文档视界 最新最全的文档下载
当前位置:文档视界 › 2008 干燥Spouted bed drying of cork stoppers

2008 干燥Spouted bed drying of cork stoppers

2008 干燥Spouted bed drying of cork stoppers
2008 干燥Spouted bed drying of cork stoppers

Available online at https://www.docsj.com/doc/6b17836659.html, Chemical Engineering and Processing47(2008)

2395–2401

Short communication

Spouted bed drying of cork stoppers

Ana Magalh?a es a,Carlos Pinho b,?

a INEGI,Rua do Barroco,174-214,4465-591Le?c a do Balio,Portugal

b CEFT-DEMEGI,Faculdade de Engenharia,Universidade do Porto,Rua Dr.Roberto Frias s/n,4200-465Porto,Portugal

Received31May2007;received in revised form19November2007;accepted22November2007

Available online4December2007

Abstract

The spouted bed is commonly used to dry granular particles as it displays some special characteristics which render it capable of performing cyclic operations,with particles that are very dif?cult to?uidize under a different type of bed.

Information on the characteristic drying rates of cork stoppers is still very limited in the technical and scienti?c literature,and until now no published data was found on the spouted bed drying of cork stoppers.

The characterization of the drying performance of Port wine cork stoppers was carried out in a laboratory scale spouted bed.Characteristic drying curves were determined with29mm×21mm cork stoppers under several operating conditions.Values for the effective diffusivity were obtained in the range of1.36×10?9to4.44×10?9m2/s,with the temperature dependence represented by an Arrhenius-type relationship.The activation energy obtained was28.72kJ/mol.

?2007Elsevier B.V.All rights reserved.

Keywords:Spouted bed;Cork;Drying;Port wine cork stoppers

1.Introduction

The drying of cork stoppers is an important step in their pro-duction cycle involving usually?xed bed drying processes with the all encompassing questions concerning mass transfer[1,2], pressure drop problems[3,4],and quality control.

The spouted bed drying of cork stoppers is only used for the processing of very small batches of stoppers.This non-conventional type of?uidized bed[5–8]is a technique com-monly used for drying of solids[9–11],or for handling of solids in another technological processes[6,12–15].

The approach that has been followed so far by builders of drying equipment for the cork industry has been purely empirical and the available technical and scienti?c data concerning the cork drying process is limited.The absence of a minimum of reliable scienti?c and technical data on cork stoppers drying lead to the development of a small number of research studies on?xed bed[1,16]and lately on the spouted bed drying of cork stoppers[17–19].

?Corresponding author.

E-mail addresses:amagalhaes@inegi.up.pt(A.Magalh?a es),

ctp@fe.up.pt(C.Pinho).

The objective of the present study consists of experimentally determining the characteristics of drying of Port wine corks stop-pers,see Table1,under different conditions,and to evaluate the adjustment of the experimental data to the existing mathematical models found in literature,by choosing the model that presents the best?tting.

2.Mathematical models

The mathematical models that describe the mechanisms of drying of grains and agricultural products fall into three categories namely,theoretical,semi-theoretical and empirical models[20–22].The?rst type takes into account only the inter-nal resistance to the moisture transfer,whereas the other two types consider only the external resistance between product and air[20,22,23].

The theoretical model of drying that has been more studied is the Fick’s second law of diffusion;it has been successfully applied in the forecast of the drying of rice[24]and hazelnuts [25].

The semi-theoretical models generally offer a commitment between the theory and the easiness of use[26]deriving from simplifying the general series of Fick’s second law.They are only valid within temperature,relative humidity,air velocity and

0255-2701/$–see front matter?2007Elsevier B.V.All rights reserved. doi:10.1016/j.cep.2007.11.009

2396

A.Magalh?a es,C.Pinho /Chemical Engineering and Processing 47(2008)2395–2401

Table 1

Characteristics of tested stoppers Cork stopper L ×?(mm ×mm)29×21Particle diameter (mm)26.8Sphericity

0.866Density (kg/m 3)

164.8Equivalent diameter (mm)

23.2

moisture content ranges for which they are developed.These models require short computing or testing times comparatively with the theoretical models and they do not need assumptions of geometry of particles,mass diffusivity and thermal conductivity [27].

The empirical models provide a direct relationship between average moisture content and drying time,neglecting the basic principles of the drying processes and their parameters do not have any physical meaning.Therefore,they cannot give clear accurate view of the important processes that occur during the drying,although they may describe the drying curve for the experimental conditions [28,29]with some accuracy.

The best way to characterize the drying curves is the applica-tion of an inverse exponential relationship [30],and following this simpli?ed approach numerous semi-theoretical models have been proposed to describe the rate of drying for diverse materials.In the present work the rate of drying of Port wine cork stop-

Table 2

Semi-theoretical models

Model

Equation Lewis [2,21,30–33]Φ=X ?X e X i ?X e =exp(?kt )Page [20,23,30–32,34]Φ=X ?X e X i ?X e =exp(?kt n )Modi?ed Page [20,30,35,36]Φ=X ?X e X i ?X e =exp(?kt )n Handerson and Pabis [20,23,30]

Φ=X ?X e X i ?X e =A exp(?kt )Logarithmic [37–41]Φ=X ?X e X i ?X e =A exp(?kt )+B

Exponential two terms [20,30,31,32]

Φ=

X ?X e X i ?X e

=A exp(?k 0t )+B exp(?k 1t )

pers is evaluated with some semi-theoretical approaches (see Table 2).

3.Experimental details

The experiments were carried out in a laboratory scale spouted bed installation,composed of a centrifugal fan to supply the ?uidizing air,a calibrated ori?ce plate for the measurement of the air ?ow,an electrical heater composed of four 2kW electrical resistances and the bed itself.Fig.1presents an overall scheme of the experimental setup as well as the main dimensions of the

bed.

Fig.1.Schematic layout of the experimental set-up and general dimensions (in mm)of the spouted bed dryer.

A.Magalh?a es,C.Pinho/Chemical Engineering and Processing47(2008)2395–24012397

To de?ne the experimental setup the recommendations of Markowski and Kaminski[12]were adopted and it can be seen in Fig.1that the size of the conical part of the bed is small com-pared with the cylindrical region.Total maximum bed height, including the conical part,was of175mm,i.e.,a shallow bed of stoppers was used.Cork stoppers are rather large particles but with low density and consequently as soon as they are?uidized they are projected by the jet?ow high above the bed.To keep the stoppers inside the reactor the height of the cylindrical part was of800mm(see Fig.1).A basket made of a stainless steel mesh was constructed to allow the extraction of the particles from the bed during the experiments.In the?rst part of the experiments the bed spouting conditions were characterized and more infor-mation on the experimental procedure and results can be found in Magalh?a es and Pinho[19].

A data acquisition system was installed in a personal com-puter.It was connected to differential pressure transducers measuring the pressure drop in the ori?ce plate for?ow rate cal-culations,as well as to differential pressure transducers installed in the spouted bed to measure the evolution of pressure differ-entials as the?uidization was carried out.Temperatures were measured in the ambient air,in the inlet air between the centrifu-gal fan and the ori?ce plate,in the hot air between the electrical heater and the spouted bed,and in the spouted bed,using T-type thermocouples.

Pressure measurements were carried out with differential pressure transducers from Series T of Modus Instruments, Inc.Two different transducers types were used,transducers T1008EXB were for?1to+1kPa pressure range,while trans-ducers T1009EXB were for?2to+2kPa pressure range.These transducers have an accuracy of±1%of span including linearity and hysteresis and their outputs were checked towards U-type water manometer readings.

To change the air?ow rate sent to the spouted bed,the cen-trifugal fan was controlled by means of a frequency variator from ABB,model ACS401000932,with a resolution of0.1/50Hz.

The spouted bed was equipped with tapings in the cylindrical entrance pipe,on the conical and on the main cylindrical body, to measure static pressures.For the de?nition of the spouting conditions during the drying experiments,pressures were mea-sured on the entrance cylindrical pipe,with an internal diameter of114.8mm,50mm above the?ange(see Fig.1).A jet diameter of60mm was used.

Corks to be dried were previously humidi?ed inside water at50?C,for5–5h and30min.After this wetting period,the stoppers were left inside hermetic plastic bags to rest for a week, in order to guarantee a uniform distribution of water inside them [1].Only Port wine stoppers of29mm×21mm in batches of 320stoppers were dried,thus the spouted bed height was of 175mm.This bed height was chosen by taking into account a previous characterization of the spouted bed dryer[17].

During the drying experiments,a batch of wet stoppers was placed inside the stainless steel mesh basket into the spouted bed working at a given temperature and air?ow rate.The bag was then periodically extracted from the bed and the stoppers were weighed in a Kern balance,model EW6000-1M,with a resolu-tion and precision of0.1g.The air?ow rate and temperature,as well as the ambient air temperature,pressure and relative humid-ity were monitored during the experiments.When stoppers were outside the spouted bed dryer,for the weighing procedure,the chronometer was stopped.Each weighing operation took around 45–60s,a time interval small enough to be considered negligi-ble,when compared with the drying time required for the batch (above5400s).During the initial phases of the drying process, stoppers were weighed every minute,afterwards this interval changed to2min and in the?nal stages of the drying experiments the intervals were of5min.

4.Experimental results

Measurements of the super?cial temperature of the particles were not possible due to their constant movement,but the tem-perature of the drying air at the exit of the spouted bed could be monitored and this was a good indication of the tempera-ture evolution during the experiments.Five minutes after the beginning of any experiment the drying gas output temperature stabilizes and no strong variations are found,meaning that the weighing process did not affect the stability of the drying test. At the?rst instant,the temperature difference between air inlet and outlet temperature is of the order of8?C,but this differen-tial reduces up to2?C at the end of the experiment,thus drying tests could be considered nearly isothermal.Referred values for the drying air super?cial velocity were always calculated for the cylindrical portion of the bed,considering ambient pressure and temperature conditions reigning inside it.

For the plotting of experimental results a dimensionless water content[42–44],the practical characteristic moisture content Φp,is de?ned as

Φp=

X?X ref

X i?X ref

(1)

Because there is no period of constant drying rate for the cork [1,16],a critical value for the water mass fraction of the cork [45]could not be used;it was used instead for the initial water mass fraction of the cork stoppers.At the same time,although the equilibrium water mass fraction of the cork is known[1,16], for practical reasons such value was not used in the present calculations.It was replaced by a reference value,taking into account the water mass fraction recommended by producers and consumers of cork stoppers,to guarantee adequate elastic prop-erties for the cork.The adopted reference value was of8%and the present experimental data could be easily compared with those obtained previously under different experimental condi-tions[1,16].

Fig.2shows the evolution of the practical characteristic mois-ture content for some experimental conditions.Temperature and relative humidity are the most important factors in?uencing the drying rate.Raising the incoming drying air temperature increases the drying rate and reduces the time interval necessary to achieve a certain dryness fraction.As far as the air velocity is concerned,for drying at40,50and60?C,differences in this parameter are not in?uential upon the drying rate.On the other end,for drying at70?C,the in?uence of the air velocity becomes important.The low dependence of drying time with the air veloc-

2398 A.Magalh?a es,C.Pinho /Chemical Engineering and Processing 47(2008)2395–2401

Table 3

Parameters for different models and subsequent results of non-linear analysis Model

Expression

r 2d m (%)χ2Lewis k =1.0246×U 0.1639×RH ?0.4061exp(?2352.47/T )

0.9591 1.580.0096Page

n =0.5778;k =1.7761×U 0.106×RH ?0.2747exp(?1528.35/T )0.9826 2.880.0010Modi?ed Page

n =0.5051;k =3.48×10?4

0.7860 5.730.0082Handerson and Pabis A =0.8359;k =0.7857×U 0.2169×RH ?0.468exp(?2325.5/T )

0.9522 1.490.0027Logarithmic

A =0.7206;

B =0.1432;k =4.6121×U 0.1601×RH ?0.4046exp(?2809.2/T )0.9610 3.210.0022Exponential two terms

A =0.2921;

B =0.6867;

k 0=6.34×10?5×U ?0.1805×RH ?0.5398exp(1680.42/T );k 1=3.3174×U 0.3134×RH ?0.5569exp(?2841.08/T )

0.9924

1.67

0.0004

ity,in the 40–60?C temperature range,is a clear indication of how important are the heat and mass transfer mechanisms inside the cork,for the control of the drying process.When the drying temperature raises there is higher heat and mass transfer rate taking place inside the cork stoppers.This leads to a decrease of importance of these phenomena inside the cork body and thus an increase of the importance of transfer mechanisms outside the cork.This results in an increase of the drying rate sensitivity with the variation of the external air velocity.

In previous works [1,16],the air velocity range was between 0.75and 1.5m/s for packed bed drying experiments,thus no in?uence of the drying air velocity could be detected.In the present situation with higher air ?ows,the in?uence of the velocity could be detected,but only for the higher drying tem-peratures,when internal transport mechanisms started to be less

important.

Fig.2.Changes in the practical characteristic moisture content for the cork stoppers.

The characteristic drying curves show an exponential evolu-tion of this parameter with the drying time.The experimental data of the evolution of the moisture content as a function of the drying time were adjusted to the semi-theoretical models described previously.The relationship between the coef?cient k and some of the parameters characterizing the drying process (temperature,velocity and relative humidity)was established and represented in Table 3.

Three criteria of statistic analysis have been used to evaluate the adjustment of the experimental data to the different mod-els,the correlation coef?cient r 2,the average deviation d m ,and reduced χ2criterion,which were calculated by the following:

r = N

j =1(Φp ,j

?ˉΦp )(Φpcal ,j ?ˉΦpcal )

N

j =1(Φp ,j

?ˉΦp )2 N i =1(Φpcal ,j ?ˉΦpcal )

2(2)

d m =

N

j =1(Φpcal ,j

?Φp,j /Φp,j )2

N

(3)

χ2

=

N

j =1(Φp ,j

?Φpcal ,j )2

N ?z

(4)

A good ?tting between the experimental data and the correla-tions is obtained when there is a combination of a high r 2value,which should be as closed to unity as possible,and the values of d m and χ2that should be as low as possible.The two terms exponential model shows the best ?t (Table 3and Fig.3).The models were adjusted for the drying air super?cial velocity U in m/s and temperature T in K.In Table 4are presented the validity conditions for these models.

Fig.3shows the evolution of some characteristic drying curves calculated by means of the two terms exponential model,see Table 3,as well as the corresponding experimental results.The maximum average deviation found between the model and the experimental curves is 15%.

Table 4

Validity conditions for the equations referred to in Table 3

Φp

T (?C)RH (%)U (m/s)Minimum 0.0240 5.2 1.08Maximum

1.00

70

21.7

1.78

A.Magalh?a es,C.Pinho/Chemical Engineering and Processing47(2008)2395–2401

2399

Fig.3.Relationship between predicted characteristic drying curves and corre-sponding experimental data.

5.Calculation of effective diffusivity and activation energy

The results obtained have shown that there is no constant drying rate period;liquid diffusion controls the drying process as there is only a falling rate period.Therefore,experimental results can be interpreted by using Fick’s second law,assum-ing a constant effective diffusivity,negligible shrinkage of the particles and supposing that they are spherical:

Φ=

6

π2

n=1

1

n2

exp

?n

2D effπ2

R2

t

(5)

For long drying times(Φp<0.7)n=1[46]and the equation for the two terms exponential model could be further simpli?ed to a straight-line equation:

ln(Φ)=ln

6

π

?

D effπ2

R

t

(6)

The effective diffusivity was determined by plotting exper-imental data in terms of logarithm of moisture content versus drying time.The slope of the obtained straight line is given by

k=D effπ2

R2

(7)

The values of the effective diffusivity obtained during the process of drying of cork stoppers varied from1.36×10?9

to Fig.4.Arrhenius-type relationship between effective diffusivity and tempera-ture.

4.44×10?9m2/s for a range of temperatures going from40to 70?C.These values are quite similar to those obtained by Mar-tins[16]using a theoretical diffusion model taking into account the true cylindrical geometry of the corks stoppers.He obtained effective diffusivities from2.2×10?9to7.1×10?9m2/s for temperatures from60to80?C using corks stoppers of differ-ent sizes(38×24,45×24and49×24)and different air drying velocities(0.75–1.5m/s).However,the adopted approach in the present work,of considering the corks as spheres lead to diffu-sivity values of the same order of magnitude of those obtained with a more elaborated model.

The in?uence of temperature on effective diffusivity is gen-erally described using an Arrhenius-type relationship:

D eff=D0exp

?E aˉ

RT a

(8)

Through the plotting of ln(D eff)values versus1/T a,as shown in Fig.4,it results a linear relationship.From the slope and the intercept of the plot shown in Fig.4the activation energy and the diffusivity constant are,respectively,28.72kJ/mol and 3.87×10?4m2/s.

6.Conclusions

Experimental studies for the determination of the character-istic drying curves of Port wine cork stoppers(29mm×21mm) in a laboratory scale spouted bed dryer were described.With the used experimental setup and testing procedure,the most impor-tant physical parameter affecting the drying rate is the incoming air temperature.Tested temperatures were of40,50,60and 70?C,but in the industrial practice temperatures above60?C are usually avoided to minimize cork damage.Typical drying times go from1.5h(5400s)to2h(7200s),the shorter drying times are obtained for a drying air temperature of70?C.

The super?cial air velocity has some in?uence upon the stop-pers drying rate only for tests at70?C,situations were the heat

2400 A.Magalh?a es,C.Pinho/Chemical Engineering and Processing47(2008)2395–2401

and mass transfer mechanisms inside the cork begin to loose their dominant in?uence.In other words,at and below60?C,the transport mechanisms inside the cork control the drying process.

Through a simple kinetic model,the two terms exponential model,a correlation for the practical characteristic moisture con-tent was determined,giving a maximum mean deviation towards the experimental curves of15%.

The effective diffusivity was calculated from the experimen-tal data and varied from1.36×10?9to4.44×10?9m2/s with the temperature dependence represented by an Arrhenius-type relationship.The activation energy obtained was28.72kJ/mol. Appendix A.Nomenclature

A,B drying constants

d m averag

e deviation

D eff effective diffusivity(m2/s)

D0diffusivity coef?cient(m2/s)

E a activation energy(kJ/mol)

k,k0,k1drying rate constants(s?1)

n drying constant,positive integer

N number of observations

r2correlation coef?cient

R radius of particles(m)

ˉR universal gas constant(kJ/mol K)

RH relative humidity

t time(s)

T temperature(K)

T a absolute temperature(K)

U super?cial velocity(m/s)

X water mass fraction(dry base)

z number of constants in the model equations

Greek symbols

Φcharacteristic moisture content

Φp practical characteristic moisture content

χ2reduced chi-square

Subscripts

cal predicted

i initial

j j th observations

ref reference

References

[1]L.A.S.B.Martins,C.M.C.T.Pinho,A.M.S.Santos,Characteristic drying-

curves of corks in a slim?xed bed,in:III Congresso de Engenharia Mec?a nica Norte-Nordeste,Bel′e m,PA,Brazil,1994.

[2]C.M.C.T.Pinho,A.M.S.Santos,Design and development of a continuous

cork stoppers dryer,in:Proceedings of the14th Brazilian Congress of Mechanical Engineering,Bauru,SP,Brazil,1997.

[3]N.Rangel,A.Santos,C.Pinho,Friction and inertia effects for the eval-

uation of pressure drop in?ow through packed beds of cork stoppers,in: Proceedings of COBEM2001,Fluid Mechanics,vol.8,Uberl?a ndia,MG, Brazil,2001,pp.124–129.

[4]N.Rangel,A.Santos,C.Pinho,Pressure drop in packed shallow beds of

cylindrical cork stoppers,Trans.IChemE70(2001)547–552.

[5]D.Geldart,Types of gas?uidization,Powder Technol.7(1973)285–292.

[6]K.B.Mathur,N.Epstein,Spouted Beds,Academic Press,Inc.,New York,

1974.

[7]D.Geldart,Gas Fluidization Technology,John Wiley&Sons,New York,

USA,1986.

[8]D.Kunni,O.Levenspiel,Fluidization Engineering,2nd edition,

Butterworth-Heinemann,Boston,1991.

[9]K.Viswanathan,Model for continuous drying of solids in?uidized/spouted

beds,Can.J.Chem.Eng.64(1986)87–95.

[10]E.Pallai,T.Szentmarjay,A.S.Mujumdar,Spouted bed drying,in:A.S.

Mujumdar(Ed.),Handbook of Industrial Drying,Marcel Dekker,Inc.,New York,1995.

[11]A.S.Mujumdar,S.Devahastin,Applications for?uidized bed drying,in:

W.-C.Yang(Ed.),Handbook of Fluidization and Fluid-particle Systems, Marcel Dekker,New York,2003.

[12]A.Markowski,W.Kaminski,Hydrodynamic characteristics of jet-spouted

beds,Can.J.Chem.Eng.61(1983)377–381.

[13]M.L.Passos,A.S.Mujumdar,V.G.Raghavam,Spouted beds for drying:

principles and design considerations,in:A.E.Mujumdar(Ed.),Advances in Drying,vol.4,Hemisphere Publishing Corporation,Washington, 1987.

[14]M.Olazar,M.J.San Jos′e,A.T.Aguayo,J.M.Arandes,J.Bilbao,Pressure

drop in conical spouted beds,Chem.Eng.J.51(1993)53–60.

[15]W.C.Yang,Handbook of Fluidization and Fluid-particle Systems,Marcel

Dekker,New York,2003.

[16]L.A.S.B.Martins,Determination of characteristic drying curves of cork

stoppers,MSc thesis,FEUP,Porto,Portugal,1990(in Portuguese). [17]J.Costa,https://www.docsj.com/doc/6b17836659.html,ndel,S′e chage de bouchons de li`e ge en lit?uidis′e en jet,

INEGI,Porto,Portugal,1998.

[18]A.Magalh?a es,Characterization of Drying Conditions of Cork Stoppers in

a Spouted Bed,MSc thesis,FEUP,Porto,Portugal,2004(in Portuguese).

[19]A.Magalh?a es,C.Pinho,Pressure drop in a spouted bed of cork stoppers,

in:Proceedings of the10th Brazilian Congress of Thermal Sciences and Engineering—ENCIT2004,Rio de Janeiro,RJ,Brazil,2004.

[20]P.C.Panchariya,D.Popovic,A.L.Sharma,Thin-layer modelling of black

tea drying process,J.Food Eng.52(2002)349–357.

[21]R.Tabatabaee,D.S.Jayas,N.D.G.White,Thin-layer drying and rewetting

characteristics of buckwheat,Can.Biosyst.Eng.46(2004)19–24. [22]E.K.Akpinar,Determination of suitable thin layer drying curve model for

some vegetables and fruits,J.Food Eng.73(2006)75–84.

[23]M.¨Ozdemir,Y.O.Devres,The thin layer drying characteristics of hazelnuts

during roasting,J.Food Eng.42(1999)225–233.

[24]A.Cihan,M.C.Ece,Liquid diffusion model for intermittent drying of rough

rice,J.Food Eng.49(2001)327–331.

[25]C.Demirtas,T.Ayhan,K.Kaygusuz,Drying behaviour of hazelnuts,J.

Sci.Food Agric.76(1998)559–564.

[26]M.Fortes,M.R.Okos,Non-equilibrium thermodynamics approach to heat

and mass transfer in corn kernels,Trans.Am.Soc.Agric.Eng.22(1981) 761–769.

[27]J.L.Parry,Mathematical modelling and computer simulation of heat and

mass transfer in agricultural grain drying,J.Agric.Eng.Res.32(1985) 1–29.

[28]R.B.Keey,Drying:Principles and Practice,Pergamon Press,New York,

1972.

[29]J.Irudayaraj,K.Haghighi,R.H.Stroshine,Finite element analysis of

drying with application to cereal grains,J.Agric.Eng.Res.53(1992) 209–229.

[30]M.Kashaninejad,A.Mortazavi,A.Safekordi,L.G.Tabil,Thin-layer drying

characteristics and modelling of pistachio nuts,J.Food Eng.78(2007) 98–108.

[31]P.S.Madamba,R.H.Driscoll,K.A.Buckle,The thin-layer drying charac-

teristics of garlic slices,J.Food Eng.29(1996)75–97.

[32]R.Dandamrongrak,G.Young,R.Mason,Evaluation of various pre-

treatments for the dehydration of banana and selection of suitable drying models,J.Food Eng.55(2002)139–146.

[33]S.Erenturk,K.Erenturk,Comparison of genetic algorithm and neural net-

work approaches for the drying process of carrot,J.Food Eng.78(2007) 905–912.

A.Magalh?a es,C.Pinho/Chemical Engineering and Processing47(2008)2395–24012401

[34]S.Simal,A.Femenia,M.C.Garau,C.Rossell′o,Use of exponential,Page’s

and diffusional models to simulate the drying kinetics of kiwi fruit,J.Food Eng.66(2005)323–328.

[35]D.D.Overhults,G.M.White,H.E.Hamilton,I.J.Ross,Drying soy-

beans with heated air,Trans.Am.Soc.Agric.Eng.16(1973) 112–113.

[36]G.M.White,I.J.Ross,C.G.Poneleit,Fully exposed drying of popcorn,

Trans.Am.Soc.Agric.Eng.24(1981)466–468.

[37]O.Yaldiz,C.Ertekin,H.I.Uzun,Mathematical modelling of thin layer

solar drying of sultana grapes,Energy26(2001)457–465.

[38]A.Midilli,H.Kucuk,Z.Yapar,A new model for single-layer drying,Dry.

Technol.20(2002)1503–1513.

[39]S.Erenturk,M.S.Gulaboglu,S.Gultekin,The thin-layer drying character-

istics of rosehip,Biosyst.Eng.89(2004)159–166.

[40]C.Ertekin,O.Yaldiz,Drying of eggplant and selection of a suitable thin

layer drying model,J.Food Eng.63(2004)349–359.[41]T.Gunhan,V.Demir,E.Hancioglu,A.Hepbasli,Mathematical mod-

elling of drying of bay leaves,Energy Convers.Manage.46(2005) 1667–1679.

[42]R.B.Keey,Introduction to Industrial Drying Operations,Pergamon Press,

Oxford,1978.

[43]R.B.Keey,Theoretical foundations of drying technology,in:A.E.Mujum-

dar(Ed.),Advances in Drying,vol.1,Hemisphere Publishing Corporation, Washington,1980.

[44]R.B.Keey,Progress towards the drying behavior of materials,in:J.C.Ash-

worth(Ed.),Proceedings of the Third International Drying Symposium, vol.I,University of Birmingham,1982,pp.7–22.

[45]A.S.Mujumdar,A.S.M′e non,Drying of solids:principles,classi?cation

and selection of dryers,in:A.E.Mujumdar(Ed.),Handbook of Industrial Drying,Marcel Dekker,New York,1995.

[46]I.Doymaz,Sun drying of?gs:an experimental study,J.Food Eng.71

(2005)403–407.

干燥设备现状及进展

干燥设备现状及进展 环境科学0948113 丁晓雨 摘要:论述了中国干燥技术的现状和进展,从工业应用的角度介绍了主流干燥设备的结构特点和已达到的技术水平。将干燥设备分为喷雾干燥、气流干燥、流化床干燥、旋转快速干燥、振动流化床干燥、流化床喷雾造粒干燥、回转干燥及桨叶式干燥等几部分加以详细说明,并提出了未来研究和发展的方向。 关键词:干燥技术;干燥设备;进展 干燥技术是一种古老而通用的单元操作技术,然而它又是很复杂的、人类对其了解还很浅的技术。目前大多数干燥设备设计仍然依赖于小规模试验和实际操作经验。换句话说,干燥器设计尚属非标设计。建国以来,一些现代的干燥设备(如喷雾干燥器、气流干燥器及流化床干燥器)在工业生产中得到应用。自70年代以来,随着科学技术的迅猛发展以及各技术领域的交叉、渗透,干燥设备、干燥过程和干燥理论的研究有较大进展。尤其是近10多年来,有许多新型干燥器投放市场,但其主要是在原有结构的基础上作了某些改进。 干燥技术随着有关产业的发展有较大进展。干燥技术涉及不同类型产品的品质、形状、干燥前后的物态。干燥设备的能耗在工业发达国家超过其能耗总量的10%,因此,降低干燥设备能耗是涉及面广的长远课题。目前,工业生产对干燥技术的需求剧增,这就促进了干燥设备的发展,尤其是机电一体化、制造加工标准化、提高调控水平等成了干燥设备研究发展的方向。 1.干燥设备现状及进展 1.1 喷雾干燥 喷雾干燥是干燥设备中进展最快的设备之一。常规的雾化方法有3种:旋转雾化、压力雾化及气流雾化。 1.1.1 旋转雾化的喷雾干燥 1)特点:单机生产能力大(喷雾量可达200 t/h),进料量容易控制,操作弹性大,应用比较广泛。 2)中国已掌握其设计方法,能够提供喷雾量10 t/h以下的旋转雾化器。喷雾量45 t/h设备已试制完毕,将要投入试运转。 3)中国已有行业标准和企业标准。试验以后,可以按系列选型。 1.1.2 压力式雾化器的喷雾干燥 1)特点:可以制造粗粒子,维修方便。由于喷嘴孔很小,易堵塞,故料液必须严格过滤。喷嘴孔易磨损,须用耐磨材料制造。 2)此型在我国已被广泛应用。我国已掌握其设计与制造技术,可以设计任意尺寸的装置。 3)压力式喷嘴又有一种新结构,称为压力—气流式喷嘴。它的特点为中心是压力式喷嘴,周围的环隙为气流式喷嘴。雾化分为两个阶段:压力喷嘴首先形成液膜,此液膜被气流第二次雾化,使雾滴更细。此型喷嘴的优点如下:(1)调节压缩空气的压力,便可调节液滴直径,操作简单了;(2)大产量、高粘度的料液,也能够雾化为细雾滴;(3)如果停用压缩空气,原来的压力式喷嘴也能使用。 1.1.3 气流式雾化器的喷雾干燥 因为雾化用的动力消耗太大,此种型式主要用于实验室及中间工厂。前两种雾化器都不

牧草烘干技术

牧草烘干加工技术 牧草烘干加工,以工业操作方法生产牧草产品,通常用煤、石油、天然气或电为能源,使青绿牧草在300~1000℃的高温下2~10分钟内烘干,经过打捆或粉碎或压块、制粒等工序加工成各种产品。牧草烘干加工快捷、营养损失少,但需要建设牧草烘干加工厂,成本较高。提供烘干的原料主要是苜蓿。 一、国内外发展概况 牧草烘干技术在世界发达国家已经广泛应用,美国、德国、法国、丹麦、英国等牧草烘干都已进入产业化经营。我国牧草烘干技术起步较晚,20世纪70~80年代,我国先后从荷兰、日本、法国等国家引进成套牧草烘干设备,现在仍有一些企业在继续引进。引进每套设备的费用为50~120万美元,价格昂贵。这些设备多以电或石油为能源,在我国推广应用有较大的局限性。20世界80年代,贵州农业大学研制出 QG-100型牧草烘干机组,1989年中国船舶公司713所93QH-300型牧草烘干机组问世。近几年来,沈阳远大干燥设备有限公司开发出HYG系列牧草烘干机组,已被10余个厂家选定,投入生产。 二、产业化开发前景 牧草烘干在我国年降雨量400毫米以上地区有加大发展潜力,包括我国南方省区,那里雨量丰富、光热充足,牧草产量高、生长时间长,利于烘干设备的高效发挥。陕西、内蒙古及东部沿海等煤炭或天然气能源充足的地区也适宜烘干牧草的产业化开发。 三、牧草高温快速烘干技术 (一)技术简介。由沈阳远大科技实业有限公司生产的HYG系列多环滚筒苜蓿草高温快速烘干成套设备,由13台单机组成,主烘干机是三环滚筒,以高温热风作为烘干介质,物料与热风为顺流,采用热风再循环新工艺,及全机组自动控制系统,适应燃油、燃气、燃煤多种热源,采用独特防然防爆措施,并提供独特的自动化燃煤热风炉,该机组与1998年通过专家鉴定,被科技部等五部委认定为国际重点新产品。(二)应用条件。该机组主要使用苜蓿草、秸秆及其他片状、纤维状、粒状物料的烘干,如树叶、蔬菜、中草药、木屑、玉米胚、榨汁x等。 用户条件:300~1000平方米的厂房;380伏电源(50~200千伏安);水源,燃料(煤、气、油):熟练的机电维修操作工人。厂址距苜蓿种植园在10公里以内为佳。 (三)工艺流程。HYG系列苜蓿草烘干成套设备如图1所示。 (四)操作规程。 1.开车前准备。 (1)给所有设备润滑并加满油。 (2)检查各连接螺栓是否松动,如松动需紧固。 (3)单机试运转不低于15分钟。 (4)控制盘定好出风口风温。 (5)关闭风机风门。 (6)水箱充满水,喷水系统畅通。 (7)操作人员就位。 (8)轧草机预先轧出一定量草堆放在上料机前备用。 (9)煤仓储满煤,燃煤炉生火。 (10)关闭热风进口闸门,开放热风短路闸门。 2.开车。 (1)开启冷却风机。 (2)开启除料闭风机。 (3)开启主风机,待转数达到额定值,打开风门并调整到所需位置。

带式干燥机的设计

带式干燥机的设计 摘要 本次设计的任务是带式干燥机,干燥机的处理量为2000kg/h,物料初始含水率为20%,初始温度为15℃,干燥到含水率0.4%的带式干燥机,设计包括带式干燥机,确定工艺流程,干燥气体,工艺计算,干燥器的结构计算和设计,配套设备的选择。在本设计中,干燥器是适合大规模生产的连续式干燥设备,干燥带通风好,适合含水较高的蔬菜,中药饮片和其他类型的水分含量高,干燥热敏性的物料尤为合适。 设计的干燥机具有蒸发强度高,干燥速度快和产品质量好等特点。网带具有透气性能好,停留时间可以调节,不会出现剧烈运动,不破碎,在良好的干燥条件下,提高干燥强度,循环风机用于循环结构,热风均匀,偏干的现象并不存在。分为三层,有效地节省了面积,提高了空间利用率。 关键词:干燥器;中草药干燥;网带;循环风机;三层

The Belt Dryer Design ABSTRACT The task is to design a belt dryer for drying herbs, dry material handling capacity of 2000 kg / h, an initial concentration of 20%, the initial temperature of 15 ° C and dried to 0.4%, the design includes belt dryer to determine the process flow, dry gas, process calculation, dryer structural calculation and design, ancillary equipment selection. In this design, the belt dryer with mass production of continuous drying equipment for drying ventilation sheet, strip and granular materials is better. Dehydrated vegetables, Chinese Herbal Medicine and other types of high moisture content, dry heat sensitive materials are particularly appropriate. The series dryer has high drying rate, high evaporation strength, and good product quality. Network with breathable performance, the residence time can be adjusted, material non-strenuous exercise, not broken,more dry area, more dry strength, loop structure of the circulating fan, hot air evenly, dry phenomenon does not exist. Divided into three layers is effectively saving the area, to improve the space utilization. KEY WORDS: Dryer; Herbal drying; Mesh belt; Circulating fan; three layers

气流干燥器设计说明书(1)

第一章气流干燥的设计原则 (2) 干燥的目的及各种不同干燥方式 (2) 气流干燥过程及适用范围 (2) 气流干燥过程 (2) 气流干燥器适用对象 (3) 对流干燥流程、设备和某些操作条件的确定 (3) 干燥流程的主体设备 (4) 干燥对象氯酸钠的特性 (4) 第二章气流干燥器的设计基础 (5) 颗粒在气流干燥管中的运动 (5) 加速运动与等速运动及其特征 (5) 球形颗粒在气流中的运动速度 (5) 颗粒在气流干燥器中的对流传热系数 (6) 颗粒在气流干燥器中的对流传热速率 (6) 加速运动阶段 (6) 等速运动阶段 (7) 第三章气流干燥器的设计计算 (8) 物料、热量衡算 (8) 设计条件 (8) 干燥器的物料衡算 (9) 干燥器的热量衡算 (9) 气流干燥管直径和高度的计算 (11) 干燥管管径的计算 (11) 干燥管高度计算 (12) 气流干燥管的压降 (14) 气固相与干燥管壁的摩擦损失 (14) 克服位能提高所需压降 (14) 颗粒加速所引起的压降损失 (14) 局部阻力损失 (14) 辅助设备的选型 (15) 风机 (15) 预热器 (15) 及壁厚的核算 (15) 第四章后记 (17) 设计心得体会 (17) 符号说明 (17) 附录 (19) 参考文献 (19)

第一章气流干燥的设计原则 气流装置的设计内容包括干燥介质的选择,流程的确定,搜集和整理有关数据,干燥过程的物料和能量的衡算,干燥管结构类型和主要工艺尺寸的确定,干燥条件的确定以及主要辅助设备类型选型及设计,绘制表明物料流向﹑流量﹑组成﹑主要控制点和各设备之间相互个关系的工艺流程图和干燥装置主要设备总装置图等。 干燥的目的及各种不同干燥方式 干燥的目的主要是便于物料的储藏﹑运输和加工,通过干燥使产品或半成品达到要求的含湿标准。 将湿物料中的湿分(常见的为水分)除去的方法很多,如压榨﹑过滤﹑离心﹑冷冻及利用干燥剂等等。但综合除湿程度﹑操作的可靠性﹑经济性和处理能力,干燥是工业生产中应用最普遍的除湿方法。就干燥而言,根据传递方式的不同可分为传导干燥﹑对流干燥﹑辐射干燥和介电加热干燥。 气流干燥过程及适用范围 1.2.1 气流干燥过程 气流干燥装置是连续常压干燥器的一种。颗粒状或粉末状湿物料通过带式供料器从干燥器底部进入,同时高温干燥介质也从干燥器底部进入,并达到一定的流速将湿物料分散和悬浮于气流中,在物料和热介质气流一并沿干燥管向上流动的同时,发生高效的传质传热,达到快速干燥的目的。 适当的安装风机在系统中的位置,气流干燥器可以在正压下操作,对于有毒或粉尘污染可能较大的情况,采用真空操作,产品不宜泄露,有利于保持生产环境;同时也有利于降低水分汽化温度,保护热敏性物料。但此时风机处于抽气工作状态,所抽的气体温度较高,并可能含有一些颗粒和

化工原理干燥习题与题解

干燥习题与题解 一、填空题: 1. 在湿度一定时,不饱和空气的温度越低,其相对湿度越___. ***答案*** 大 2. 等速干燥阶段物料表面的温度等于__________________。 ***答案*** 干燥介质一热空气的湿球温度 3. 在实际的干燥操作中, 常用___________来测量空气的湿度。 ***答案*** 干、湿球温度计 4. 1kg 绝干空气及_____________________所具有的焓,称为湿空气的焓。 ***答案*** 其所带的H kg 水汽 5. 某物料含水量为0.5 kg 水.kg 1-绝干料,当与一定状态的空气接触时,测出平衡水分为0.1kg 水.kg 1-绝干料,则此物料的自由水分为_____________。 ***答案*** 0.4 kg 水.kg 1- 绝干料 6. 已知在t=50℃、P =1atm 时空气中水蒸汽分压Pw =55.3mmHg ,则该空气的湿含量H =________;相对湿度φ=_______;(50℃时,水的饱和蒸汽压为92.51mmHg ) ***答案*** 0.0488, 0.598 7. 恒速干燥与降速干燥阶段的分界点,称为______________;其对应的物料含水量称为_____________________。 ***答案*** 临界点 、 临界含水量 8. 干燥进行的必要条件是物料表面所产生的水汽(或其它蒸汽)压力__________________。 ***答案*** 大于干燥介质中水汽(或其它蒸汽)的分压。 9. 等焓干燥过程的条件是________________________________________________。 ***答案*** 干燥器内无补充热,无热损失,且被干燥的物料带进,带出干燥器的热量之差可以忽略不计。 10. 作为干燥介质的湿空气,其预热的目的_______________________________________。 ***答案*** 降低相对湿度(增大吸湿的能力)和提高温度(增加其热焓) 11. 当湿空气的总压一定时, 相对湿度φ仅与________及________有关。 ***答案*** H , t 12. 已知在常压及25℃下水份在某湿物料与空气之间的平衡关系为:相对湿度φ=100% 时, 平衡含水量X * %100=?=0.02kg 水.kg 1- 绝干料;相对湿度φ=40%时, 平衡含水量 X *=0.007。现该物料含水量为0.23kg 水. kg 1- 绝干料,令其与25℃,φ=40%的空气接触, 则该物料的自由含水量为______kg 水.kg 1-绝干料, 结合水含量为______kg 水.kg 1-绝干料,非结合水的含量为______kg 水.kg 1- 绝干料。 ***答案*** 自由含水量 X-X *=0.23-0.007=0.223; 结合水量为 X * %100=?=0.02 非结合水量 X-X *%100=?=0.23-0.02=0.21 13. 影响恒速干燥速率的因素主要是____________________; 影响降速干燥速率的因素主要是_____________________。

干燥设备原理动图

最全最专业的干燥设备原理动图(二) 发布日期:2017-11-15 来源:粉体技术网浏览次数:142 干燥过程就是脱除表面水分,同时发生传热和传质的单元操作过程。干燥设备在石化企业中的应用非常普遍,如今更是在医药,食品,造纸等跟生活密切相关的行业中得到广泛应用。完成干燥任务的机械设备通常是由多台装置构成的系统,但往往称为干燥机或干燥器。例如,喷雾干燥系统称为喷雾干燥机或喷雾干燥器,冷冻干燥设备系统称为冷冻干燥机或冷冻干燥器等。 喷雾干燥器 20世纪初期,乳品生产开始应用喷雾干燥机,为大规模干燥液态物料提供了有力的工具。 喷雾干燥器是将溶液、浆液或悬浮液通过喷雾器而形成雾状细滴并分散于热气流中,使水分迅速汽化而达到干燥的目的。热气流与物料可采用并流、逆流或混合流等接触方式。这种干燥方法不需要将原料预先进行机械分离,且干燥时间很短(一般为5~30s),因此适宜于热敏性物料的干燥,如食品、药品、生物制品、染料、塑料及化肥等。

LPG高速离心喷雾干燥机 喷雾干燥的优点是干燥速率快、时间短,尤其适用于热敏物料的干燥;可连续操作,产品质量稳定;干燥过程中无粉尘飞扬,劳动条件较好;对于其它方法难于进行干燥的低浓度溶液,不需经蒸发、结晶、机械分离及粉碎等操作便可由料液直接获得干燥产品。 其缺点是对不耐高温的物料体积传热系数低,所需干燥器的容积大;单位产品耗热量大及动力消耗大。另外,对细粉粒产品需高效分离装置。 流化床和气流式干燥机 20世纪40年代开始,随着流化技术的发展,高强度、高生产率的沸腾床和气流式干燥机相继出现。 (1)流化床干燥器

流化床干燥器又称沸腾床干燥器,是流态化技术在干燥操作中的应用。流化床干燥器种类很多,大致可分为:单层流化床干燥器、多层流化床干燥器、卧式多室流化床干燥器、喷动床干燥器、旋转快速干燥器、振动流化床干燥器、离心流化床干燥器和热式流化床干燥器等。

型网带式干燥机简

型网带式干燥机简

六、主要配置 DW型多层网带干燥机广泛应用于制药、化工、食品、饲料、电子等行业对药品、中药材、脱水蔬菜、脱水肉类、椰蓉、味精、颗粒饲料、有机颜料、合成橡胶、丙烯纤维、塑料制品,电子元器件的干燥,固化、老化等 整机运转噪音低,运行平稳,温度为自动控制,安装维修方便,适用范围广,

可干燥各种物料物料由加料器分配后均匀地铺在不断移动的网带上,网带由传动链条拖动在干燥室内缓慢移动,热风在离心风机的作用下,经过不锈钢蒸汽散热器、对流壁、风道在干燥室内做平面层流循环,干热空气吸收物料的水份,不断转换成的湿热空气由排湿装置排出室外,随着湿气的不断减少,物料逐渐干燥,网带缓慢移动,运行速度可根据物料的湿度自由调节,干燥后的成品连续不断地装入收料器中。 物料由加料器分配后均匀地铺在不断移动的网带上,网带由传动链条拖动在干燥室内缓慢移动,热风在离心风机的作用下,经过不锈钢蒸汽散热器、对流壁、风道在干燥室内做平面层流循环,干热空气吸收物料的水份,不断转换成的湿热空气由排湿装置排出室外,随着湿气的不断减少,物料逐渐干燥,网带缓慢移动,运行速度可根据物料的湿度自由调节,干燥后的成品连续不断地装入收料器中

1、干燥机机架采用12#、8#槽钢及∠50×50×5角钢制作,焊接牢靠,框架制作完毕后, 2、干燥机的上部为干燥室,外壳采用SUS3042Bδ1.0mm不锈钢板制作,内壁材料采用SUS3042B δ1.2mm不锈钢板制作,网带、链条均采用不锈钢制作,四周均有保温装置,干燥机的两侧为活动门,并充填保温棉,采用硅酸铝纤维棉,保温性能良好,表面的温度不超过环境温度10℃,门采用不锈钢铰链及不锈钢压紧,密封采用硅橡胶密封条,密封效果好,使用寿命长,在250℃以下长期使用不老化。干燥机的两端为固定门,充填保温棉,不锈钢螺栓固定,需检修干燥机传动系统时即可拆下。 3、干燥机底部装置高压离心风机及引风管道,高压离心风机型号为9-19-3.2A,电机功率为3kw/台,数量为4台,引风管道采用3042B S1.0mm不锈钢板,连接形式为法兰连接,并采用硅橡胶垫密封,引风机的风量为4500m3/h/台,风压为1500pa,风速为10m/S。 4、干燥室的右侧为送风风道,左侧为吸风风道,风道的两侧装置风量调节对流壁,采用3042B S1.0mm不锈钢板通过调节对流壁上下的通风量使干燥室内的温度均匀,空载状态下干燥机的热分布均匀性为±3℃。 5、右侧送风道内装置不锈钢加热管,加热总功率480kw。 6、干燥机的顶部为排湿装置,材料均匀3042B不锈钢,配置1台强制排湿风机,型号为9-19-2.8A高压离心风机,风量为3600m3/h,风机功率2.2kw,并装置风量调节阀,为手动控制(风量经调整后将不再变动)。 7、干燥机的传动系统由传动电机,减速机,传动轴、传动链条、网带、链条托条、网带托轮轴等部分组成。 1)传动电机采用5.5kw调速电机,分别为电磁调速或变频调速,用户可根据要求选择。

气流干燥器设计说明书(1)

第一章气流干燥的设计原则 (2) 1.1干燥的目的及各种不同干燥方式 (2) 1.2 气流干燥过程及适用范围 (2) 1.2.1 气流干燥过程 (2) 1.2.2气流干燥器适用对象 (3) 1.3对流干燥流程、设备和某些操作条件的确定 (3) 1.3.1 干燥流程的主体设备 (4) 1.4干燥对象氯酸钠的特性 (4) 第二章气流干燥器的设计基础 (5) 2.1颗粒在气流干燥管中的运动 (5) 2.1.1加速运动与等速运动及其特征 (5) 2.1.2 球形颗粒在气流中的运动速度 (5) 2.2 颗粒在气流干燥器中的对流传热系数 (6) 2.3 颗粒在气流干燥器中的对流传热速率 (6) 2.3.1加速运动阶段 (6) 2.3.2等速运动阶段 (7) 第三章气流干燥器的设计计算 (8) 3.1物料、热量衡算 (8) 3.1.1设计条件 (8) 3.1.2干燥器的物料衡算 (9) 3.1.3干燥器的热量衡算 (9) 3.2气流干燥管直径和高度的计算 (10) 3.2.1干燥管管径的计算 (10) 3.2.2干燥管高度计算 (11) 3.3气流干燥管的压降 (13) 3.3.1气固相与干燥管壁的摩擦损失 (13) 3.3.2克服位能提高所需压降 (13) 3.3.3颗粒加速所引起的压降损失 (13) 3.3.4局部阻力损失 (13) 3.4辅助设备的选型 (14) 3.4.1风机 (14) 3.4.2预热器 (14) 3.4.3及壁厚的核算 (14) 第四章后记 (15) 4.1设计心得体会 (15) 4.2符号说明 (16) 附录 (16) 参考文献 (16)

第一章气流干燥的设计原则 气流装置的设计内容包括干燥介质的选择,流程的确定,搜集和整理有关数据,干燥过程的物料和能量的衡算,干燥管结构类型和主要工艺尺寸的确定,干燥条件的确定以及主要辅助设备类型选型及设计,绘制表明物料流向﹑流量﹑组成﹑主要控制点和各设备之间相互个关系的工艺流程图和干燥装置主要设备总装置图等。 1.1干燥的目的及各种不同干燥方式 干燥的目的主要是便于物料的储藏﹑运输和加工,通过干燥使产品或半成品达到要求的含湿标准。 将湿物料中的湿分(常见的为水分)除去的方法很多,如压榨﹑过滤﹑离心﹑冷冻及利用干燥剂等等。但综合除湿程度﹑操作的可靠性﹑经济性和处理能力,干燥是工业生产中应用最普遍的除湿方法。就干燥而言,根据传递方式的不同可分为传导干燥﹑对流干燥﹑辐射干燥和介电加热干燥。 1.2 气流干燥过程及适用范围 1.2.1 气流干燥过程 气流干燥装置是连续常压干燥器的一种。颗粒状或粉末状湿物料通过带式供料器从干燥器底部进入,同时高温干燥介质也从干燥器底部进入,并达到一定的流速将湿物料分散和悬浮于气流中,在物料和热介质气流一并沿干燥管向上流动的同时,发生高效的传质传热,达到快速干燥的目的。 适当的安装风机在系统中的位置,气流干燥器可以在正压下操作,对于有毒或粉尘污染可能较大的情况,采用真空操作,产品不宜泄露,有利于保持生产环境;同时也有利于降低水分汽化温度,保护热敏性物料。但此时风机处于抽气工作状态,所抽的气体温度较高,并可能含有一些颗粒和粉

化工原理干燥练习题答案

一、填空题 1、对流干燥操作的必要条件是(湿物料表面的水汽分压大于干燥介质中的水汽分压);干燥过程是(热量传递和质量传递)相结合的过程。 2、在实际的干燥操作中,常用(干湿球温度计)来测量空气的温度。 3、恒定得干燥条件是指(温度)、(湿度)、(流速)均不变的干燥过程。 4、在一定得温度和总压强下,以湿空气作干燥介质,当所用湿空气的相对湿度 较大时,则湿物料得平衡水分相应(增大),自由水分相应(减少)。 5、恒速干燥阶段又称(表面汽化)控制阶段,影响该阶段干燥速率的主要因素是(干燥介质的状况、流速及其与物料的接触方式);降速干燥阶段又称(内部迁移)控制阶段,影响该阶段干燥速率的主要因素是(物料结构、尺寸及其与干燥介质的接触方式、物料本身的温度等)。 6、在恒速干燥阶段,湿物料表面的温度近似等于(热空气的湿球温度)。 7、可用来判断湿空气的干燥能力的大小的性质是相对湿度。

8、湿空气在预热过程中,湿度 不变 温度 增加 。 9、干燥进行的必要条件是 干燥介质是不饱和的热空气 。 10、干燥过程所消耗的热量用于 加热空气 , 加热湿物料 、 气化水分 、 补偿热损失 。 二、选择题 1、已知湿空气的如下两个参数,便可确定其他参数(C )。 A .p H , B.d t H , C.t H , D.as t I , 2、在恒定条件下将含水量为(干基,下同)的湿物料进行干燥。当干燥至含水量为时干燥速率下降,再继续干燥至恒重,测得此时含水量为,则物料的临界含水量为(A ),平衡水分为(C )。 3、已知物料的临界含水量为(干基,下同),先将该物料从初始含水量干燥降至,则干燥终了时物料表面温度θ为(A )。 A. w t ?θ B. w t =θ C. d t =θ D. t =θ 4、利用空气作干燥介质干燥热敏性物料,且干燥处于降速阶段,欲缩短干燥时间,则可采取的最有效措施是( B )。 A.提高干燥介质的温度 B.增大干燥面积、减薄物料厚度

介绍几种干燥设备中常用的热源

一、热源的种类有以下几种: 1、蒸汽2、热水3、电能4、煤炭5、燃油6、可燃气体 二、空气换热器 (一)热管换热器 热管换热器是一种利用封闭在管内的工作物质反复进行物理相变或化学反应来传递热量的一种换热装置。热管技术是一项新技术,自1964年每一支热管问世以来,到现在也仅有三十多年的历史。由于它在回收余热、预热空气等方面显示出很多优点,热管技术得到飞速发展,种类和功能也很多,根据热管的工作原理,按工作方式,可以分为物理热管和化学热管。 物理热管是利用工作淮的物理相变传递热量。化学热管是利用工作物质化合与分解应应传递热量。在喷雾干燥系统中,利用热管换热器间接加热空气,已获得良好的经济效益。热管的工作液根据可以选择不同的液体,但每种工作液都有它合适的工作温度范围。 (二)燃煤热风炉 以煤为燃料的热空气炉,多数是以间接换热的方法加热空气。在间接换热过程中,一般有两种情况,一种情况是炉内设有风管,冷空气走管层,烟道气走壳层。煤燃烧产生的热量对管的外壁进行辐射,热量通过管壁传向内管,然后再与内管的冷空气进行加热。炉的进口为冷空气,经加热后从另一口出来的为加热到一定温度的高温洁净空气。另一种为燃煤式导热油炉,导热油被加热后流向别一个换热器,再与冷空气进行换热。间接换热的特点是得到的热气体洁净度较高,在换热过程中空气无湿度变化,仍操持冷空气的湿含量。 燃煤热风炉结构比较简单,加煤方式也有多种,要据工艺需要或换热量的不同采取不同的加热方式。由于火焰与换热管直接辐射,燃气内又有硫等腐蚀性较强的化学物质,对管的材料有一定要求。 (三)蒸汽换热器 蒸汽换热器是间接换热设备,由多根散热管组成。在换热时可根据需要一组工作,也可以多组串联使用。排管用紫铜或钢质材料,为增加传热效果,管外套绕翅片,翅片管子有良好的接触。用蒸汽做热介质时,管内通蒸汽,管处翅片间走空气。 (四)电加热器 电加热器是电能转换成热能,向空气进行辐射传热的加热设备。电加热器是多要管状电热元件组成。管状电加热元件是在金属管中放入电阻丝,并在空隙部分紧密填充有良好耐热性、导热性和绝缘性的结晶氧化镁粉,再经其他工艺处理而成。具有结构简单、机械强度高、热效率高、安全可靠、安装简便、易实现温控自动化的特点。用于加热相对湿度不大于95%、无爆炸、无腐蚀性气体。工作电压不应大于额定值1.1倍,加热空气湿度不应超过300度。可以独立使用,也可作为第二级加热设备,经常与蒸汽换热器组合。如果干燥机热空气进口温度要求200度,一般蒸汽换热很难达到要求。这时可以把冷空气通过蒸汽换热器加热到一定温度后再进入电加热器继续升温,达到所要求温度。电加热操作方便,容易实现自动化,但电是高品位能源,运转费用较高,不适用于附加值低的物料干燥设备中采用。 (五)煤气发生炉 1、随着油价的不断攀升,煤炭的战略地位将越来越重要,世界的能源构成也越来越依赖于煤炭以及煤基改质燃料。煤炭的直燃,由于热效率低且对环境的巨大污染,在全国的大部地区已经禁烧,这样就有一个突出的问题摆在我们面前,怎样获得高效环保的洁净能源?发生炉制气技术就是一种成熟、环保、应用广泛的洁净煤技术。煤制气是以煤或焦炭等含碳的物质为原料,以空气和水蒸汽为气化剂,在常压固定床煤气发生炉内气化获取可燃气体的技术,生成气体的主要成分是一氧化碳、氢气、氮气、二氧化碳,可燃组份为一氧化碳和氢气,由于含有大量的惰性组份氮气,因此煤气热值不高,低热值为6

带式干燥机

带式干燥机 一、概述 带式干燥机由若干个独立的单元段所组成,每个单元段包括循环风机、加热装置、单独或公用的新鲜空气抽入系统和尾气排出系统。因此,对干燥介质数量、温度、湿度和尾气循环量等操作参数,可独立控制,从而保证工作的可靠性和操作条件的优化。带式干燥机操作灵活,湿物料进料、干燥过程在完全密封的箱体内进行,自动化程度高,劳动条件好,避免了粉尘的外泄。 带式干燥机的被干燥物料随同输送带移动,物料颗粒间的相对位置比较固定,干燥时间基本相同。带式干燥机非常适用于要求干燥物料色泽变化一致或湿含量均匀的物料干燥。 二、带式干燥机的结构 根据组合形式不同可分为三种类型,即单级、多级和多层带式干燥机。 (一)单级带式干燥机 被干燥物料由进料端经加料装置被均匀分布到输送带上,输送带通常用穿孔的不锈钢薄板制成,由电动机经变速箱带动。最常用的干燥介质是热空气。空气用循环机由外部经空气过滤器抽入,并经加热器加热后,通过分布板由输送带下部垂直上吹。热空气流过物料层时,物料中水分汽化,空气增湿,温度降低,一部分湿空气排出箱体,另一部分则在循环风机吸入口与新鲜空气混合再循环。干燥后的产品,经外界空气或其他低温介质直接接触冷却后,由出口端排出。 (二) 多级带式干燥机 多级带式干燥机实质上是由数台(多至4台)单级带式干燥机串联组成,其操作原理与单级带式干燥机相同。 干燥初期缩性很大的物料,如某些蔬菜类,在输送带上堆积较厚,将导致压实而影响干燥介质穿流,此时可采用多级带式干燥机,使机组总生产能力提高。 (三)多层带式干燥机 它是由多台单级带式干燥机由上到下,串联在一个密封的干燥室内,层数最高可达15层,常用3—5层。最后一层或几层的输送速度较低,使物料层加厚,这样可使大部分干燥介质流经开始的几层较薄的物料层,以提高总的干燥效率。层间设置隔板促使干燥介质的定向流动,使物料干燥均匀。多层带式干燥机由隔热机箱、输送链条网带、链条张紧装置、排湿系统、传动装置、防粘转向输送带、间接加热装置等部分组成。最下层出判输送带一般伸出箱体出口处2—3m,留出空间供工人分捡出干燥过程中的变形及不完善产品。 结构简单,常用于干燥速度要求较低、干燥时间较长,在干燥过程中工艺操作条件要保持恒定的场合,如谷物类、米饼类食品。 ◎果蔬药材脱水带式干燥机

干燥例题讲解

干燥 [例1] 相对湿度φ值可以反映湿空气吸收水汽能力的大小,当φ值大时,表示该湿空气吸收水汽的能力;当φ=0时,表示该空气为。 [解题思路]相对湿度φ表示了空气中水汽含量的相对大小,φ=1,表示空气已经达到饱和状态,不能再吸收任何水汽;φ越小,表示空气尚可吸收更多的水汽。这一概念必须熟练掌握,在有关于燥的计算中要多次涉及。 【答案】弱;绝干空气 [例2] 已知某物料含水量为0.4千克/千克干料,从该物料干燥速率曲线可知:临界含水量为0.25千克/千克干料,平衡含水量为0.05千克/千克干料,则物料的非结合水分为,结合水分为,自由水分为,可除去的结合水分为。 [解题思路]结合水与非结合水、平衡水分与自由水分是物料中水分含量的两种不同的区分方式。它们之间的关系可用下面的方程简单地表示: 物料总含水量=非结合水量十结合水量=自由含水量十平衡含水量 自由含水量=非结合水量十可除去的部分结合水量 平衡含水量=不可除去的部分结合水量 [答案] 0.15;0.25;0.35;0.2(单位:千克/千克干料) [例3] 在101.3kPa下,不饱和湿空气的湿度为298K,相对湿度为50%,当加热到373K时,该空气的下列状态参数将如何变化?(只填变化的趋势) 湿度,相对湿度,湿球温度,露点,焓。 [解题思路] 此题主要判断湿空气的状态变化,可以从湿度、相对湿度等的定义出发获得结果,也可借助空气—水系统的焓—湿因得到答案。需要注意的是,露点是一个与空气温度无关的参量。 【答案】不变;降低;升高;不变;增加 [例4] 冬季将洗好的湿衣服晾在室外,室外温度在零度以上,衣服有无可能结冰?。 [解题思路] 这是一个活用概念的题。在不饱和空气中,湿衣服的湿球温度t w

干燥设备原理动图

最全最专业得干燥设备原理动图(二) 发布日期:2017-11-15 来源:粉体技术网浏览次数:142 干燥过程就就是脱除表面水分,同时发生传热与传质得单元操作过程。干燥设备在石化企业中得应用非常普遍,如今更就是在医药,食品,造纸等跟生活密切相关得行业中得到广泛应用。完成干燥任务得机械设备通常就是由多台装置构成得系统,但往往称为干燥机或干燥器。例如,喷雾干燥系统称为喷雾干燥机或喷雾干燥器,冷冻干燥设备系统称为冷冻干燥机或冷冻干燥器等。 喷雾干燥器 20世纪初期,乳品生产开始应用喷雾干燥机,为大规模干燥液态物料提供了有力得工具。 喷雾干燥器就是将溶液、浆液或悬浮液通过喷雾器而形成雾状细滴并分散于热气流中,使水分迅速汽化而达到干燥得目得。热气流与物料可采用并流、逆流或混合流等接触方式。这种干燥方法不需要将原料预先进行机械分

离,且干燥时间很短(一般为5~30s),因此适宜于热敏性物料得干燥,如食品、药品、生物制品、染料、塑料及化肥等。 LPG高速离心喷雾干燥机 喷雾干燥得优点就是干燥速率快、时间短,尤其适用于热敏物料得干燥;可连续操作,产品质量稳定;干燥过程中无粉尘飞扬,劳动条件较好;对于其它方法难于进行干燥得低浓度溶液,不需经蒸发、结晶、机械分离及粉碎等操作便可由料液直接获得干燥产品。 其缺点就是对不耐高温得物料体积传热系数低,所需干燥器得容积大;单位产品耗热量大及动力消耗大。另外,对细粉粒产品需高效分离装置。 流化床与气流式干燥机

20世纪40年代开始,随着流化技术得发展,高强度、高生产率得沸腾床与气流式干燥机相继出现。 (1)流化床干燥器 流化床干燥器又称沸腾床干燥器,就是流态化技术在干燥操作中得应用。流化床干燥器种类很多,大致可分为:单层流化床干燥器、多层流化床干燥器、卧式多室流化床干燥器、喷动床干燥器、旋转快速干燥器、振动流化床干燥器、离心流化床干燥器与内热式流化床干燥器等。

品质优越颗粒饲料专用带式干燥机,饲料烘干机

常州市干燥工程有限公司,是一家专业的干燥设备厂家,其中颗粒饲料专用带式干燥机是我们的主打产品,聘请国内专业人员对颗粒饲料专用带式干燥机技术进行了深入的研究,结合用户的使用反馈情况,我们对颗粒饲料网带式烘干机多次改进和技术创 新,已成为国内效果较好的颗粒饲料干燥机。公司汇集了一大批锐意进取代表着行业先进水平的管理、科研精英。公司技术力量雄厚,各类专业技术人才齐全,可以根据客户不同的要求设计生产出符合用户实际情况的干燥机,公司非常重视国际技术交流与合作,引进了国际发达国家的先进技术和工艺,在国外先进技术本土化的基础上,我们一直在理性的探索,不断创新,开发出了技术含量很高的干燥设备,烘干机。 1详3细6咨1询6联1系1方2式9顾8先8生!颗粒饲料根据加工方法、成品物理性状分类 1.软颗粒饲料特点:含水率 25-30%,密度1g/cm3,质地松软,水稳性差适用:青、草、鳙、鲫、团头鲂 2.硬颗粒饲料特点:含水率<12%,密度1.3g/cm3,结构细密,水稳性好,营养成分不溶失适用:鲤科鱼、鲑鳟、鲶 3.膨化饲料特点:含水率6%,密度<1g/cm3,结构疏松,结粒牢固、发泡颗粒适用:观赏鱼类、草鱼等上层鱼 一、颗粒饲料专用带式干燥机,颗粒饲料网带式烘干机, 颗粒饲料干燥机产品适应范围及性能特点: 本机是食品、中药、农副产品、水产品、饲料及化工原料等片状、条状、块状及颗粒物料脱水作业的理想设备。 采用加热的热气流作为干燥介质,与湿物料进行充分的热湿交换,它不但以对流方式将热量传给湿物料,起着载热体的作用,而且把湿物料蒸发出来的水蒸汽及时带走,又起到了载湿体的作用。 总之,该机工艺流程合理,结构设计新颖,具有*性;分层进风、分段干燥,符合工艺要求,产品质量好;由于采用穿流热

带式干燥机介绍

带式干燥机主要由进风单元、排风单元、循环风单元、网带、蒸汽管路及冷凝排放管路系统、排湿系统、加料器、传动机构、控制系统等部件组成。料斗中的物料由加料器均匀地铺在网带上,网带采用12-60目不锈钢丝网,由传动装置拖动在干燥机内移动,干燥段由若干单元组成,空气由鼓风机鼓入,通过热交换器变成热空气穿过物料层,完成热量与质量的传递过程,大部份气体循环,一部份温度较低,含湿量较大的气体作为废气由排湿风机排出。 产品特点: 网带速度变频可调,保证了物料的停留时间,也确保了出料品质; ◆针对物料特点设计的带搅拌料仓及独特布料器机构,使块状物料很容易分散,且不致影响物料特性,料层厚度方便可调,在网带纵向、横向都布料均匀; ◆每一个可控单元,有独立的新风补风口、加热器、循环风机、风道过滤器、排湿口等;

◆加热器、循环风机设置在带机底部,带机两侧均装有快开门,方便清理、检修; ◆采用合理的斜向导风板,使得网带横向布风均匀,温差小,并使清料更容易; ◆带机采用8公分的硅酸铝保温,密封良好,使工作环境良好; ◆带机共分五段五个单元,使能耗利用更合理、更低; ◆带机低层网带底部做成倾斜面,便于收集、清理物料。 使用范围: 带式干燥机主要由进风单元、排风单元、循环风单元、网带、蒸汽管路及冷凝排放管路系统、排湿系统、加料器、传动机构、控制系统等部件组成。料斗中的物料由加料器均匀地铺在网带上,网带采用12-60目不锈钢丝网,由传动装置拖动在干燥机内移动,干燥段由若干单元组成,空气由鼓风机鼓入,通过热交换器变成热空气穿过物料层,完成热量与质量的传递过程,大部份气体循环,一部份温度较低,含湿量较大的气体作为废气由排湿风机排出。 ◆网带速度变频可调,保证了物料的停留时间,也确保了出料品质; ◆针对物料特点设计的带搅拌料仓及独特布料器机构,使块状物料很容易分散,且不致影响物料特性,料层厚度方便可调,在网带纵向、横向都布料均匀;

气流干燥器的设计2

附图1: 干燥装置流程示意图16 废气 产品

[1] 泽勇.气流干燥技术的应用[J].科技, 2000, (5) [2]功样等主编.常用化工单元设备设计. 市.华南理工大学.2003年 [3]化工学院:干燥技术进展1976(54 [4]化工学院编:干燥技术进展、第三分册、气流干燥、(1979)(34) [5]毕克侣:气流干燥器的设计、化工技术资料(设计分册)1964(9 [6]永康主编.现代干燥技术.市.化学工业.1998年(36) [7] XX大学化工原理教研室编,《化工原理》上、下册(第二版) [M]. XX: XX科技,1996 (35) [8] 黄少烈、邹华生主编.化工原理(第二版).市.高等教育.2002年月第一版(19) [9] 柳金江, 超锋, 何清凤. 烟丝气流干燥系统气流干燥器的设计[J].化工, 2009,37(6): 173-174. [10]言文.气流干燥器数学模型及分段设计计算方法[J].计算机与应用化学, 2006,(04). [11]高嘉安主编.淀粉与淀粉制品工艺学.市.中国农业.2001(27) [12]匡国柱史启才主编.化工单元过程及设备课程设计.市. 化学工业2002年1月第一版(29) )

[6] 柴诚敬.《化工原理课程设计》[M]. XX: XX科学技术, 2000(45) [7] 工业大学化工系化工原理教研组:对流式干燥设备的设计(1963).(22) 泽勇.气流干燥技术的应用[J].科技, 2000, (5): 71 气流干燥器的设计 一、设计任务 化工原理课程设计任务书二十六

二、设备的简介 气流干燥器一般由空气滤清器、热交换器、干燥管、加料管、旋风分离器、出料器及除尘器等组成。 直管气流干燥器为最普遍的一种。它的工作原理是:物料通过给料器从干燥管的下端进入后,被下方送来的热空气向上吹起,热空气和物料在向上运动中进行充分接触并作剧烈的相对运动,进行传热和传质,从而达到干燥的目的。干燥后的产品从干燥管顶部送出,经旋风分离器回收夹带的粉末产品,而废气便经排气管排入大气中。为了使制品的含水量均匀以及供料连续均匀,在干燥管的出口处常装有测定温度的装置。直管气流干燥器分单管式和双管式两种型号。 旋风分离器是最常用的气固分离设备。对于颗粒直径大于5微米的含尘气体,其分离效率较高,压降一般为1000~2000 Pa。旋风分离器的种类很多,各种类型的旋风分离器的结构尺寸都有一定的比例关系,通常以圆柱直径的若干倍数表示。 三、工艺条件 1.原料:玉米淀粉 2.物料含水量w =25%(质量分数) 1 = 14%(质量分数) 3.产品含水量w 2 4.产品平均粒径 d:0.154㎜ p 5.新鲜空气温度t: 15℃ 6.空气干燥温度1t:90℃ 7.新鲜空气湿度 X:0.0073 1

干燥例题-3

例8-5-1 已知干燥用湿空气量为1555m 3/h ,空气为1a t m ,初始温度为20°C ,湿度为0.01k g 水汽/k g 干气,经预热后温度为80°C 。干燥器出口温度为30°C ,压力为101.3k P a 。假定该干燥器为理想干燥器,并忽略湿物料中水分带入的焓及热损失。要求湿基含量从40%降至5%。试求:(1)干空气用量,k g /h ; 湿空气用量,k g /h ;(2) 水分汽化量,k g /h ; (3)干燥产品量,k g /h ; (4)预热器加热量,k W 。 解:(1) 湿空气比体积: 湿空气体积量:q V =L *v H , 干空气用量:L =q V /v H =1555/0.843=1845 [k g /h ] 湿空气用量:L ’=L (1+H 0)=1845(1+0.01)=1863.45 [k g /h ] (2) W =L (H 2-H 1), 其中H 1=H 0=0.01k g 水汽/k g 干气, H 2未知,利用:I 1=I 2 I 1=(1.01+1.88H 1)t 1+2492H 1=(1.01+1.88*0.01)*80+2492*0.01= 107.2 k J /k g , I 2=(1.01+1.88H 2)t 2+2492H 2=(1.01+1.88H 2)*30+2492H 2=107.2 解出H 2=0.03水汽/k g 干气, 水分汽化量W : h /kg 9.3601.003.01845=-==)()(12H -H L W (3) G 2=?, G 2=(G c +G c X 2)= G c (1+ X 2), G C =?,W =G C (X 1-X 2),∴G C =W /(X 1-X 2) 667.04 .014 .01111=-=-=w w X ,0526.005.0105.01222=-=-= w w X G C =W /(X 1-X 2)=36.9/(0.667-0.0526)=60 k g /h G 2= G c (1+ X 2)=60(1+0.0526)=63.16k g /h (4)Q P =L (I 1-I 0)=L c H (t 1-t 0) =L (1.01+1.88H 0)(t 1-t 0)=(1845/3600)(1.01+1.88*0.01)(80-20)=31.64k W ] kg /m [843.03 .1013 .10127320273) 01.0244.1773.0p 3 .101273t 273) H 244.1773.0300干气((=+?+=++=H v

相关文档