Three-Phase V-I Measurement) (6)三相故障设置模块(Three-Phase Fault) (7)示波器模块(Scope) (8)电力系统图形用户界面(Powergui) 按电路原理图连接线路得到仿真图如下: 1.2 无穷大功率电源供电系统仿真参数设置 1.2.1 电源模块 设置三相电压110kV,相角0°,频率50Hz,接线方式为中性点接地的Y形接法,电源电阻0.00529Ω,电源电感0.000140H,参数设置如下图:

1.2.2 变压器模块 变压器模块参数采用标幺值设置,功率20MVA,频率50Hz,一次测采用Y型连接,一次测电压110kV,二次侧采用Y型连接,二次侧电压11kV,经过标幺值折算后的绕组电阻为0.0033,绕组漏感为0.052,励磁电阻为909.09,励磁电感为106.3,参数设置如下图: 1.2.3 输电线路模块 根据给定参数计算输电线路参数为:电阻8.5Ω,电感0.064L,参数设置如下图: 1.2.4 三相电压电流测量模块 此模块将在变压器低压侧测量得到的电压、电流信号转变成Simulink信号,相当于电压、电流互感器的作用,勾选“使用标签(Use a label)”以便于示波器观察波形,设置电压标签“Vabc”,电流标签“Iabc”,参数设置如下图:

HFSS天线仿真实验报告

[键入公司名称] [键入文档标题] 通信0905 杨巨 U2 2012-3-7 半波偶极子天线仿真实验报告 一、实验目的 1、学会简单搭建天线仿真环境的方法,主要是熟悉HFSS软件的使用方法 2、了解利用HFSS仿真软件设计和仿真天线的原理、过程和方法 3、通过天线的仿真,了解天线的主要性能参数,如驻波比特性、smith圆图特性、方向图 特性等 4、通过对半波偶极子天线的仿真,学会对其他类型天线仿真的方法 二、实验仪器 1、装有windows系统的PC一台 2、HFSS13.0软件 3、截图软件 三、实验原理 1、首先明白一点:半波偶极子天线就是对称阵子天线。

对称振子是中间馈电,其两臂由两段等长导线构成的振子天线。一臂的导线半径为a,长度为l。两臂之间的间隙很小,理论上可以忽略不计,所以振子的总长度L=2l。对称振子的长度与波长相比拟,本身已可以构成实用天线。 在计算天线的辐射场时,经过实践证实天线上的电流可以近似认为是按正弦律分布。取图1的坐标,并忽略振子损耗,则其电流分布可以表示为:式中,Im为天线上波腹点的电流;k=w/c为相移常数、根据正弦分布的特点,对称振子的末端为电流的波节点;电流分布关于振子的中心店对称;超过半波长就会出现反相电流。 4、 在分析计算对称振子的辐射场时,可以把对称振子看成是由无数个电流I(z)、长度为dz的电流元件串联而成。利用线性媒介中电磁场的叠加原理,对称振子的辐射场是这些电流元辐射场之矢量和。 电流元I(z)dz所产生的辐射场为 图2 对称振子辐射场的计算 如图2 所示,电流元I(z)所产生的辐射场为 其中 5、方向函数 四、实验步骤 1、设计变量 设置求解类型为Driven Model 类型,并设置长度单位为毫米。 提前定义对称阵子天线的基本参数并初始化 2、创建偶极子天线模型,即圆柱形的天线模型。 其中偶极子天线的另外一个臂是通过坐标轴复制来实现的。 3、设置端口激励 半波偶极子天线由中心位置馈电,在偶极子天线中心位置创建一个平行于YZ面的矩形面作为激励端口平面。 4、设置辐射边界条件 要在HFSS中计算分析天线的辐射场,则必须设置辐射边界条件。这里创建一个沿Z轴放置的圆柱模型,材质为空气。把圆柱体的表面设置为辐射边界条件。 5、外加激励求解设置 分析的半波偶极子天线的中心频率在3G Hz,同时添加2.5 G Hz ~3.5 G Hz频段内的扫频设置,扫频类型为快速扫频。 6、设计检查和运行仿真计算 7、HFSS天线问题的数据后处理 具体在实验结果中阐释。 五、实验结果 1、回波损耗S11 回波损耗回波损耗是电缆链路由于阻抗不匹配所产生的反射,是一对线自身的反射,是天线设计需要关注的参数之一。 图中所示是在2.5 G Hz ~3.5 G Hz频段内的回波损耗,设计的偶极子天线中心频率约为3 G Hz,S11<-10dBd的相对带宽BW=(3.25-2.775)/3*100%=15.83%

MATLAB实验报告

实验一 名称:连续时间信号分析 姓名:王嘉琦 学号:201300800636 班级:通信二班 一、实验目的 (一)掌握使用Matlab 表示连续时间信号 1、学会运用Matlab 表示常用连续时间信号的方法 2、观察并熟悉常用信号的波形和特性 (二)掌握使用Matlab 进行连续时间信号的相关运算 1、学会运用Matlab 进行连续时间信号的时移、反褶和尺度变换 2、学会运用Matlab 进行连续时间信号微分、积分运算 3、学会运用Matlab 进行连续时间信号相加、相乘运算 4、学会运用Matlab 进行连续时间信号卷积运算 二、实验条件 Matlab 三、实验内容 1、利用Matlab 命令画出下列连续信号的波形图。 (1))4/3t (2cos π+ 代码: k=2;w=3;phi=pi/4; t=0:0.01:3; ft=k*cos(w*t+phi); plot(t,ft),grid on; axis([0,3,-2.2,2.2]) title('余弦信号')

(2) )t (u )e 2(t -- 代码: k=-1;a=-1; t=0:0.01:3; ft=2-k*exp(a*t); plot(t,ft),grid on axis([0,3,2,3]) title('指数信号')

(3))]2()(u )][t (cos 1[--+t u t π 代码: k=1;w=pi;phi=0; t=0:0.01:2; ft=1+k*cos(w*t+phi); plot(t,ft),grid on; axis([0,3,0,2]) title('余弦信号')

MATLAB通信系统仿真实验报告1

MATLAB通信系统仿真实验报告

实验一、MATLAB的基本使用与数学运算 目的:学习MATLAB的基本操作,实现简单的数学运算程序。 内容: 1-1要求在闭区间[0,2π]上产生具有10个等间距采样点的一维数组。试用两种不同的指令实现。 运行代码:x=[0:2*pi/9:2*pi] 运行结果: 1-2用M文件建立大矩阵x x=[0.10.20.30.40.50.60.70.80.9 1.11.21.31.41.51.61.71.81.9 2.12.22.32.42.52.62.72.82.9 3.13.23.33.43.53.63.73.83.9] 代码:x=[0.10.20.30.40.50.60.70.80.9 1.11.21.31.41.51.61.71.81.9 2.12.22.32.42.52.62.72.82.9 3.13.23.33.43.53.63.73.83.9] m_mat 运行结果: 1-3已知A=[5,6;7,8],B=[9,10;11,12],试用MATLAB分别计算 A+B,A*B,A.*B,A^3,A.^3,A/B,A\B. 代码:A=[56;78]B=[910;1112]x1=A+B X2=A-B X3=A*B X4=A.*B X5=A^3 X6=A.^3X7=A/B X8=A\B

运行结果: 1-4任意建立矩阵A,然后找出在[10,20]区间的元素位置。 程序代码及运行结果: 代码:A=[1252221417;111024030;552315865]c=A>=10&A<=20运行结果: 1-5总结:实验过程中,因为对软件太过生疏遇到了些许困难,不过最后通过查书与同学交流都解决了。例如第二题中,将文件保存在了D盘,而导致频频出错,最后发现必须保存在MATLAB文件之下才可以。第四题中,逻辑语言运用到了ij,也出现问题,虽然自己纠正了问题,却也不明白错在哪了,在老师的讲解下知道位置定位上不能用ij而应该用具体的整数。总之第一节实验收获颇多。

控制理论实验报告MATLAB仿真实验解析

实验报告 课程名称:控制理论(乙) 指导老师:林峰 成绩:__________________ 实验名称:MATLAB 仿真实验 实验类型:________________同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 实验九 控制系统的时域分析 一、 实验目的: 1.用计算机辅助分析的办法,掌握系统的时域分析方法。 2.熟悉Simulink 仿真环境。 二、实验原理及方法: 系统仿真实质上就是对系统模型的求解,对控制系统来说,一般模型可转化成某个微分方程或差分方程表示,因此在仿真过程中,一般以某种数值算法从初态出发,逐步计算系统的响应,最后绘制出系统的响应曲线,进而可分析系统的性能。控制系统最常用的时域分析方法是,当输入信号为单位阶跃和单位冲激函数时,求出系统的输出响应,分别称为单位阶跃响应和单位冲激响应。在MATLAB 中,提供了求取连续系统的单位阶跃响应函数step ,单位冲激响应函数impulse ,零输入响应函数initial 等等。 二、实验内容: 二阶系统,其状态方程模型为 ? 1x -0.5572 -0.7814 1x 1 = + u ? 2x 0.7814 0 2x 0 1x y = [1.9691 6.4493] +[0] u 2x 四、实验要求: 1.编制MATLAB 程序,画出单位阶跃响应曲线、冲击响应曲线、系统的零输入响应、斜坡输入响应; (1)画出系统的单位阶跃响应曲线; A=[-0.5572 -0.7814;0.7814 0 ]; B=[1;0];

matlab信号与系统实验报告

实验一 基本信号的产生与运算 一、 实验目的 学习使用MATLAB 产生基本信号、绘制信号波形、实现信号的基本运算。 二、 实验原理 MATLAB 提供了许多函数用于产生常用的基本信号:如阶跃信号、脉冲信号、指数信号、正弦信号和周期方波等等。这些信号是信号处理的基础。 1、 利用MATLAB 产生下列连续信号并作图。 (1)51),1(2)(<<---=t t u t x (2)300),3 2 sin()(3.0<<=-t t e t x t (3)1.01.0,3000cos 100cos )(<<-+=t t t t x (4)2000),8.0cos()1.0cos()(<<=t t t t x ππ 答:(1)、 >> t=-1:0.02:5; >> x=(t>1); >> plot(t,-2*x); >> axis([-1,5,-3,1]); >> title('杨婕婕 朱艺星'); >> xlabel('x(t)=-2u(t-1)');

(2)、 >> t=0:0.02:30; >> x=exp(-0.3*t).*sin(2/3*t); >> plot(t,x); >> title('杨婕婕朱艺星'); >> xlabel('x(t)=exp(-0.3*t).*sin(2/3*t)');

因为原函数在t=15后x(t)取值接近于零,所以将横坐标改成0到15,看得更清晰 axis([0,15,-0.2,0.6]);

(3)>> t=-0.1:0.01:0.1;x=cos(100*t)+cos(3000*t);plot(t,x); >> title('杨婕婕朱艺星'); >>xlabel('x=cos(100*t)+cos(3000*t)'); 因为t的间隔取太大,以至于函数不够准确,缩小t的间隔:t=-0.1:0.002:0.2;x=cos(100*t)+cos(3000*t); plot(t,x);title('杨婕婕')

信号实验报告

大连理工大学 本科实验报告 课程名称:信号与系统实验 学院(系):电子信息与电气工程学部专业: 通信工程 班级: 1401班 学号:201483091 学生姓名:李睿 2016年 5 月21日 ?实验项目列表

?大连理工大学实验预习报告 学院(系):电信专业:通信工程班级:1401班 姓名:李睿学号:201483091组:5 ___ 实验时间:2016、5、6 实验室:创新园大厦c0221 实验台: 5 指导教师签字:成绩: 信号得频谱图 一、实验目得与要求 1、掌握周期信号得傅里叶级数展开 2、掌握周期信号得有限项傅里叶级数逼近 3、掌握周期信号得频谱分析 4、掌握连续非周期信号得傅立叶变换 5、掌握傅立叶变换得性质 二、实验用得matlab命令与例子

1、a:b:c:产生一个从a到 c,间隔为b得等间隔数列例:5:1:11,产生一个从 5 到11,间隔为 1 得等间隔数列 2、quare(t,duty):周期性矩形脉冲信号(duty 表示占空比)调用形式: y=square(t,duty)例:产生一个周期为2π,幅值为±1得周期性方波。y=square(2*pi*30*t,75); plot(t,y),grid on axis([—0、1,0、1,—1、5,1、5]) 3、plot():matlab 中二维线画图函数plot(x,y,’颜色与标识’):若 y 与x为同维向量,则以x为横坐标,y 为纵坐标绘制连线图. 若x 就是向量,y 就是行数或列数与x长度相等得矩阵,则绘制多条不同色彩得连线图,x 被作为这些曲线得共同横坐标.若 x 与 y 为同型矩阵,则以x,y对应元素分别绘制曲线,曲线条数等于矩阵列数. 例:在0≤x≤2π区间内,绘制曲线 y=2e-0、5xcos(4πx)。 x=0:2*pi; y=2*exp(-0、5*x)、*cos(4*pi*x); plot(x,y) ‘’:y 黄m紫 c 青 r 红 g 绿 b 蓝w白 k 黑—实线、点 <小于号 :点线o圆s 正方形 -、点划线x 叉号 d 菱形- -虚线 +加号h 六角星 *星号 p 五角星 v 向下三角形 ^向上三角形〉大于号 4、grid on:有网格 grid off:关掉格网下面就是加上命令grid on后画得图,有网格. 5、 axis([a b c d]):表明图线得x轴范围为a~by轴范围为c~d例:plot(x,y)axis([0 1 23]) grid on 6、 length(a):表示矩阵a得最大得长度比如length([1 2 3;4 5 6]) 等于3,因为2行与3列中最大就是3。当a就是向量时,即表示向量得元素个数,因为向量总就是1×n或n×1得,而n一定大于或等于1、所以得到得结果一定就是n. 7、 1、/tan(pi、*x):表示点乘。点乘就是值对值得运算上面得式子中 X 可能就是一个向量或矩阵,PI后面得点就是一个PI 与一个向量相乘,得到得也就是一个向量;1 后面乘得自然也就是个向量所以要加点,也就就是对应不同得X,有不同得 Y 值. 8.figure就是建立图形得意思. 系统自动从 1,2,3,4、、、来建立图形,数字代表第几幅图形,figure(1),figure(2)就就是第一第二副图得意思,在建立图形

MATLAB仿真实验报告

MATLA仿真实验报告 学院:计算机与信息学院 课程:—随机信号分析 姓名: 学号: 班级: 指导老师: 实验一

题目:编写一个产生均值为1,方差为4的高斯随机分布函数程序, 求最大值,最小值,均值和方差,并于理论值比较。 解:具体的文件如下,相应的绘图结果如下图所示 G仁random( 'Normal' ,0,4,1,1024); y=max(G1) x=mi n(G1) m=mea n(G1) d=var(G1) plot(G1);

实验二 题目:编写一个产生协方差函数为CC)=4e":的平稳高斯过程的程序,产生样本函数。估计所产生样本的时间自相关函数和功率谱密度,并求统计自相关函数和功率谱密度,最后将结果与理论值比较。 解:具体的文件如下,相应的绘图结果如下图所示。 N=10000; Ts=0.001; sigma=2; beta=2; a=exp(-beta*Ts); b=sigma*sqrt(1-a*a); w=normrnd(0,1,[1,N]); x=zeros(1,N); x(1)=sigma*w(1); for i=2:N x(i)=a*x(i-1)+b*w(i); end %polt(x); Rxx=xcorr(x0)/N; m=[-N+1:N-1]; Rxx0=(sigma A2)*exp(-beta*abs(m*Ts)); y=filter(b,a,x) plot(m*Ts,RxxO, 'b.' ,m*Ts,Rxx, 'r');

periodogram(y,[],N,1/Ts); 文件旧硯化)插入(1〕 ZMCD 克闻〔D ]窗口曲) Frequency (Hz) 50 100 150 200 250 300 350 400 450 500 NH---.HP)&UO 二 balj/ 」- □歹

综合实验报告LTE仿真实验

综合实验报告—LTE 学号: 姓名: 日期: 2016/2017学年第一学期

实验1 LTE无线接入网设备配置 实验目的: 1. 掌握LTE无线接入网的网元名称及其作用。 2. 掌握实验中各网元的线缆名称及其作用。 实验内容: 1. 完成一个LTE无线接入网站点机房的设备配置。 实验要求: 1. 完成大型城市万绿市A站点机房的设备配置。 实验步骤: 设备配置步骤如下: 1.单击仿真平台中的“设备配置”按钮,然后选择仿真场景中的某站点机房。 2.添加设备:包括BBU、RRU、ANT、PTN、ODF、GPS。 3.连接RRU和ANT。ANT1连接到RRU1,使用“天线跳线”,将ANT1左边1脚和 RRU的1脚,同理将对应的4脚连接起来。因为默认使用的是2×2的天线模式。 注意相互对应,不能连串。 4.连接RRU和BBU。使用“成对LC-LC光纤”,把TX0-RX0~TX2-RX2与RRU1~RRU3 对应连接起来。 5.连接BBU和GPS。使用“GPS馈线”,一端将馈线与GPS连接,另一端连接到BBU的IN 口。 6.连接BBU与PTN。使用“成对LC-LC光纤”,点击设备指示图里的BBU,将光纤接到BBU 的TXRX端口上,另一端连接到设备指示图里的PTN设备槽位1的GE1端口上。 7.连接ODF和PTN。单击ODF进入到ODF架内部,使用“成对LC-FC光纤”,将某市站 点机房和该市汇聚机房连接起来。这里要使用两对LC-FC线,分别连接到PTN的端口3和4口上。 至此,该市某站点机房的设备配置就完成了,从“设备指示图”中可观察到设备间的连接情况。 设备之间连接关系表 图3-1 万绿市核心网设备配置接口使用情况

OFDM系统仿真实验报告

无线通信——OFDM系统仿真

一、实验目的 1、了解OFDM 技术的实现原理 2、利用MATLAB 软件对OFDM 的传输性能进行仿真并对结论进行分析。 二、实验原理与方法 1 OFDM 调制基本原理 正交频分复用(OFDM)是多载波调制(MCM)技术的一种。MCM 的基本思想是把数据流串并变换为N 路速率较低的子数据流,用它们分别去调制N 路子载波后再并行传输。因子数据流的速率是原来的1/N ,即符号周期扩大为原来的N 倍,远大于信道的最大延迟扩展,这样MCM 就把一个宽带频率选择性信道划分成N 个窄带平坦衰落信道,从而“先天”具有很强的抗多径衰落和抗脉冲干扰的能力,特别适合于高速无线数据传输。OFDM 是一种子载波相互混叠的MCM ,因此它除了具有上述毗M 的优势外,还具有更高的频谱利用率。OFDM 选择时域相互正交的子载波,创门虽然在频域相互混叠,却仍能在接收端被分离出来。 2 OFDM 系统的实现模型 利用离散反傅里叶变换( IDFT) 或快速反傅里叶变换( IFFT) 实现的OFDM 系统如图1 所示。输入已经过调制(符号匹配) 的复信号经过串P 并变换后,进行IDFT 或IFFT 和并/串变换,然后插入保护间隔,再经过数/模变换后形成OFDM 调制后的信号s (t ) 。该信号经过信道后,接收到的信号r ( t ) 经过模P 数变换,去掉保护间隔以恢复子载波之间的正交性,再经过串/并变换和DFT 或FFT 后,恢复出OFDM 的调制信号,再经过并P 串变换后还原出输入的符号。 图1 OFDM 系统的实现框图 从OFDM 系统的基本结构可看出, 一对离散傅里叶变换是它的核心,它使各子载波相互正交。设OFDM 信号发射周期为[0,T],在这个周期内并行传输的N 个符号为001010(,...,)N C C C -,,其中ni C 为一般复数, 并对应调制星座图中的某一矢量。比如00(0)(0),(0)(0)C a j b a b =+?和分别为所要传输的并行信号, 若将

相关文档