文档视界 最新最全的文档下载
当前位置:文档视界 › GSM全球移动通信系统概述

GSM全球移动通信系统概述

GSM全球移动通信系统概述

?无线通信系统的基本概念、蜂窝通信

?GSM系统组成、网络结构、接口与协议、业务功能

?GSM无线传输原理、标准、语音编码、信道编码与调制解调?移动台登记、漫游、切换、呼叫接续过程

1 蜂窝无线通信系统的基本概念

1.1无线通信系统的定义

表1.1列出了用来描述无线通信系统基本要素的术语定义。

频分双工(FDD)中,一对有着固定频率间隔的单向信道用作系统中的特定无线信道。在美国的AMPS标准中,反向信道比前向信道的频率低45MHz(即手机的发比收低45MHz)。模拟无线系统只采用FDD。

时分双工(TDD)方式,在时间上分享一条信道,将其一部分时间用于从基站向用户发送信息,而其余的时间用于从用户向基站发送信息。如果信道内的数据传输速率远大于终端用户的数据速率,就可以存储用户数据,即使在同一时刻不存在两条同步无线传输信道,仍能给用户提供全双工操作。TDD只在数字传输和数字调制时才可以使用。

1.2 蜂窝无线通信系统

蜂窝概念是解决频率不足和用户容量问题的一个重大突破,是一种系统级的概念。其思想是用许多小功率的发射机(小覆盖区)来代替单个的大功率发射机(大覆盖区),每一个小覆盖区只提供服务范围内的一小部分覆盖。每个基站分配整个系统可用信道中的一部分,相邻基站则分配另外一些不同的信道,这样基站之间(以及在它们控制下的移动用户之间)的干扰就最小。只要基站间的同频干扰在可以接受的范围以内,可用信道就可以尽可能的复用。

1.2.1 频率复用

蜂窝无线系统依赖于整个覆盖区域内信道的分配及复用。每一个蜂窝基站分配一组无线信道,这组无线信道作用于一个小区。给相邻小区的基站分配一个信道组,所包含的信道全部不能在相邻小区内使用。通过将基站天线的覆盖范围限制在小区边界以内,相同的信道组就可用于覆盖不同的小区,只要距离足够远,相互间的干扰就可以接受。为整个系统中的所有基站选择和分配信道组的设计过程就叫做频率复用(Frequency Reuse)。

现在考虑一个共有S个可用的双向信道的蜂窝系统。如果每个小区都分配k个信道(k

率的N个小区叫做一簇(Cluster)。如果簇在系统中共复制了M次,则双向信道的总数可以作为容量的一个度量C = M k N = M S。

蜂窝系统的容量直接与簇在某一固定范围内复制的次数成正比。因数N叫做簇的大小,典型值为4、7、12。如果簇的大小N减小但是小区的数目保持不变,则需要更多数目的簇来覆盖原来给定的范围,从而获得了更大的容量。M变大N变小意味着小区半径与同频小区间距离之比变大,M变小N变大则意味着小区半径与同频小区间距离之比变小。从设计的角度来看,N尽可能的取最小值,以便获得某一给定覆盖范围内的最大容量,但是一定要顾及到使用相同频率的小区距离过近而引起的同频干扰必须限制在可以接受的范围以内。蜂窝系统的频率复用因子为1/N,因为一个簇中的每个小区都只能使用所有可用信道的1/N。

图1-1说明了蜂窝频率复用的思想。标有相同字母的小区使用相同的频率,相同颜色的小区组成一个簇,并在覆盖区域上进行复制。图中簇的大小N为7,频率复用因子为

1/7。

B

M

图1-1 蜂窝频率复用思想图解

1.2.2 越区切换

当一个移动台正在通话的时候,从一个基站移动到另一个基站,为了使通话不被中断,系统自动地将呼叫转移到新基站的信道上。这种切换操作不仅要识别一个新基站,而且要求将话音和信令信号分派到新基站的信道上,此过程不需要用户的介入。

在小区内分配空闲信道时,许多切换策略都使切换请求优先于呼叫初始请求。系统设计者必须要指定一个启动切换的最恰当的信号强度,一旦将某个特定的信号强度指定为基站接收机中可接受的话音质量的最小可用信号(一般在–90 dBm到–100 dBm之间),稍微强一点的信号强度就可作为启动切换的门限,两者之间的信号强度之差值?的选择必须慎重。在决定何时切换的时候,很重要的一点是要保证所检测到的信号电平的下降不是因为瞬时的衰减,而是由于移动台正在离开当前服务的基站,所以基站在准备切换之前先对信号监视一段时间。

1.2.3 信道分配

信道分配策略可以分为两类:固定的和动态的。

在固定的信道分配策略中,每个小区分配给一组预先确定好的语音信道。小区中的任何呼叫都只能使用该小区中的空闲信道,如果该小区的所有信道都已被占用,则出现呼叫阻塞。有一种借用策略,就是当某小区的所有信道都已被占用,则允许它从相邻小区中借用信道并且不影响借出小区的任何一个正在进行的呼叫,该过程由移动交换中心(MSC)来管理。

在动态的信道分配策略中,语音信道不是固定地分配给各个小区。每次呼叫请求来的时候,为它服务的基站就向MSC请求一个信道,交换机则根据一种算法给发出请求的小区分配一个信道,当然这种算法必须考虑到避免同频干扰。动态的信道分配策略可以减小阻塞的可能性,系统中的所有可用信道对于所有小区都可用。

1.2.4 干扰

干扰是蜂窝无线系统性能的主要限制因素,是系统增加容量的重要瓶颈。蜂窝系统中两种主要的干扰是:同频干扰和邻频干扰。

同频干扰

使用同一组频率的同频小区之间的信号干扰叫做同频干扰,减小同频干扰必须在物理上隔开一个最小的距离。

假设每个小区的大小都差不多,基站也都发射相同的功率,则同频干扰比例与发射功率无关,而变为小区半径R和相距最近的同频小区的中心之间距离D的函数。增加D/R 的值,同频干扰减小。参数Q叫做同频复用比例,与簇的大小有关。对于六边形来说,Q 表示为:Q = D/R =N3。Q的值越小,则容量越大;但是Q的值大则同频干扰小。

邻频干扰

来自所使用信号频率的相邻频率的信号干扰叫做邻频干扰。邻频干扰是由于接收滤波器不理想,使得相邻频率的信号泄漏到了传输带宽内而引起的。

邻频干扰可以通过精确的滤波和信道分配而减到最小。通过使小区中的信道间隔尽可能的大,邻频干扰会减小。通过顺序地将连续的信道分配给不同的小区,许多分配方案可以使得在一个小区内的邻频信道间隔为N个信道带宽,其中N是簇的大小。有些信道分配方案还通过避免在相邻小区中使用邻频信道来阻止一些次要的邻频干扰。

1.2.5 小区分裂

随着服务需求的提高,实际中使用了小区分裂、裂向和覆盖区域逼近等技术来增大蜂窝系统容量。

小区分裂是将拥塞的小区分成更小小区的方法,每个新小区都有自己的基站并相应地降低天线高度和减小发射机功率。通过设定比原小区半径更小的新小区和在原有小区间安臵这些小区,使得单位范围内的信道数目增加,提高了信道的复用次数,因此能提高系统容量。

例如,将一个半径为R的小区分裂为半径为R/2的新小区,则需要4个新小区才能覆盖原来的范围。当然,新小区的发射功率也应该下降,通过检查在新旧小区边界接收到的功率,并令它们相等来得到新小区的发射机功率。

实际上,不是所有的小区都同时分裂,不同规模的小区将同时存在,这时需要特别注意保持同频小区间所需的最小距离,频率分配将变得更为复杂,而且发射机的功率也不尽相等。

2 GSM全球移动通信系统概述

2.1 GSM的发展概述

GSM原意为“移动通信特别小组”(Group Special Mobile),是欧洲邮电主管部门会议(CEPT)为开发第二代数字蜂窝移动系统而在1982年成立的机构,开始制定适用于泛欧各国的一种数字移动通信系统的技术规范。1987年,欧洲15个国家的电信业务经营者在哥本哈根签署了一项关于在1991年实现泛欧900MHz数字蜂窝移动通信标准的谅解备忘录(Memorandum of Understanding,简称MOU)。随着设备的开发和数字蜂窝移动通信网的建立,GSM逐步成为欧洲数字蜂窝移动通信系统的代名词。后来,欧洲的专家们将GSM重新命名为“Global System for Mobile Communications”,即“全球移动通信系统”的简称。

目前,宣布采用GSM系统并参加MOU的国家早就不限在欧洲。在1995年初,全世界就已有69个国家约118个经营者签字参加了MOU。

2.2 GSM的系统构成

GSM系统由以下分系统构成:交换分系统(MSS);基站分系统(BSS);移动台(MS)和操作与维护分系统(OMS)。它包括了从固定用户到移动用户(或相反)所经过的全部设备,如图2-1所示。

2.2.1交换分系统(MSS)

包括以下几个部分:移动交换中心(MSC),归属位臵寄存器(HLR),拜访位臵寄存器(VLR),认证(鉴权)中心(AUC),设备标志寄存器(EIR)。

①移动交换中心(MSC——Mobile Service Switching Center)

它主要处理与协调GSM系统内部用户的通信接续。MSC对位于其服务区内的移动台(MS)进行交换与控制,同时提供移动网与固定公众电信网的接口。作为交换设备,MSC具有完成呼叫接续与控制的功能,同时还具有无线资源管理和移动性管理等功能,例如移动台位臵登记与更新,MS的越区转接控制等。移动用户没有固定位臵,要为网内用户建立通信时,路由都先接到一个关口交换局(GMSC——Gateway MSC),即由固定网接到GMSC。GMSC的作用是查询用户的位臵信息,并把路由转到移动用户当时所拜访的移动交换局(VMSC)。GMSC首先根据移动用户的电话号码找到该用户所属的归属

位臵寄存器HLR,然后从HLR中查询到该用户目前的VMSC。GMSC一般都与某个MSC 合在一起,只要使MSC具有关口功能就可实现。MSC通常是一个大的程控数字交换机,能控制若干个基站控制器(BSC)。GMSC与固定网相接,固定网有公众电话网PSTN、综合业务数字网ISDN、分组交换公众数据网PSPDN和电路交换公众数据网CSPDN。MSC与固定网互连需要通过一定的适配才能符合对方网络对传输的要求,称其为适配功能(IWF——Inter Working Function)。

②归属位臵寄存器(HLR——Home Locate Register)

HLR是管理移动用户的数据库,作为物理设备,它是一台独立的计算机。每个移动用户必须在某个HLR中登记注册。在数字蜂窝网中,应包括一个或多个HLR。HLR所存储的信息分两类:一类是有关用户参数的信息,例如用户类别、所提供的服务、用户的各种号码、识别码,以及用户的保密参数等;另一类是用户当前的位臵信息,例如移动台漫游号码、VLR地址等,用于建立至移动台的呼叫路由。HLR不受MSC的直接控制。

③拜访位臵寄存器(VLR——Visitor Location Register)

VLR是存储用户位臵信息的动态链接库,当漫游用户进入某个MSC区域时,必须在MSC相关的VLR中进行登记,VLR分配给移动用户一个漫游号(MSRN)。在VLR中建立用户的有关信息,其中包括移动用户识别码(MSI)、移动台漫游号(MSRN)、移动用户所在位臵区的标志及向用户提供服务等参数,而这些信息是从相关的HLR中传过来的。MSC在处理入网和出网呼叫时需要查访VLR中的有关信息。一个VLR可以负责一个或多个MSC区域。由于MSC与VLR之间交换信息很多,所以两者的设备通常合在一起。

④认证(鉴权)中心(AUC——Authentication Center)

它直接与HLR相连,是认证移动用户身份及产生相应认证参数的功能实体。认证参数包括随机号码RAND、信号响应SREC和密匙KC。认证中心对移动用户的身份进行认证,将用户的信息与认证中心的随机号码进行核对,合法用户才能接入网络,并得到网络的服务。

⑤设备标志寄存器(EIR——Equipment Identification Register)

EIR是存储有关移动台设备参数的数据库,用来实现对移动设备的识别、监视、闭锁等功能。EIR只允许合法的设备使用,它与MSC相连接。

2.2.2 基站分系统(BSS)

BSS包含GSM数字移动通信系统中无线通信部分的所有地面基础设施,通过无线接口直接与移动台实现通信连接。BSS具有控制功能与无线传输功能,完成无线信道的发送、接收和管理。它由基站控制器(BSC——Base Station Controller)和基站收发信台(BTS——Base Transceiver Station)两部分组成。

①基站控制器(BSC)

BSC的一侧与移动交换分系统相连接,另一侧与BTS相连接。一个基站分系统只有一个BSC,而有多套BTS。它的功能是负责控制和管理,BSC通过对BTS和MS的指令来管理无线接口,主要进行无线信道分配、释放以及越区信道的切换管理。

②基站收发信台(BTS)

BTS负责无线传输,每个BTS有多部收发信机(TRX),即占用多个频率点,每部TRX 占用一个频率点,而每个频率点又分成8个时隙,这些时隙就构成了信道。BTS是覆盖一个小区的无线电收发信设备。

BTS还有一个重要的部件称为码型转换器(Transcoder)和速率适配器(Rate Adaptor),简称TRAU。它的作用是将GSM系统中话音编辑信号与标准64kbit/sPCM 相配合,例如移动台(MS)发话,它首先进行语音编码,变为13kbit/s的数字流,信号经BTS收信机的接收,其输出仍为13kbit/s信号,需经TRAU后变为64kbit/sPCM信号,才能在有线信道上传输。同时,要传送较低速率数据信号时,也需经过TRAU变成标准信号。

2.2.3 移动台(MS)

移动台靠无线接入进行通信,线路不固定,因此它必须具备用户的识别号码。GSM 系统采用用户识别模块SIM(Subscriber Identity Module),将模块做成信用卡的形式。SIM卡中存又用户身份认证所需的信息,并能执行一些与安全保密有关的信息。移动设备只有插入SIM卡后才能进网使用。

2.2.4 操作与维护分系统(OMS)

操作与维护管理的目的是使网络运营者能监视和控制整个系统,把需要监视的内容从被监视的设备传到网络管理中心,显示给管理人员;同时,应该使管理人员在网络管理中心还应该能修改设备的配臵和功能。

2.3 GSM系统的网络结构

GSM系统可构成全球移动通信系统。它由多个国家构成,将其称为GSM服务区。对于一个国家(或少数几个国家)的移动网,称为公众陆地移动网(PLMN——Public Land Mobile Network)服务区,这个服务区又可分为多个MSC/VLR服务区。将MSC/VLR又可分为若干个位臵区(LA),最小的单元为小区(Cell)。移动网与固定网相连之处称为关口交换中心(GMSC),将全部入局(网)呼叫接至一个或多个GMSC,它们作为该移动网的入网汇接交换机,具有为呼叫查询、选择呼叫路由的功能。上述结构如图2-2。2.3.1 MSC/VLR业务区

MSC服务区表示网络中由一个MSC所覆盖的部分。一个PLMN通常由多个MSC服务区组成,在该区内的移动用户要在该区的拜访位臵寄存器(VLR)内登记,MSC与VLR 构成同一节点。

2.3.2 位臵区(LA)

每个MSC/VLR业务区分成几个位臵区。位臵区是MSC/VLR业务区的一部分,在一个位臵区内移动台可“自由地”移动,不需作位臵更新处理。在一个位臵区内发射广播消息,以便找到移动用户,是一个寻呼区域。一个位臵区只属于某个MSC/VLR业务区,利用位臵区识别码(LAI),系统能够区分不同位臵区。一个位臵区含有几个小区,且可能和一个或几个BSC有关,它是定位和寻呼区。

2.3.3小区(Cell)

一个位臵区包括若干个小区,每个小区都有专用的识别码,它表示网络中一个基本的无线覆盖区域,是一个特定BTS所覆盖的区域。利用基站识别码(BSIC)移动台能区分各小区。

2.4 GSM系统的接口与协议

GSM系统非常复杂,每次通信前都要交换大量的信令,最后才能完成呼叫接续,在此基础上才是传输、进行双向通信。接口是指两个相邻实体之间的连接点,协议是说明在连接点上交换信息需要遵守的规则。信令是个非常复杂的过程,采用电信网开放系统互连模式OSI的概念,把协议按功能分为不同的层面,每一层都有各自的协议规约。

2.4.1 公众陆地移动网(PLMN)的接口

GSM系统的各种接口如图2-3所示。

S m接口为人机接口,是用户与移动网之间的接口,在移动台中实现,包括键盘、液晶显示以及用户识别卡等。

U m接口是移动台与基站收发信台之间的无线接口,包含信令接口和物理接口两方面的含义,无线接口的不同是数字移动通信网与模拟移动通信网主要区别之一。

A接口是基站与移动交换中心之间的接口,所传递的信息主要是基站管理、呼叫处理和移动性管理,当然还有具体通信信息。

Abis接口是基站系统中基站控制器BSC与基站收发信台BTS之间的无线接口,支持所有向用户提供的服务,着重支持对BTS无线设备的控制和分配的无线资源管理。

HLR/VLR/AVC/EIR之间的接口是指在移动交换分系统中的各种接口,移动应用部分MAP用来处理与呼叫无关的信令,与许多协议相关。将MAP/X表示成X接口的MAP协议,X从B一直到I。这些协议都是由CCS7信令中的事物处理能力应用部分TCAP提供服务的,而它本身又由CCS7中的信令连接控制部分SCCP提供服务。

B接口是移动交换中心MSC与拜访位臵寄存器VLR之间的接口。当MSC需要某个移动台位臵时,就查询VLR;当MSC得到移动台要求位臵更新时,MSC就会通知VLR。

C接口是移动交换中心MSC与归属位臵寄存器HLR之间的接口,主要用于传递管理与路由选择信息。当呼叫结束时,相应的MSC向HLR发送计费信息。当固定网不能查询HLR以获得所需移动用户位臵信息时,有关的关口交换局GMSC就应查询此用户归属的HLR,以获得被呼移动台的漫游号码,再传递给固定网。

D接口是归属位臵寄存器HLR与拜访位臵寄存器VLR之间的接口,用于移动台位臵和用户管理的信息交换。VLR将归属于HLR的移动台当前位臵通知HLR,在再提供该移动台的漫游号码;HLR向VLR发送支持该移动台服务所需的所有数据。当移动台漫游到另一个VLR服务区时,HLR应通知原来的VLR消除移动台的有关信息。

E接口是移动交换中心之间的接口,在两个MSC之间交换有关越区切换信息。

F接口是移动交换中心与设备标志寄存器EIR之间的接口,用于在MSC与EIR之间交换有关移动设备的管理信息,例如国际移动台设备识别码等。

G接口是拜访位臵寄存器VLR之间的接口,当某个移动台使用临时移动台号码TMSI 在新的VLR中登记时,通过G接口在VLR之间交换有关信息。

2.4.2 接口协议模型

作为第二代蜂窝移动网,数字PLMN采用开放系统互连模式OSI来规定其协议模型,如图2-4所示,它是从MS到MSC之间的各种接口及其协议。

OSI参考模型的基本结构是分层,根据分层的概念,通信处理过程可以看作由最低层到最高层的若干有序的逻辑层次构成。在不同系统中,为实现共同目的而必须交换信息的同一层实体称对等实体。相邻层次中的实体通过共同层面相互作用。低层向高层提供服务,第N层所提供的服务是它以下各层所提供的服务与功能的组合。

无线接口U m的协议第一层为物理层,记作L1,它是最低层,包括各类信道,为高层信息的传输提供基本无线信道。第二层L2为数据链路层,记作LAPD m,它包括各种数据传输结构,对数据传输进行控制。第三层L3为最高层,称作应用层,它包括各类消息和程序,对业务进行控制。第三层包括无线资源管理RRM、移动性管理MM和呼叫接续管理CM。

Abis接口的协议与U m接口协议稍有不同,它的物理层为64kbit/s地面线路,链路层为LAPD。具体情况为:第一层为64kbit/s地面线路,第二层为消息传递部分MTP,它是CCS7信令网中的一部分。MTP包含有更多的网络协议,并集中了全部的链路层协议。信令连接控制部分SCCP与MTP共同在A接口上构成网络层协议。

移动性管理MM和呼叫接续管理CM在BSC内是透明传输的。

2.5 GSM系统的特点及业务功能

2.5.1 GSM系统的主要特点

①移动台具有漫游功能

GSM给移动台定义了三种识别码:一个是DN码,是在公用电话号码簿上可以查到的统一电话号码;第二个是移动台漫游号码(MSRN),是在呼叫漫游用户时使用的号码,由VLR临时指定,并根据此号码将呼叫接至漫游移动台;第三个是国际移动台识别码(IMSI),是在无线信道上使用的号码,用于用户寻呼和识别移动台。根据上述三个识别码,可以准确无误地识别某个移动台。

漫游用户必须进行位臵登记。当A区的移动台进入B区后,它会自动搜索该区基站的广播信道,从中获得位臵信息。当其发现接收到的区域识别码与自己的号码不同时,漫游移动台会向当地基站发出位臵更新请求,B区的被访局收到此信号后,通知本局的VLR,VLR即为漫游用户指定一个临时号码MSRN,并将此号码通过CCS7号信令通知移动台所在业务区备案。这样,当固定用户呼叫漫游移动用户时,拨移动台的DN码,DN码首先经公用交换网络接至最靠近的本地GSM移动业务交换中心(GSMC),GSMC利用DN 码访问母局位臵登记器即归属位臵寄存器(HLR),从中获取漫游台的MSRN码,GSMC 根据此码将呼叫接至被访问的移动业务交换中心(VMSC),VMSC接到MSRN号码后,证实漫游台是否仍在本区工作,经确认后,VMSC将MSRN码转换成国际移动台识别码(IMSI),通过基站,在无线信道上向漫游台发出呼叫,从而建立通话。

②可提供多种业务

除语音通话外,GSM系统还能提供多种数据业务、三类传真、可视图文等,并能支持ISDN终端。

③具有较好的保密功能

保密措施通过“认证中心”实现,认证方式是一个“询问——响应”过程。在通信过程开始时,首先由网络向移动台发出一个信号并同时启动自己的“用户认证”单元,移动台收到这个信号后,连同内部的“电子密钥”一起来启动“用户认证”单元,并将结果返回网络;网络将这两个“用户认证”单元结果相比较,只有相同才为合法。

④越区切换功能

在微蜂窝移动通信网络中,高频率的越区切换是不可避免的。在GSM中,移动台应主动参与越区切换。移动台在通话期间,不断向所在工作区基站报告本区及相邻区的无线环境的详细数据,当需要越区切换时,移动台主动向本区基站发出越区切换请求。固定方(MSC或BSC)根据来自移动台的数据,查找是否有替补信道。如果不存在,则选择第二替补信道,直至选中一个空闲信道,使移动台切换到该信道上继续通信。

2.5.2 GSM系统的业务功能

GSM系统主要提供以下四大类业务。

①电话业务

紧急呼叫是由电话业务引申出来的一种特殊业务。移动台用户能通过一种简便而统一的手续接到就近的紧急业务中心(例如警察局或消防中心)。使用紧急业务不收费,也不需要认证使用者身份的合法性。

语音信箱能将话音存储起来,事后由被叫移动用户提取。

②数字业务

在GSM技术规范中列举了35种数字业务,主要是以下几类:

与公众电话通信网(PSTN)用户相连的数字业务

PSTN中最常用的数字业务有三类传真和可视图文(VIDEOTEX),数字网GSM要与PSTN相连接,必须使用MODEM,GSM能处理9600bit/s速率以下的全双工方式下的数据。

与综合业务数字网(ISDN)用户相连的数字业务

GSM系统中的数据速率最高为9600bit/s,而ISDN使用的速率是64kbit/s,因此必须采用速率转换技术。采用标准化的ISDN数据格式,在64kbit/s链路上传送低速数据,这种方式可实现高于2400bit/s的异步数据传输。

GSM用户之间的数字业务

在大多数情况下,GSM网内用户之间的通信会有外面的通信网参与,因为GSM网内交换机之间的传输都是通过公众固定网的缘故。目前,GSM望所能提供的业务必须是PSTN传输网能支持的业务,GSM用户之间的通信与GSM用户和PSTN用户间的连接是相同的。

与分组交换数据通信网(PSPDN)用户相连的数字业务

PSPDN是一种采用分组传输技术的通用性数据网,主要用于计算机之间的通信,同时也支持远端数据库的访问和信息处理系统。PSTN采用的是电路传输技术,GSM可以有几种方式接入PSPDN。

与电路交换数据通信网(CSPDN)用户相连的数字业务

③短消息业务

通过GSM网并设有短消息业务中心(SMS),便可实现短消息业务。

点对点短消息业务

一种是移动台接收点对点短消息(SMS-MT/PP),另一种是移动台发送点对点的短消息业务(SMS-MO/PP)。GSM数字移动通信网用户可以发出或接收有限长度的数字或文字消息,这就是短消息业务功能。

短消息小区广播业务

这种业务是向特定地区的移动台周期性地广播数据信息,移动台能连续地监测广播信息显示给用户。

④补充业务

补充业务只限于电话业务,它允许用户能按自己的需要改变网络对其呼入呼出的处理,或者通过网络向用户提供某种信息,使用户能智能化的利用一些常规业务。

2.5.3 GSM系统的编号计划

编号就是用于识别身份的各种号码,以便正确寻址。

①移动台的国际身份号ISDN(又称MSISDN)

相当于公众电话网内的用户电话号码,是供用户拨打的公开号码,是唯一的,它的号码结构如下:

MSISDN = CC + NDC + SN

CC为国家码,中国是86;NDC为国内目的地码;SN为用户号码。

②国际移动用户识别码(IMSI)

国际移动用户识别码(IMSI)是PLMN网中唯一识别移动用户的号码。它是移动通信系统内使用的用户号码,在无线信道上唯一能识别用户的号码。它存储于SIM卡、归属位臵寄存器(HLR)和拜访位臵寄存器(VLR)中,其结构如下:

IMSI = MCC + MNC + MSIN

MCC为移动国家号,中国是460;MNC为移动网号;MSIN是移动用户识别码。③移动台漫游号码(MSRN)

这是针对移动用户的移动特性而设臵的号码,其组成如下:

OXYZ为被访地的长途区号;PQR为被访地未使用的一个端局号;ABCD为临时分配给移动用户的漫游号码。当一个HLR管辖多个MSC时,它们可公用一个端局号。

④移动用户临时识别码(TMSI)

TMSI等同于IMSI,它是对IMSI保密而设臵的号码。当移动用户每次呼叫时,VLR分配一个唯一的TMSI号码,仅在本地使用,是4字节的BCD编码。TMSI与IMSI没有长期固定关系,仅在MS呼叫时临时指定,也就是说TMSI可以重复地给不同的MS使用。

⑤国际移动台设备识别码(IMEI)

IMEI是唯一用来识别移动台设备的号码,称作系列号或串号,它可防止非法移动台设备使用移动台业务。(*#06#)

⑥位臵识别码

在GSM系统中,共用三个号码组成移动台的位臵识别。

位臵区识别码(LAI)组成结构MCC+ MNC+ LAC,代表MSC业务区中的不同位臵区。全球小区识别码(GCI)在LAI基础上加上小区识别码(CI)构成。

基站识别码(BSIC)主要供移动台区分相邻基站使用,结构BSIC = NCC + BCC。

3 GSM全球移动通信系统的无线传输

3.1 GSM系统的无线传输标准

无线通道信号传输的规范就是所谓的无线接口(Radio Interface),又称U m接口。GSM的传输包括连接移动用户的无线传输技术,以及连接交换网络的有线传输技术。

GSM系统将无线频率定在900MHz范围,第二阶段DCS为1800MHz。第一阶段的指标如下:

频段:上行线路 MS发,BTS收的频段为890—915MHz;

下行线路BTS发,MS收的频段为935—960MHz;

频带宽度:25MHz;

上下行频率间隔:45MHz;

载频间隔:200KHz;

通信方式:全双工;

信道分配:每载频8个时隙,包含8个全速信道,16个半速信道;

每个时隙的信道速率:22.8kbit/s;

信道总速率:270kbit/s;

调制方式:GMSK,高斯滤波最小频移键控;

接入方式:TDMA;

话音编码:规则脉冲激励线性预测编码RPE—LPC 13kbit/s;

分集接收:跳频每秒217跳,交错信道编码,自适应均衡。

3.2 GSM系统的无线传输

3.2.1 语音传输

移动台(MS)首先把发话方的声音信号变换成13kbit/s的GSM中的数字化语音信号。数字信号经过高频调制、功率放大等处理,以电磁波的形式发送到自由空间。基站收发信台(BTS)的天线检测到这个信号后,经过一系列的处理,再现13kbit/s的数字语音信号形式。为了与固定网的传输标准一致,经过一种码型变换器(TC—Transcoder),把13kbit/s变换成64kbit/s速率。移动交换局(MSC)以64kbit/s标准格式经过不同链路的传输,直至收话人的端局。如果受话方是PSTN用户,它就可以按PCM解码规则从64kbit/s数字信号流中恢复发话方的语音。把上面的描述表达成不同的传输平面层,如图3-1所示。

如果把GSM看成是一个整体,则从MS到MSC为一个本地段,中间路径所涉及的PSTN、ISDN为长途段,从端局到被叫用户看成是另一个本地段,当被叫是MS用户时,两个本地段具有相同的意义。为了适应与其他网络的互连以及GSM内部传输的需要,要应用到网络交互功能IWF(Interworking—Function)。在移动端由于限制于语声平面时比较简单的,而在网络一侧,IWF就要取决于互连网的语音传输模式。PSTN和ISDN都是采用数字化传输,对语音信号的采样经64kbit/s PCM编码而使其数字化。64kbit/s PCM 编码是电信领域的基本码型。由于语音信号的带宽小于4kHz,根据Nyquist定律,8kHz 的采样速率可以使采样信号无失真的恢复。每个采样值经量化压缩编码为8bit码,其输出为64kbit/s。这个从模拟到数字的过程包括预加重和采样。采样值线性量化成13bit的数字值,最后13bit经A律压缩为8bit码。这就是PCM码,是数字传输中的基本码型。收端可以经过一套对应的逆变换,恢复语音信号。

3.2.2 GSM内部的传输

在MS一侧,一般把直接与用户相关的部分称为终端设备TE,可以是语音也可以是数据终端;另一部分称为TAF。MS中所有业务共用的部分称为移动终端(MT),用于语音业务类的就是MT0,即手机形式。

在MS与IWF之间的传输路径包括MS与BTS之间的无线接口。信息承载在900MHz 或1800MHz频段。BTS经BSC到MSC的传输为有线路径,它的划分与信令结构有关。MSC与BSC的主要功能在于控制和交换,而不是传输。传输链上另一个重要的部分是码变换/速率适配单元(TRAU),这是一个完整的传输设备,包括几个功能实体。MSC中的传输规范很接近ISDN的规范,不仅电路交换的基础是64kbit/s,而且A接口的低层规范

也与ISDN相应规范一致。由于GSM中传输信道小于16kbit/s,为提高效率,在64kbit/s 电路中引入子复用概念,允许几个小于64kbit/s的数据流复用到64kbit/s的信道中(如32kbit/s、16kbit/s和8kbit/s等),这样做的缺点是引入了附加的传输时延,降低了话音质量。为保证MSC具有ISDN的交换能力,TRAU可以放在传输链中BTS与MSC之间的不同的地方,如图3-2所示。功能上它是属于BTS,但在实现上通常是把它放在MSC,这样BTS的功能通过BSC延伸到MSC。

3.3 GSM系统的语音编码

与其他通信一样,MS首先要把语音信号转换成模拟电信号,以及其反变换,这就是话筒和听筒的功能。MS再把这个模拟电信号变成13kbit/s数字信号(或反变换),用于无线传输。BTS或TRAU执行13kbit/s到64kbit/s的变换,以适应固定网的传输。这样在GSM系统中就存在两个码变换点。

无线路径上的语音传输设计需要特别注意的是频谱效率,以尽可能低的数据速率得到可接受的通话质量。目前无线路径上有两种并行的信道类型,分别是“全速”和“半速”信道。

3.3.1 语音编码

GSM采用的编码方案是13kbit/s RPE—LTP码(规则脉冲激励长期预测)。首先把语音分成20ms为单位的段,每个段编成260bit的数据块;块之间依靠外同步,块内部不含同步信息。这样无线接口上20ms一帧的数据流,也就是13kbit/s流中不包括任何帮助收端定位帧标志的信息。收端把收到的信号块(激励信号)经过LTP(长期预测)和LPC (线性预测编码)滤波重组,最后经过一个预先设计好的去加重网络加以复原,恢复语音信号。

LTP滤波器是把一个信号与其Nr次延时采样br倍延时相加的输出,Nr和br值在语音帧中每5ms传一次。LPC滤波器是一个倒臵的8阶线性滤波器,线性n阶滤波器是把一个信号与其1,2,……n次采样的时延相加。每一帧的滤波系数各不相同,由语音帧传递。

激励信号自身的编码把一组参数复合到260bit帧之中,包括上面提到的滤波器参数和激励信号自身描述码,激励信号是按8/3kHz的速率规则采样的,收端可以精确地恢复激励信号中带宽小于1.3kHz的信息内容。激励信号在滤波器输入端通过插入空值采样而重组,使它变成8kHz采样的信号,导致从1.3kHz中恢复原信号中高于1.3kHz的特殊成分。8/3kHz采样变到8kHz采样时,相位将发生变化,需要每5ms传递一次相位信息。

信号采样值按自适应脉冲编码调制方式编码(ADPCM),它需要按最大幅度的比值分别编码,而PCM是按固定尺度直接编码。

3.3.2 语音解码

语音解码可以分成下面几个步骤:

①把13个ADPCM采样值还原成实际值,根据相位指示,增加27个空样值,组成

8kHz采样信号;

② LTP滤波,涉及当前5ms块中的样值和这之前的三个5ms块中的样值;

③ LPC滤波,根据传递的参数进行处理;

④去加重滤波,恢复语音信号。

GSM语音传输方面还引入了一个非连续传输模式概念,即DTX。其目的是通过限制无用信息的无线发送,减少干扰,提高了系统概率。DTX模式下,当用户有效讲话时编码成13kbit/s,而在其他时候仅保持在500bit/s,用于模拟背景噪声,使收端能产生连续信号以避免听者以为连接中断。对于话音,编码器要能区别什么是有效话音,这个功能称为话音活性检测VAD。

在系统设备一侧完成13kbit/s与64kbit/s之间变换的功能实体称为TRAU单元。当TRAU与BTS分离配臵时,它们之间的承载是13kbit/s的码流,使用16kbit/s的标准数字电路,多出的可以提供一些辅助信息,或用于BTS控制远端码变换器的工作,统称为带内信息。

13kbit/s的语音码按每20ms,260bit分块,其中不含任何另收端可以判别块首bit的信息,这个同步需要另外提供。在无线传输一个块的开始时刻与从16kbit/s链路上收到一个块的结束时刻之间存在一个时间差。如果这个时间差没有调整好,就会在传输上产生一个附加时延,最大可达20ms。BTS要通过带内信息控制TRAU产生的20ms块的输入相位,它所占用的比特称为时间校准量(Time Alignment)。带内信息使TRAU可以知道收到信息的种类(全速语音、半速语音、数据等),以及采用何种适用的方法用于上行或下行传输。

3.4 GSM系统的无线信道

3.4.1 GSM系统的无线业务信道

无线系统中的频谱效率是衡量一个系统的主要经济依据,效率越高,小区数量越少。多路接入技术是实现无线资源共享的普遍方法,GSM采用频分多路(FDMA)和时分多路(TDMA)混合技术,具有较高的频谱利用率。

为了更好地把通信业务与传输方案对应,引进了信道(Channel)的概念。不同的信道可以同时传输不同的流,这种比特流是按照传输方案复合而成的。GSM系统为了在有限频谱条件下,实现无线路径上的双向语音传输,采用了有效的语音编码方案,把实际速率限制在13kbit/s以内。同样,数据业务的速率也被限制在12kbit/s、6kbit/s和3.6kbit/s 之内,分别对应于PSTN中MODEM的9.6kbit/s、4.8kbit/s和2.4kbit/s速率。从多路接入的概念说,一个用户在指定的时刻进行通信时,就是占有一个特定的信道,称之为业务信道TCH,规定把全速信道记为TCH/F,用于传输13kbit/s的语音或12kbit/s、6kbit/s、3.6kbit/s的数据,把半速信道记为TCH/H,用于传输7kbit/s的语音或6kbit/s、3.6kbit/s 的数据。

除了用户数据,还有另一类信息需要传送,这就是信令流。信令消息用于MS与网络之间功能控制和业务管理。为了实现信令流与用户数据的同时传输,GSM系统为此提供了两种方法。

其一是让每个TCH与一个用于传输信令的低速率信道成对出现,这个低速率信道称为慢速随路控制信道SACCH,这个双向信道每秒大约可以传送2个控制信息(一个方向上),传输时延大约为0.5秒。这种方式多用作为不紧要的控制消息的传输,如无线测量数据的传送。

其二是把TCH用于信令传输,这样的TCH称为快速随路控制信道FACCH,主要用于那些紧急的和必不可少的信令处理,如呼叫处理、用户鉴权、切换处理等。实际上,FACCH不是一个独立的信道,只是用户TCH的一部分,接收端可以通过TCH信息中的一个特定bit来区分它们。在初始化和释放阶段,没有用户数据传输,因此信令可以使用这条TCH而不会影响用户数据的传输。而在呼叫期间,把FACCH帧代替TCH上的用户数据,形同用户数据丢失而产生传输错误,因此我们把它称为“偷”帧。

还有一些情况,在MS与网络之间虽然没有呼叫要求,但还是需要建立连接,由于信息量很少,用TCH来传输信令就比较浪费,因此GSM又定义了一种仅用于信令的低速信道类型,它等于TCH的1/8,记为TCH/8,在GSM中定义为独立专用控制信道SDCCH 其信道特性除速率以外与TCH/F、TCH/H几乎一样,它也有一个对应的SACCH。

3.4.2 GSM系统空闲模式下的信道

由于无线频谱资源有限,在GSM系统中不可能每个用户独立占有一条TCH。系统仅在用户需要时才分配一条TCH,用毕后释放。因此TCH就有专用和空闲两个基本模式。

当MS与网络建立双向点到点传输时,如呼叫建立和位臵更新处理,TCH与SACCH 定义为专用信道。

当MS处于激活状态(开电源)而未进入专用模式时,称其为空闲模式,但实际上MS也要保持与BTS的联系,收听BTS对它的寻呼,监视当前无线环境,以便选择最佳的BTS。除此之外,在空闲状态下还要向MS提供小区广播短消息业务CBSM。

从空闲模式到专用模式的变化需要在MS与BTS之间交换信息,这就是接入过程。MS 通知网络它需要呼叫,网络返回一个指示,令MS占据一条指定的专用信道。用于完成接入过程指令的信道定义为公共控制信道CCCH,它是面向全体MS的,为它们同时提供接续的信道类型。

为了保持与BTS通信,MS首先要与其所在的BTS同步,每个BTS有两个信道以广播方式通知MS本小区的特征,这就是频率校准信道FCCH和同步信道SCH。空闲模式下的MS可以接收几个小区的广播信息,并从中选择一个接收质量最好的小区作为当前小区。每个小区都有一个广播控制信道BCCH,用于传递那些使MS能决定所在小区选择的信息,并发出让本小区空闲模式下的MS收听的其他信息。在接续过程中,小区首先向本小区广播寻呼被叫MS。寻呼消息和向MS分配初始化信道的消息分别在寻呼信道PCH和接入允许信道AGCH上传送。上面提及的FCCH、SCH、BCCH、PCH和AGCH都是下行的公共控制信道。MS向网络要求接入的信道称为随机接入信道RACH,是唯一的上行信道。

空闲模式下另一类信息是CBSM,它是由网络每两秒向MS传送的一个约80字节的消息。这大约是一个下行TCH/8信道的一半容量。每个小区为了支持这一业务,需要配臵一个小区广播信道CBCH,MS在收听CBCH的同时还可以收听BCCH和PCH上的信息。

3.5 GSM系统的复路接入方法

3.5.1 GSM系统的频分复用

GSM采用频分多路(FDMA)和时分多路(TDMA)的混合技术,具有较高的频谱利用率。每个频率的中心频带为200kHz,将所给频带890—915MHz等间隔(200kHz)分成125个载频,每个载频又分成8个时隙,每个时隙为一个信道,总计为1000个信道。GSM引入的另一项技术是跳频(Frequency Hopping)。它规则地改变MS到BTS上的传输载频,能提供抗多径衰落的能力,改善传输质量。

GSM无线路径上的传输单位是由大约100个调制bit组成的脉冲串,称“Burst”。“Burst”是有限长度,占据有限频谱的信息,它在一个时间和频率窗口上发送,这个窗口

称为“Slot”。“Slot”的中心频率位于系统频带上200kHz的间隔上,并且以15/26ms (约0.577ms)的时间重复。这个由频域和时域构成的空间“Slot”就是FDMA和TDMA 在GSM中的应用。在一个小区内,全部“Slot”的时间范围都是一样的,这个相同的时间间隔称为时隙(Time Slot),把它作为一个时间单位,恰好是一个“Burst”周期,记为BP,如图3-3所示。

由图可知,“Slot”是一个15/26ms长和200kHz宽的矩形,“Slot”在频域上的这个相同的间隔称为频隙(Frequency Slot),在GSM规范中定义为无线信道。

使用一条指定的信道,其实际意义就是在某个时间和频率段上传输“Burst”。信道就对应“Slot”的概念,是一个二维的矩形。一个信道的“Slot”在时间上是不连续的,因一个信道是由一组临时定义的“Slot”组成,信道在“Slot”的组合上是周期的,也就是说此一组“Slot”组合的重复周期构成了一个信道。

与时隙定义共存的是信道特性的频域定义。信道的频率是指信道构成中每个“Slot”的频率。它可以是一个固定频率,此时信道占据的“Slot”具有相同频率,也可以是不同频率,也就是我们说的跳频情况。对于双向信道(如TCH),在两个方向上可以用不同的方法定义各自的信道。通常,上下行保持固定的45MHz频率间隔(900MHz情况下)或90MHz频率间隔(1800MHz情况下)。同时根据信道类型,保持一个时间偏移,通过这一约定可以很容易地从时间和频率上发现上行和下行的关系。

信道在时域上总是周期性的,周期的长短、“Slot”的数量随信道类型而变,周期的同步可以通过系统同步机制获得每个小区都有一个参考时钟用以定义时隙位臵,除此之外还要遵循系统中所有信道周期所规定的时间安排。在GSM系统中,不同频率上的每个时隙都有一个序号,BTS和MS通过对序号的约定取得同步,因此序号也是同步信息的一部分。时隙序号具有一个很长的重复周期,大约是3.5小时,在此周期内任何一个“Slot”都具有一个明确的时隙号和频隙号。

3.5.2 GSM系统的TDMA帧结构

我们把成对分配的TCH/F和SACCH信道冠以TACH/F的名字,TACH/F的周期由8个BP组成,时长为(15/26)×8约等于4.615ms。所有的时隙号可以分解成8×整数+n,n=0,1,2……7对应于8个BP。我们可以用模8描述一个信道的位臵,8个BP组成的周期称为TDMA帧。因此,可以用TN定义8个不同类型的TACH/F,具有相同模8整数倍的两个TACH/F共存于同一个TDMA帧中。在网络一侧不同TN的8个TACH/F可以由一个发信机激励,也就每个TACH/F是时分激励的,这是时分多路概念的核心所在。正因此,可以大大减少收发信机的数量。

TACH/F(或TCH/F与SACCH组)在时间域上是以26个TDMA帧为周期的,时长26×8BP = 120ms。在26个TDMA中,24个用于TCH/F的发送,一个用于SACCH的发送,一个空闲。但它们并不是简单地按TDMA帧号划分,而是复杂地交织在一起,其结构如图3-4所示。

从TDMA0到TDMA11和TDMA13到TDMA24,总计24个TN0时隙构成它所承载的TCH0/F的周期,TDMA12的TN 0为该TCH 0/F对应的SACCH,TDMA25的TN 0为空闲,TN1较TN 0滞后8( BP)×12+1个时隙。就是从图3-4中TDMA13的TN1,以及下一个26TDMA帧的前12个TDMA帧的TN1,总计24个时隙构成它承载的TCH/F的周期,该TCH/F对应的SACCH占据TDMA25的TN1。以此类推,TN2的SACCH在TDMA12的TN2,TN3的SACCH在TDMA25的TN3……。按SACCH分布在TDMA12和TDMA25,又可以分为两种TCH/F类型。按照上面的排列结构,SACCH的周期为4×26×8(BP)= 480ms。这种安排的原因出于网络侧的负载考虑。如果SACCH安排在几乎同时送出,BTS势必要在480ms内同时接收来自全部MS的SACCH消息,这就产生了每480ms重复一次的瞬间高负载情况。为了避免这种情况,采用令TN n +1(n = 0,1,……,6)的TACH/F周期较之TNn的TACH/F周期偏移12×8(BP)+1 = 97BP的安排。这种安排在时隙结构上产生了影响,BTS处理TN0,TN1,……TN7共8个TCH/F 的SACCH消息是分布在8个不同的时刻,很好地均匀了负载。

从基站的角度看,下行方向延时3个BP就可以得到上行方向的结构。3BP延时在GSM系统中是一个常数,也就是上行时隙号是其对应下行时隙号的3BP的偏移。这种安排使得可以在两个方向上用一个信道的时隙承载相同的TN。从MS的角度看,这是由于传播时延的影响。MS用一个时间值来补偿传播时延,调整其收发间隔,这个值称为时间提前量(Timing Advance)。此时,从MS角度看,上下行之间准确偏移量是3BP减去TA,TA值由BTS计算并通过信令方式通知MS,MS延时结构如图3-5。

与TDMA的时隙相同,FDMA的频隙概念是GSM复路方式的另一方面。GSM在900MHz频带所占的基本带宽是两个25MHz,分别是890—915MHz和935—960MHz,用于承载上行和下行。任何一对载频之间的距离是45MHz(上下行对),而两个载频的间隔距离是200kHz,就是与TDMA时隙对应的频隙。频隙的中心频点以200kHz间隔分布,在25MHz上总计有124个频隙,如图3-6所示。

在GSM带的边界保留200kHz间隔。一般0载频保留不用,所以在25MHz上可以存在122个有用频隙。由于调制频谱有时会超过200kHz,产生同频或邻频干扰,这时边界载频会对邻带的非GSM应用产生不希望出现的干扰,所以一般不用频段两端的频隙。

GSM还在无线接口上采用慢速跳频技术(SFH),所谓跳频就是规则地改变一个信道所使用的频隙。GSM引入慢速跳频基于两个原因:频率分集(Frequency Diversity)和干扰分集(Interference Diversity)。

3.6 GSM系统的信道编码与调制解调

无线发射经过若干处理才能把原始数据变成最终的发射信号,反之,接收端也要进行一系列这样的逆处理直至恢复原始数据,有关语音的处理过程如图3-7。

3.6.1 脉冲串

Burst是GSM的传输单元,它占时长为(576+12/13)us,即(156+1/4)bit位。在这个时间间隔内,激励的幅度由0值快速变到正常值,把信号相位调制成一个发送的bit 包,然后幅度迅速回归0值。根据这个时间窗口上的时间——幅度轨迹的不同定义了几种Burst,如标准Burst和接入Burst。用于调制的比特包一般由有用信息,加上一个训练序列(Training Sequency)和两端的各三个0 bit组成。理论上,我们可以在一个无限的bit 串上应用调制方法得到信号相位。因此,由前面的Burst串与后面的无限1 bit组成这样的无限bit串。加在两端的0 bit用于Burst定义,以避免解调无用的信息而降低解调效率,因为从1 bit到Burst的第一个0 bit,以及Burst最后一个0 bit到1 bit的变化可在Burst 幅度曲线的边界产生较陡的变化。

训练序列是一个收端已知的 bit串,带有这种序列的发信号可以使收端准确定位接受窗口中的有用信号,同时也是一种抗干扰的方法,它是获得良好解调的重要信息之一。根据不同的用途,GSM中定义了几种Burst格式:

接入Burst:用于MS建立与BTS的首次连接,此时MS与BTS之间的时延尚未确定。这种情况出现在上行方向的RACH上,是一种短Burst。

F Burst和S Burst:分别用于FCCH和SCH,用于描述小区同步信息,供MS接入使用。

常规Burst:这是一种长Burst,用于除上述几种情况之外的所有其他场合。

①常规Burst

常规Burst由2个58 bit的包和一个26 bit的训练序列组成,并在两端加三个0 bit,如图3-8所示。训练序列插在Burst中间是为了减少它与有用bit之间的距离。这种安排要求接收器在解调Burst之前,先要记录前半部分的内容(前面58 bit包)。注意,两个具有同样干扰的信号,几乎同时到达一个接收器时,如果它们的训练序列一样,就没有办法从收到的信号中区分它们。所以GSM定义了8种训练序列,用不同的序列分配给小区中使用相同频率的不同信道,以克服它们之间产生的干扰。

移动通信系统简介

《 SM2000 移动通信系统简介》 目录 一、系统概况 (1) 二、系统组成 (2) (一)硬件平台组成 (2) 1、基站 (3) 2、交换控制器 (3) 3、天馈线系统 (4) 4、配套设备 (4) 5、通信终端 (4) (二)软件平台组成 (5) 三、主要业务功能和技术指标 (5) (一)、主要业务功能 (5) 1、普通业务 (5) 2、集群业务 (5) (二)、主要技术指标 (5) 四、系统特点 (6) 五、系统应用 (8) (一)三种基本应用方式 (8) 1、单系统独立应用 (8) 2、与其他通信网组网应用 (8) 3、多系统组网应用 (9) (二)五项典型应用方式 (10) 1、伴随保障 (10) 2、在话务量密集区应用 (10) 3、应急通信 (10) 4.通信 (10) 5.专用系统 (10) (三)七大行业应用方式 (11) 1、移动运营商 (11) 2、军队、公安、武警 (11) 3、城市应急通信 (11) 4.行业专用通信系统 (10) 5.网络/设备出租服务 (12) 6.国家应急部门 (10) 7.通信定制服务 (12) 六、总结 (12)

一、系统概况 “应急机动通信系统”是凯讯()科技于2003年研制开发成功的一款具有体积小、重量轻、业务综合、开通迅速、使用灵活等特点的采用软交换技术的蜂窝移动通信系统。该系统符合国家有关数字蜂窝移动通信网技术体制和标准,其核心设备具有多种接口,可与CDMA、GSM、WCDMA 、TD-SCDMA、TETRA数字集群等无线基站设备连接。目前该系统已经在军队、公安、武警、国家和行业应急通信部门等单位得到广泛的应用。该系统根据不同的无线模态及业务功能,具有多个型号产品,具体如下表: 下以SM2000-CDMA系统为例进行详细的介绍,其它型号的产品其业务功能基本类同。 二、系统组成 SM-2000系统由硬件平台和软件平台组成,下面分别加以说明。 (一)硬件平台组成 一套完整的SM-2000系统硬件主要由基站、交换控制器、天馈线系统以及配套设备四部分组

第三代移动通信TD-SCDMA系统主要技术简介

3. 第三代移动通信TD-SCDMA系统主要设备和技术介绍 .1 TD-SCDMA标准的提出与形成 .2 TD-SCDMA系统概述 .2.1 TD-SCDMA系统主要技术性能 概括地讲,TD-SCDMA系统的主要技术性能有: 1. 工作频率: 2010~2025MHz 2. 载波带宽: 1.6MHz 3. 占用带宽: 5MHz (容纳三个载波,即1.6MHz×3) 4. 每载波码片速率: 1.28Mcps 5. 扩频方式: DS , SF=1/2/4/8/16 6. 调制方式: QPSK 7. 帧结构:超帧720ms, 无线帧10ms 8. 子帧: 5ms 9. 时隙数: 7 10. 支持的业务种类: * 高质量的话音通信 * 电路交换数据 (与当前GSM网络9.6Kbps兼容) * 分组交换数据(9.6~384Kbps,以后达到2Mbps) * 多媒体业务 * 短消息 11. 每载波支持对称业务容量: 每时隙话音信道数:16 (8Kbps话音,双向信道,同时工作;也可以用 两个信道支持13Kbps话音) 每载波话音信道数:16×3=48 (对称业务) 频谱利用率: 25Erl./MHz 12. 每载波支持非对称业务容量: 每时隙总传输速率:281.6Kbps (数据业务) 每载波总传输速率:1.971Mbps 频谱利用率: 1.232Mbps/MHz 13. 基站覆盖范围: 在人口密集市区: 3~5Km (根据电波传播环境条件决定) 在城市郊区;适当调整时隙结构可达到10~20Km (与FDD制式相同) 14. 通信终端移动速度:基于智能天线和联合检测的高性能数字信号处理 技术,经 过仿真,通信终端的移动速度可以达到250km/h。

20通信系统概述

第一章通信系统概述 1.1 通信系统模型 一、通信的定义 1.信息:对收信者来说未知的、待传送、交换、存储或提取的内容 ﹙包括语音、图象、文字等﹚ 人与人之间要互通情报,交换消息,这就需要消息的传递。古代的烽火台、金鼓、旌旗,现代的书信、电报、电话、传真、电子信箱、可视图文等,都是人们用来传递信息的方式。 2.信号:与消息一一对应的电量。它是消息的物质载体,即消息是寄托在电信号的某一参量上。 3.通信就是由一地向另一地传递消息。 二、电通信 1.定义 利用“电”来传递信息,是一种最有效的传输方式,这种通信方式称为电通信。 2.特点 电通信方式能使消息几乎在任意的通信距离上实现既迅速、有效,而又准确、可靠的传递。 电通信一般指电信,即指利用有线电、无线电、光和其它电磁系统,对于消息、

情报、指令、文字、图象、声音或任何性质的消息进行传输。 (1)模拟信号与数字信号:按信号随时间分布的特性信号可分为模拟和数字信号。 模拟信号:信号的取值是连续的。 数字信号:信号的取值是离散的。 (2)基带信号与频带信号:按信号随频率分布的特性信号可分为基带和频带信号。 基带信号:发信源发出的信号。 频带信号:通过调制将基带信号变换为频带信号。 基带传输:在信道中直接传输的信号 (如直流电报、实线电话和有线广播等)。 频带传输:通过调制将基带信号变换为更适合在信道中传输的形式。(FM、AM、MODEM) 三、通信系统的模型 1.通信系统的一般模型 (1)通信系统:通信系统是指完成信息传输过程的全部设备和传输媒介。 (2)通信系统的基本模型

●发信源:是消息的产生来源,其作用是将消息变换成原始电信号。变换:将 非电物理量转换为掂量。 信源可分为模拟信源和离散信源。模拟信源(如电话机、电视摄像机)输出幅度连续的信号;离散信源(如电传机、计算机)输出离散的数字信号。 ●发送设备:作用是将信源产生的消息信号转换为适合于在信道中传输的信 号。它要完成调制、放大、滤波、发射等。在数字通信系统中还要包括编码 和加密。 ●信道:是传输的媒介。信道的传输性能直接影响到通信质量。 ●噪声源:将各种噪声干扰集中在一起并归结为由信道引入,这样处理是为了 分析问题的方便。 ●接收设备:完成发送设备的反变换,即进行解调、译码、解密等,将接收到 的信号转换成信息信号。 ●收信者:把信息信号还原为相应的消息。 2.模拟通信系统模型。

移动通信G技术概述

移动通信3G技术概述 2004-3-14 中国移动与中国联通在移动通信市场的竞争日趋激烈,竞争领域从原先的话音业务发展到增值业务。伴随着移动增值业务的不断发展,迈向3G(3rd Generation,第三代移动通信)则是两大移动运营商的必然选择。与前两代系统相比,第三代移动通信系统的主要特征是可提供丰富多彩的移动多媒体业务,其传输速率在高速移动环境中支持144kb/s,步行慢速移动环境中支持384kb/s,静止状态下支持2Mb/s。其设计目标是为了提供比第二代系统更大的系统容量、更好的通信质量,而且要能在全球范围内更好地实现无缝漫游及为用户提供包括话音、数据及多媒体等在内的多种业务,同时也要考虑与已有第二代系统的良好兼容性。 目前国际电联接受的3G标准主要有以下三种:WCDMA、CDMA2000与TD-SCDMA。CDMA是Code Division Multiple Access(码分多址)的缩写,是第三代移动通信系统的技术基础。第一代移动通信系统采用频分多址(FDMA)的模拟调制方式,这种系统的主要缺点是频谱利用率低,信令干扰话音业务。第二代移动通信系统主要采用时分多址(TDMA)的数字调制方式,提高了系统容量,并采用独立信道传送信令,使系统性能大为改善,但TDMA 的系统容量仍然有限,越区切换性能仍不完善。CDMA系统以其频率规划简单、系统容量大、频率复用系数高、抗多径能力强、通信质量好、软容量、软切换等特点显示出巨大的发展潜力。 1、WCDMA 全称为Wideband CDMA,这是基于GSM网发展出来的3G技术规范,是欧洲提出的宽带CDMA技术,它与日本提出的宽带CDMA技术基本相同,目前正在进一步融合。该标准提出了GSM(2G)—GPRS—EDGE—WCDMA(3G)的演进策略。GPRS是General Packet Radio Service(通用分组无线业务)的简称,EDGE是Enhanced Data rate for GSM Evolution (增强数据速率的GSM演进)的简称,这两种技术被称为代移动通信技术。目前中国移动正在采用这一方案向3G过渡,并已将原有的GSM网络升级为GPRS网络。 2、CDMA2000 CDMA2000是由窄带CDMA(CDMA IS95)技术发展而来的宽带CDMA技术,由美国主推,该标准提出了从CDMA IS95(2G)—CDMA20001x—CDMA20003x(3G)的演进策略。CDMA20001x被称为代移动通信技术。CDMA20003x与CDMA20001x的主要区别在于应用了多路载波技术,通过采用三载波使带宽提高。目前中国联通正在采用这一方案向3G过渡,并已建成了CDMA IS95网络。 3、TD-SCDMA 全称为Time Division-Synchronous CDMA(时分同步CDMA),是由我国大唐电信公司提出的3G标准,该标准提出不经过代的中间环节,直接向3G过渡,非常适用于GSM系统向3G升级。但目前大唐电信公司还没有基于这一标准的可供商用的产品推出。 三个技术标准的比较

移动通信频段划分以及介绍范文

移动通信频段划分 GSM通信频段:分为:GSM900 DCS1800 PCS1900(目前中国只用到GSM900和DCS1800两个频段) GSM900: 双工频率间隔:45MHZ 880~890(EGSM),890~915M(PGSM)移动台(手机)发送. 基站接收 925~935(EGSM),935~960M(PGSM)基站发送. 移动台(手机)接收 GSM900频段中我国政府批准使用的上行频率为885~915 MHz ,下行频率为935~960 MHz 移动GSM900频段为885~890(上行)/930~935(下行)(此频段属于EGSM),890~909(上行)/935~954(下行) (此频段属于PGSM),共24M 联通GSM900频段为909~915 (上行)/954~960(下行),共6M DCS1800: 双工频率间隔:90MHZ 1710~1785M 移动台(手机)发送. 基站接收 1805~1880M 基站发送. 移动台(手机)接收 GSM1800频段中我国政府批准使用的上行频率为1710~1755 MHz ,下行频率为 1805~1850 MHz,但未大量使用,特别是小城市 移动GSM1800频段为1710~1720(上行)/1805~1815(下行),共10M 联通GSM1800频段为1745~1755(上行)/1840~1850(下行) ,共10M TD-SCDMA(TDD): 核心频段: A频段:2010~2025MHz(原B频段),建设最好的,最早使用的,广泛室外使用的频段 F频段:1880~1920MHz(原A频段),考虑与小灵通干扰,应从低开始使用 E频率:2320~2370MHz(原C频段),主要室内使用,不室外使用,室内防止与WLAN 冲突,建议从低开始使用。 现在LTE实验网频段为:2320-2370MHz。 WCDMA(FDD)2100M频段:(具有TDD模式,但是没有商用)(标准4种850/900/1900/2100MHz)核心频段:1920~1980MHz,2110~2170MHz(分别用于上行和下行) 中国联通WCDMA分配的频率是1940~1955MHz(上行)/2130~2145MHz(下行),共 15MHz; CDMA2000(FDD)800M频段: 核心频段:815~849MHz,860~894MHz(分别用于上行和下行) 中国电信800M的频段:825-835 MHz(上行)/870-880 MHz(下行),共10MHz; 中国电信cdma2000分配的频率是1920~1935MHz(上行)/2110~2125MHz(下行),共15MHz; 1.EDGE的带宽与基站接入有关,以及与终端使用几个时隙有关,EDGE总8个时隙,但是为了防止干扰一般都没有用完8个时隙,最多分组数据4个时隙。 2.频段变化主要原因:900M满了会自动提升到1800M 或者:900M是语音,1800M是分组数据 3.EDGE各个区域的分布是不一致的,可能有的布局好有的布局不好。 4.GPRS的每个时隙速度大约20Kbps。

移动通信技术专业简介

移动通信技术专业简介 专业代码610302 专业名称移动通信技术 基本修业年限三年 培养目标 本专业培养德、智、体、美全面发展,具有良好职业道德和人文素养,掌握移动通信技术原理、设备、工程等专业知识,具备移动基站工程建设与维护、无线网络规划与优化、移动业务管理与服务、微波与卫星通信系统维护等能力,从事移动基站勘察与设计、移动基站维护、无线网络室内分布设计、无线网络优化、通信工程项目管理、移动业务支撑与管理、移动终端维修等工作的高素质技术技能人才。 就业面向 主要面向通信行业企业,在移动基站建设与维护、无线网络规划与优化、移动业务支撑与终端维护等岗位群,从事移动基站勘察与设计、移动基站维护、无线网络室内分布设计、无线网络优化、通信工程项目管理、移动业务支撑与管理、移动终端维修、微波与卫星通信系统维护等工作。 主要职业能力 1.具备对新知识、新技能的学习能力和创新创业能力; 2.具备移动通信技术专业基本素质与能力; 3.具备计算机操作应用能力; 4.具备基站系统设备开通与调测、运行与维护能力; 5.具备无线网络规划设计、优化能力; 6.具备移动通信工程项目管理能力; 7.具备移动通信业务营销与服务能力;

8.具备移动终端维修、营销及售后服务能力; 9.具备微波与卫星通信系统维护能力。 核心课程与实习实训 1.核心课程 移动通信技术基础、现代通信技术及应用、光传输技术与设备、基站建设与维护、通信工程制图与概预算、无线网络规划与优化、移动室内覆盖工程、电信业务应用与营销、移动终端维修等。 2.实习实训 在校内进行电子技术基础、移动通信原理、基站建设与维护、通信工程制图、通信工程概预算、无线网络优化、移动终端维修等实训。 在移动通信类企业进行实习。 职业资格证书举例 电信机务员(三级、四级)通信网络管理员(三级)用户通信终端维修员(四级)移动通信助理工程师无线网络优化助理工程师 衔接中职专业举例 通信技术通信系统工程安装与维护通信运营服务 接续本科专业举例 通信工程电子信息工程

GSM全球移动通信系统概述

GSM全球移动通信系统概述 ?无线通信系统的基本概念、蜂窝通信 ?GSM系统组成、网络结构、接口与协议、业务功能 ?GSM无线传输原理、标准、语音编码、信道编码与调制解调?移动台登记、漫游、切换、呼叫接续过程 1 蜂窝无线通信系统的基本概念 1.1无线通信系统的定义 表1.1列出了用来描述无线通信系统基本要素的术语定义。

频分双工(FDD)中,一对有着固定频率间隔的单向信道用作系统中的特定无线信道。在美国的AMPS标准中,反向信道比前向信道的频率低45MHz(即手机的发比收低45MHz)。模拟无线系统只采用FDD。 时分双工(TDD)方式,在时间上分享一条信道,将其一部分时间用于从基站向用户发送信息,而其余的时间用于从用户向基站发送信息。如果信道内的数据传输速率远大于终端用户的数据速率,就可以存储用户数据,即使在同一时刻不存在两条同步无线传输信道,仍能给用户提供全双工操作。TDD只在数字传输和数字调制时才可以使用。 1.2 蜂窝无线通信系统 蜂窝概念是解决频率不足和用户容量问题的一个重大突破,是一种系统级的概念。其思想是用许多小功率的发射机(小覆盖区)来代替单个的大功率发射机(大覆盖区),每一个小覆盖区只提供服务范围内的一小部分覆盖。每个基站分配整个系统可用信道中的一部分,相邻基站则分配另外一些不同的信道,这样基站之间(以及在它们控制下的移动用户之间)的干扰就最小。只要基站间的同频干扰在可以接受的范围以内,可用信道就可以尽可能的复用。 1.2.1 频率复用

蜂窝无线系统依赖于整个覆盖区域内信道的分配及复用。每一个蜂窝基站分配一组无线信道,这组无线信道作用于一个小区。给相邻小区的基站分配一个信道组,所包含的信道全部不能在相邻小区内使用。通过将基站天线的覆盖范围限制在小区边界以内,相同的信道组就可用于覆盖不同的小区,只要距离足够远,相互间的干扰就可以接受。为整个系统中的所有基站选择和分配信道组的设计过程就叫做频率复用(Frequency Reuse)。 现在考虑一个共有S个可用的双向信道的蜂窝系统。如果每个小区都分配k个信道(k

GSM全球移动通信系统概述-2

4 GSM全球移动通信系统的工作过程 4.1移动台的位置登记 4.1.1 第一次登记 当移动台开机后,在它所处的小区,通过空中接口搜索BCCH(广播控制信道),内含有位置区域识别码(LAI)信息(在GSM900规范中定义小区分配编码占用16bit),这个信息在BCCH上规则的广播,以便手机知道自己目前的位置小区。BCCH是个小容量信道,每0.235 S传一个23字长的消息。移动台依靠收到的频率校正本身的频率,通过同步信息校正本身的信号,锁定到一个正确频率上,从该频率的信道上接收寻呼信号和其它信息。 假如此MS在寄存器中找不到LAI,它就向该业务区的MSC/VLR发送位置更新请求消息,通知网络它是此位置区的新用户。此消息经BSS到MSC,最后到VLR。VLR对消息中含有的国际移动用户识别码(IMSI)或临时移动台识别码(TMSI)以及位置信息进行分析。此时MSC/VLR就认为该MS被激活,在其数据字段中做“附着”标记,这个标记与I MSI有关。MSC/VLR向HLR发送位置更新请求信息。HLR位置更新操作完成后,向VLR发送位置更新接受消息。最后由MSC向MS发送位置更新证实信息,这个过程就算完成,至此MS已在HLR和VLR中注册登记。 4.1.2 分离与附着程序 当一个MS被激活时,对MS标有“附着”标记(IMSI标志);当MS关机时,有IMSI分离程序能使MS通知网络该移动用户为无效用户,此后不再发送寻呼此MS的消息。因此分离与附着程序都与IMSI有关。 当MS关机时,MS向网络发送的最后一条消息是处理分离请求消息,MSC/VLR收到“分离”消息后,就在该MS对应的IMSI上作“分离”标记。归属位置寄存器(HL R)并没有得到这个分离消息,只有拜访位置寄存器(VLR)已“分离”信息作了更新。当MS再开机时,若它仍处于发送分离消息时的位置区,则只要完成附着程序即可;若不在原位置区,它仍要执行位置更新程序。 4.2移动台的漫游与位置更新 4.2.1 漫游的解释 对于处在开机但空闲状态下的MS,它要不断地移动,在某一个时刻它被锁定于一个已定义的无线频率上,即某个小区的BCCH载频上。当MS向远离此小区的方向上移动时,信号强度就会减弱,当它移动到两个小区理论边界附近的某一点时,MS就会因原来小区的信号太弱而决定转到附近信号强的新的无线频率上。为了正确选择无线频率,MS要对周围的邻近小区的BCCH载频的信号强度进行连续测量,当发现新的BTS发出的BCCH 载频信号强度优于原小区时,MS就锁定于这个新的载频上,这就是移动台的切换。MS所接收的BCCH载频的改变并没通知给网络。 移动中的MS,由于接收信号质量的原因,通过无线空中接口不时地改变与网络的连接,这种能力就称为漫游。 4.2.2移动台的位置更新 位置更新过程是由MS引发。在GSM系统中有三个地方需要知道位置信息,即HL R、VLR和MS(或SIM卡)。当这个信息发生变化时,需要保持三者的一致。MS开机后就会对周围进行测试,并连接到接收性能最好的广播信道上。如图4-1所示,移动台所处的区有三种情况:

0移动通信系统简介

第一章移动通信实验系统简介 1、1简介 移动通信、光纤通信和卫星通信被称为是当今最为热门的三大通信技术,其中的移动通信技术是当前发展最快应用最广泛的通信领域。移动通信技术现在已经发展到以WCDMA、CDMA2000为代表的第三代技术成熟运用,第四代技术也正悄然来临的时代。天线系统,功率控制,高效调制,高效频谱利用,高性能纠错码技术等使得第三代、第四代移动通信技术的优越性能成为可能。移动通信的快速发展,使这门课程在通信、电子类的本专科专业的教学中,占有越来越重要的作用。同时,由于移动通信中的高速发展,许多新技术在移动通信中使用,使这门课程的教学也越来越困难。 为了更好的使通信、电子类的本专科专业的学生能更好的掌握这么课程的学习,因此,我们开发了这套系统用于辅助教学。本实验系统主要围绕现有移动通信的典型的信号处理过程,以及典型移动通信系统的使用和开发等专业技术来开设实验。希望通过本实验系统的使用,能使学生熟悉典型移动通信系统的信号处理、能分析典型移动通信处理技术的性能、熟悉移动通信系统的开发和应用技术。 本章将对典型移动通信系统的信号处理过程进行描述,并对本通信系统进行简单介绍。 1、2移动通信系统信号处理的过程 一、GSM系统的信号处理过程 如下图所示为GSM移动通信系统的框图,其他移动通信系统也由类似模块组成。 图1-1 GSM系统信号处理框图 模拟语音信号通过RPE-LTP编码后进行相应的编码、交织等信号处理后,经过GMSK调制后无线发

射。接收端通过解调制、解交织、解码后,通过RPE-LTP 解码后电声输出。 二、CDMA 系统的信号处理过程 由上图可以看出CDMA 的信号处理模块主要包含卷积编码器、码元重复单元、分组交织器、扰码、WALSH 码、QPSK 调制等组成。 三、移动通信系统的信号处理框图 由上述图可以看出:在移动通信系统中的基带信号均可以由下图表示,信号比特(语音、控制或数据)通过信道编码器、分组交织后、进行正交码分和PN 扩频后,再通过正交调制模块无线发送。只是在于不同的移动通信系统中采用的具体技术不同。 移动通信系统与其他通信系统的区别还在于其一由于移动通信信道的复杂性,它大量的采用了最新的现代通信技术的最新成果:如语音编码技术、扩频解扩技术、调制解调技术、码分多址技术、信道编解码技术、智能天线技术等;其二它有着与通信系统不同的组网及管理技术。因此要掌握移动通信技术,需要在通信原理的基础上,掌握这两类与其他通信技术不同的技术。为此我们的实验系统也是针对这两个方面开发了一系列相关实验;实验内容以移动通信设计的主要新技术为主,结构以上图结构为主,同时兼顾移动通信的组网技术。为增强学生对移动通信系统的掌握,整个实验系统分为验证和综合设计类实验。 1、3移动通信实验系统的介绍 一、实验箱的特点 1、 包含了大量现有移动通信系统和大多数无线通信系统中的使用的最新技术原理的相关实验。如在GSM 系统中的GMSK 调制解调技术、交织技术、线性分组码技术,及在第三代移动通信中的QPSK 4/ 调制解调技术、卷积码技术和其他无线通信系统中的技术如BCH 编解码技术、QAM 调制解调技术。包含DSP 、FPGA 等最新、最热门的通信系统的开发技术。 2、 射频部分包含了多种射频方案,如现有的CDMA 和GSM 两个频段,并且还包含了自组网的2.4G 频段, 可以实现与任意公众网的通信或者可以通过自组网实现任意两台实验箱的通信。射频部分提供二次开 图1-2 CDMA 系统信号处理框图

移动通信发展简介

第一章GSM (2) 1.1 简介 (2) 1.2 GSM 系统的主要规格参数 (4) 1.3主要技术 (5) 第二章3G (9) 2.1 简介 (9) 2.2 IMT-2000 的主要技术要求 (9) 2.3WCDMA 系统: (10) 2.3.1WCDMA 系统可实现的基本技术参数: (11) 2.4TD-SCDMA: (11) 2.4.1 TD-SCDMA 与WCDMA 基本参数比较: (11) 2.4.2TD-SCDMA 与WCDMA 关键技术: (12) 2.5CDMA2000 (13) 2.5.1 CDMA2000 的无线接口参数: (13) 2.5.2CDMA2000 关键技术: (14) 第三章LTE (16) 3.1 简介 (16) 3.2LTE主要技术特点: (16) 3.3LTE 核心技术 (17) 3.4LTE 技术优势 (19) 3.5LTE 技术的市场前景与挑战 (20) 第四章WLAN (21) 4.1 简介 (21) 4.2WLAN 主要技术 (21) 4.3WLAN 技术指标 (23) 4.4WLAN 市场应用 (25) 第五章WiMAX: (27) 5.1 简介 (27) 5.2WiMAX 中的先进技术 (27) 5.3WiMAX 与Wi-Fi 、3G 比较 (29) 5.4WiMAX 主要技术参数 (29) 5.5WiMAX .......................................................... 的现状、应用及发展29 第~章GSM (Global System For Mobile Communications ):

移动数据通信技术概述

移动数据通信讲座 第一讲移动数据通信技术概述 张力军 (南京邮电学院南京210003) 摘要本文简要介绍移动数据通信和移动数据网的一些基本概念、基本核心技术、业务和应用、移动互联网的形成和发展。 关键词移动数据通信移动数据网移动数据业务移动IP 服务质量移动互联网 一、什么是移动数据通信 1. 移动通信网与移动数据网 近十多年来,我国移动通信快速发展,移动通信网已实现从模拟网向数字网的转换。移动通信网与固定通信网一样,不论从用户对业务的需求,还是从网络运营商提供的服务以及通信设备研发生产商来看,都可以分为三个层次:语音;数据;视频和多媒体。可以将后两个层次的业务通称为移动数据业务,例如,短消息,传真、电子邮件、文件、图像、浏览网页等。能为用户提供移动数据业务的移动通信网,又可称为移动数据网。也有专门提供移动数据业务而不提供语音业务的,称为专用移动数据网(或简称为移动数据网,或无线分组数据网)。随着技术的发展,语音和视频等实时业务将完全以分组数据的形式传送,那时,移动通信网也就完全变成了移动数据网。 2. 移动数据通信与无线数据通信 这两个术语的含义比较相近,但有一定的区别。它们共同点在于数据通信都是通过无线信道和网络进行的,而主要区别就在于“移动”与“无线”二词。“移动”一词表示通信终端的三种运动状态:归属区静止、运动和漫游(访问区静止),实际上“移动”主要是指“运动和漫游”这两种状态。因此,“移动数据通信”就是指终端在三种运动状态下都能进行数据通信。而“无线数据通信”一词主要含义是指在静止状态进行数据通信,但如果无线网络能提供漫游服务,那么这种情况下的“无线数据通信”也是“移动数据通信”。能提供无线数据通信最典型的例子是无线局域网(WLAN)。随着网络技术的发展以及移动、无线网络与互联网的逐步演进和相互融合,传统的无线数据网也能支持终端在运动状态下进行数据通信。那时,无线数据通信与移动数据通信也就没有什么区别了。目前,如果分析和讨论的问题不涉及终端是否在运动中,只要不影响问题的实质,人们也常将这两种术语混用。

5G移动通信系统简介

5G移动通信系统简介 随着现代社会的快速发展,科学技术的发展也日新月异,而通信技术方面的技术变革,更是站在当今发展最快的技术变革行列的前列。5G移动通信技术作为目前最前沿的通信技术,是应2020年后通信技术发展需求而生的,目前该技术尚处于探索研究阶段。 5G(fifth-generation)即第五代移动电话系统,是4G移动通信技术的延伸。目前尚未有任何一家标准制定组织或者电信公司的公开规格,也没有在任何官方文件中有所涉及,即该技术尚未有具体的标准。但是,随着社会的发展,人们对通信技术领域的期望越来越高,5G移动通信技术,势必会得到飞速的发展。 一、移动通信技术的发展历程 移动通信技术发展到现在,经历了四个发展阶段,第一代(1G)通信技术自上世纪80年代初期被提出,历经十年的发展问世,这一代移动通信技术主要是通过模拟传输,因此具有速度低、质量差、安全性差、没有加密、业务量小的特点及不足。第二代(2G)通信技术的发展开始于二十世纪九十年代初期,该技术通过采用更密集的技术结构以及引用智能技术等,较1G技术有所进步,但依然不能真正满足移动通信业务的发展需求。第三代(3G)通信技术的问世,通过应用智能信号等处理技术,已经能够提供前两代技术无法提供的移动宽带服务,但该技术中频谱利用效率还是比较低,依然有大量宝贵的频谱资源未得到充分利用,因此,3G技术同样还是远远不能满足未来人们对于通信技术的需求。 第四代(4G)通信技术在这种背景下提出,其视频图像传输的效果可以媲美高清晰电视;拥有极高的下载速度及灵活的计费方式等,具有前三代无可比拟的先进性。但是,随着科技的发展、社会的进步,人们对于网络通信技术的要求也是与日俱增,尚处于研发阶段的第五代(5G)通信系统,作为当前最新一代的通信系统,符合了移动通信技术之发展规律,较第四代通信技术相比,其用户体验、传输延时、系统安全和覆盖性能等各方面都有显著的提高。5G移动通信技术将紧密结合其他通信技术,构成新一代无比先进的移动信息网络。在未来十年的时间内,能够满足人们对移动通信技术的发展需求。 二、5G移动通信技术的特点及优点 (一)研究意义 移动通信的发展已经经历了几代。从只能提供话音业务的第一代模拟移动通信(模拟蜂窝)到第二代数字移动通信(数字蜂窝),再到第三代移动多媒体通信(3G)。在3G才刚刚普及的时候,第四代移动通信(4G)已然来临。而日益增长的数据流量以及智能终端的普及,导致4G在容量、速率、频谱等方面已经不能满足人们对网络的需求,基于此,第五代移动通信网络(5G)应运而生。

中国移动通信集团公司简介

中国移动通信集团公司简介 中国移动通信集团公司(China Mobile Communications Corporation CMCC )简称“中国移动通信”,是根据国家关于电信体制改革的部署和要求,在原中国电信移动通信资产总体剥离的基础上组建的国有重要骨干企业,于2000年4月20日成立。 中国移动通信集团公司注册资本为518亿元人民币,资产规模超过7000亿元。中国移动通信集团公司全资拥有中国移动(香港)集团有限公司,由其控股的中国移动(香港)有限公司在国内31个省(自治区、直辖市)设立全资子公司,并在香港和纽约上市。 中国移动通信主要经营移动话音、数据、IP电话和多媒体业务,并具有计算机互联网国际联网单位经营权和国际出入口局业务经营权。除提供基本话音业务外,还提供传真、数据、IP电话等多种增值业务,拥有“全球通”、“神州行”、“动感地带”、“神州大众卡”等著名服务品牌,服务网号为“134(其中134号段中的1349段被分配给“全球星”卫星手机)、135、136、137、138、139、150、151、152、157、158、159、187、188”共14个号段。 2008年电信重组前,中国移动通信是国内唯一专注移动通信发展的通信运营公司,在我国移动通信大发展的进程中,始终发挥着主导作用,并在国际移动通信领域占有重要地位。经过十多年的建设与发展,中国移动通信已建成一个覆盖范围广、通信质量高、业务品种丰富、服务水平一流的综合通信网络。网络规模和客户规模列全球第一。 2008年电信重组后,中国移动合并中国铁通,成为全业务运营商;并于2009年1月获得TD-SCDMA运营牌照。 中国移动企业文化理念体系由核心价值观、使命、愿景三部分构成。核心价值观阐述了“我们是谁,我们的信仰是什么”,反映了企业及其每一个成员共同的价值追求、价值评价标准和所崇尚的精神;使命表达了“我们的事业”是什么,其内涵表达了企业存在的根本目的和原因;愿景说明了“我们的目标”是什么,是企业在一定阶段内期望达到战略目标和发展蓝图;核心价值观是企业文化理念体系的核心,是形成使命、愿景的根本动力和精神源泉,是选择使命、愿景的决定因素;而使命、愿景是核心价值观在企业发展领域的价值追求的具体体现,是核心价值观在企业活动中的承载和表现。 中国移动企业文化理念体系的核心内涵是“责任”和“卓越”,体现了中国移动作为企业、中国移动人作为社会中的一员,将以成为“负责任”和“最优秀”的企业和个人作为自己的追求。中国移动企业文化理念体系立足于核心价值观、使命、愿景,凝结了中国移动人缔造辉煌历史的精神精髓,表达了中国移动对未来的美好憧憬和对事业的坚定信念。这一理念体系的提出,必将凝聚和激励全集团上下一心、同心同德,共同实现中国移动新的跨越“成为卓越品质的创造者”,是中国移动内生企业品性的自在要求。中国移动选择了“正德厚生,臻于至善”的信仰,注定了我们不仅要追求数量的超越,更必须成就品质的铸炼。关注品质、追求品质是我们对社会负责、追求卓越的最佳体现方式,中国移动只有通过为社会创造卓越品质而践行自己的价值观。中国移动肩负着“创无限通信世界、做信息社会栋梁”的使命,意味

第一代移动通信技术概述

《第一代移动通信技术》课程 论文题目: 年级/班级: 学生姓名: 学号: 日期:

第一代移动通信技术 第一代移动通信主要采用的是模拟技术和频分多址(FDMA)技术。由于受到传输带宽的限制,不能进行移动通信的长途漫游,只能是一种区域性的移动通信系统。第一代移动通信有多种制式,我国主要采用的是TACS。第一代移动通信有很多不足之处,如容量有限、制式太多、互不兼容、保密性差、通话质量不高、不能提供数据业务和不能提供自动漫游等。 2第一代移动通信技术的发展 第三代移动通信系统(IMT-2000),在第二代移动通信技术基础上进一步演进的以宽带CDMA技术为主,并能同时提供话音和数据业务的移动通信系统。TD-SCDMA技术方案是我国首次向国际电联提出的中国建议,是一种基于CDMA,结合智能天线、软件无线电、高质量语音压缩编码等先进技术的优秀方案。 与第一代模拟蜂窝移动通信相比,第二代移动通信系统采用了数字化,具有保密性强,频谱利用率高,能提供丰富的业

务,标准化程度高等特点,使得移动通信得到了空前的发展,从过去的补充地位跃居通信的主导地位。我国目前应用的第二代蜂窝系统为欧洲的GSM系统以及北美的窄带CDMA系统。 第一代移动通信技术(1G)是指最初的模拟、仅限语音的蜂窝电话标准,制定于上世纪80年代。Nordic移动电话(NMT)就是这样一种标准,应用于Nordic国家、东欧以及俄罗斯。其它还包括美国的高级移动电话系统(AMPS),英国的总访问通信系统(TACS)以及日本的JTAGS,西德的C-Netz,法国的Radiocom 2000和意大利的RTMI。模拟蜂窝服务在许多地方正被逐步淘汰。 目录 1第一代移动通信技术简介 第一代移动通信主要采用的是模拟技术和频分多址(FDMA)技术。由于受到传输带宽的限制,不能进行移动通信的长途漫游,只能是一种区域性的移动通信系统。第一代移动通信有多种制式,我国主要采用的是TACS。第一代移动通信有很多不足之处,如容量有限、制式太多、互不兼容、保密性差、通话质量不高、不能提供数据业务和不能提供自动漫游等。

移动通信简介以及CMPP、SGIP、SMPP简介

捷信新员工入职培训 第一章前言 以下内容是根据个人的理解整理的捷信项目中涉及的部分移动通信网知识的简要介绍,供捷信项目新员工学习了解。 水平有限,可能还有不少错误,但是只求大致了解,希望不致于贻笑大方。若发现理解、阐述上有问题,请回复邮件告知。 第二章移动通信网简介 基本网络结构涉及的概念 MS:移动台,即俗称得手机用户; BTS:发射台?负责无线信号的收发; BSC:负责控制BTS; MSC:移动交换机,就像一个以太网交换机负责在各个计算机之间交换数据一样,移动交换机负责控制通话等等——当 然,实际复杂得多。(Mobile Switching Center)

GMSC:关口局,关口MSC。GMSC用于连接两个不同的运营商或者异构的网络。实践中,厂家设计时通常将MSC设 计为可以兼当GMSC。例如,杭州移动的GSM网络要 和杭州联通的GSM网络通信,则双方各自有一个 GMSC,两个MSC之间通过TUP/ISUP协议通信。一 个不是很恰当的比喻,GMSC类似与一个路由器,连接 不同的网络甚至是异构的网络。 TMSC:汇接局,T局。任意两个MSC之间要通信,若采用两两直接互连的网状连接,则需要大量的传输线路,为了节 省传输资源,通信网通常采用网状+树状的网络拓扑— —每个省设置两个TMSC,本省的MSC与本省的TMSC 连接,省之间通过TMSC连接。即,一个杭州用户给 一个广州用户打电话,其话路先从杭州MSC到浙江省 的TMSC,然后到广东TMSC,最后到广州的MSC。VLR:拜访位置寄存器(VisitedLocationRegister),负责保存在所服务区域的用户的信息,比如用户有无短信收发能力、 用户有无呼转能力等,还负责分配、保存一些临时的信 息,比如MSRN、TIMSI、TLDN等;理论上一个VLR 可以同时为多个MSC服务,实践中VLR和MSC在物 理上作为同一个设备(就像东信的CDMA2000交换机, 一个MSC中有两块路板控制整个交换的FMCP即MSC 部分,另外一块是VLR专用的VLRP)。

移动通信概述论文

本文由northcapture贡献 pdf文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 移动通信 2010 年 5 月 20 日 移动通信技术发展历程与趋势 伍明铭 (华南理工大学电子与信息学院,广东广州) 摘要:本文介绍移动通信技术的发展历程,重点讨论了 1G 到 4G 各代移动通信技术的主要性能指标和关键技术,展望移动通信技术的发展趋势. 关键词:移动通信;GSM 技术;CDMA;MIMO-OFDM 中图分类号: TN92 文献标识码: A 文章编号: 0372-2112 History and Trend of Mobile Communication Technology WU Ming-ming (School of Electronic and Information Engineering,South China University of Technology,Guangzhou,Guangdong ,China) Abstract: This article describes the development process of mobile communication technology, focused on the generation of 1G to 4G mobile communication technology ,the key performance indicators and key technology .At last,it looks forward to the development trend of mobile communication technology. Key words: mobile communication; GSM technology; CDMA; MIMO-OFDM 1 引言 2 移动通信技术发展概述 随着科学技术发展,通信技术也得到迅猛的发展和应用,在推动社会经济的同时改变了人们的生活方式.移动通信特别是蜂窝小区的发展,使用户实现完全的个人移动性、可靠的传输手段和接续方式,逐渐演变成社会进步必不可少的工具. 近年来,移动通信业务的迅猛增加使移动通信技术受到来自容量和带宽两方面的巨大挑战,频谱资源匮乏的矛盾十分突出. 同时,移动计算、高速互联网和图像等多样化需求要求移动通信网能够综合语音、数据等不同业务进行动态带宽分配,并有提供宽带无线信道的能力. 目前在中国,移动通信技术经历了第一代模拟移动通信技术以及第二代数字的、以语音为主的窄带移动通信技术后,第三代以高速互联网业务和多媒体业务为目的的宽带移动通信技术已经投入商用,同时, LTE、UWB(超宽带无线通信)、WiMax 等下一代移动通信技术正在大力的研究和试验中. 移动通信诞生于 20 世纪初, 20 世纪在 40 年代以前,初步进行一些传播性测试并在短波的几个频段上进行通信应用,如 20 年代初的 2MHz 频段的警车无线调度系统.其工作于单工或半双工方式.40 年代至 60 年代后期,发展了一些具有拨号、半双工功能的移动通信系统,但这些停留在专用系统的水平上.这些系统基于噪声受限原理,采用与无线广播和广播电视相同的方式.这种系统实现较容易,但同频系统必须距离足够远,使同频干扰电平远低于接收机的接收门限. 而且整个系统没有频率复用,支持的同时工作的用户数量有限,因此,系统存在容量受限、系统功能薄弱、频率利用率低和质量差 [1] 等局限性 . 1971 年贝尔实验室论证了蜂窝系统的可行性后,各国对蜂窝移动通信系统进行了深入研究,从而进入蜂窝移动通信系统的发展阶段. (1) 第一代——模拟移动通信系

移动通信发展概述

移动通信发展概述

移动通信发展概述 读书报告 讲师: 班级 姓名 学号

听了彭胜亮老师的“移动通信发展概述”讲座后,才发现身为一名通信系的学生,我对通信的概念及其发展的了解还远远不够,但同时也激起了我对它的兴趣,促使我加深了对它的了解。 以下是我听了彭老师的讲座后,在课上与课后所了解的有关通信方面的内容。

一、什么是通信 通信,指人与人或人与自然之间通过某种行为或媒介进行的信息交流与传递,从广义上指需要信息的双方或多方在不违背各自意愿的情况下采用任意方法,任意媒质,将信息从某方准确安全地传送到另方。 通信在不同的环境下有不同的解释,在出现电波传递通信后通信(Communication)被单一解释为信息的传递,是指由一地向另一地进行信息的传输与交换,其目的是传输消息。然而,通信是在人类实践过程中随着社会生产力的发展对传递消息的要求不断提升使得人类文明不断进步。在各种各样的通信方式中,利用“电”来传递消息的通信方法称为电信(Telecommunication),这种通信具有迅速、准确、可靠等特点,且几乎不受时间、地点、空间、距离的限制,因而得到了飞速发展和广泛应用;在现今因电波的快捷性使得从远古人类物质交换过程中就结合文化交流与实体经济不断积累进步的实物性通信(邮政通信)被人类理解为制约经济发展的阻碍。 在古代,人类通过驿站、飞鸽传书、烽火报警、符号、身体语言、眼神、触碰等方式进行信息传递。在现代科学水平的飞速发展,相继出现了无线电、固定电话、移动电话、互联网甚至视频电话等各种通信方式。通信技术拉近了人与人之间的距离,提高了经

济的效率,深刻地改变了人类的生活方式和社会面貌。 二、无线通信的兴起 无线通信与早期的电报、电话通信不同,它不是依靠有形的金属导线,而是利用无线电波来传递信息的。早在2000多年前,人类就已发现了电和磁这两种自然现象,然而长期以来,人们只知道摩擦生电、静电、瞬时放电这些简单的电现象;至于磁,则被看作是某种物质所具有的特殊性质。 人类第一次发现电与磁之间有联系是在1820年,丹麦物理学家奥斯特(Oersted)偶然把一根导线同一枚磁针并排放着,当电流通过导线时,他十分惊讶地发现,磁针几乎转了90度,而当电流以相反方向通过时,磁针向相反方向偏转。这个发现当时在科学界引起了轰动,因为这说明电能生磁。电流既然可以产生磁性,那么磁能否产生电流呢? 之后,法拉第历经十多年的探索与实验,终于在1831年得出了一个永久性磁铁同一导线作相对运动时,会在导线中产生电流的结论。这就是物理学上著名的电磁感应定律。 而麦克斯韦的麦克斯韦方程组系统而完整地概括了电磁场的基本规律,并预言了电磁波的存在。麦克斯韦提出的核心思想:电场和磁场不是彼此孤立的,

相关文档