文档视界 最新最全的文档下载
当前位置:文档视界 › KNN算法原理及应用

KNN算法原理及应用

KNN算法原理及应用
KNN算法原理及应用

KNN分类算法(理论)

目录

1.KNN算法 (1)

2.KNN算法描述 (1)

3.KNN主要的应用领域 (2)

4.KNN算法的优、缺点 (2)

1.KNN算法

KNN算法,右又叫K最邻近分类算法,是数据挖掘分类技术中最简单的方法之一。所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表。

KNN算法概括来说,就是已知一个样本空间里的部分样本分成几个类,然后,给定一个待分类的数据,通过计算找出与自己最接近的K个样本,由这K个样本投票决定待分类数据归为哪一类。kNN算法在类别决策时,只与极少量的相邻样本有关。由于kNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,kNN方法较其他方法更为适合。

2.KNN算法描述

一个比较经典的KNN图如下:

从上图中我们可以看到,图中的有两个类型的样本数据,一类是蓝色的正方形,另一类是红色的三角形。而那个绿色的圆形是我们待分类的数据。

如果K=3,那么离绿色点最近的有2个红色三角形和1个蓝色的正方形,这3个点投票,于是绿色的这个待分类点属于红色的三角形。

如果K=5,那么离绿色点最近的有2个红色三角形和3个蓝色的正方形,这5个点投票,于是绿色的这个待分类点属于蓝色的正方形。

3.KNN主要的应用领域

文本分类、聚类分析、预测分析、模式识别、图像处理。

KNN算法不仅可以用于分类,还可以用于预测。通过找出一个样本的k个最近邻居,将这些邻居的属性的平均值赋给该样本,就可以得到该样本的属性。更有用的方法是将不同距离的邻居对该样本产生的影响给予不同的权值(weight),如权值与距离成反比。

4.KNN算法的优、缺点

优点

(1) 简单,易于理解,易于实现,无需估计参数,无需训练;

(2) 适合对稀有事件进行分类;

(3) 特别适合于多分类问题(multi-modal,对象具有多个类别标签),kNN比SVM的表现要好。

缺点

(1) 当样本不平衡时,如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数。

(2) 计算量较大,因为对每一个待分类的文本都要计算它到全体已知样本的距离,才能求得它的K个最近邻点。

(3) 可理解性差,无法给出像决策树那样的规则。

蚁群算法简述及实现

蚁群算法简述及实现 1 蚁群算法的原理分析 蚁群算法是受自然界中真实蚁群算法的集体觅食行为的启发而发展起来的一种基于群体的模拟进化算法,属于随机搜索算法,所以它更恰当的名字应该叫“人工蚁群算法”,我们一般简称为蚁群算法。M.Dorigo等人充分的利用了蚁群搜索食物的过程与著名的TSP问题的相似性,通过人工模拟蚁群搜索食物的行为来求解TSP问题。 蚂蚁这种社会性动物,虽然个体行为及其简单,但是由这些简单个体所组成的群体却表现出及其复杂的行为特征。这是因为蚂蚁在寻找食物时,能在其经过的路径上释放一种叫做信息素的物质,使得一定范围内的其他蚂蚁能够感觉到这种物质,且倾向于朝着该物质强度高的方向移动。蚁群的集体行为表现为一种正反馈现象,蚁群这种选择路径的行为过程称之为自催化行为。由于其原理是一种正反馈机制,因此也可以把蚁群的行为理解成所谓的增强型学习系统(Reinforcement Learning System)。 引用M.Dorigo所举的例子来说明蚁群发现最短路径的原理和机制,见图1所示。假设D 和H之间、B和H之间以及B和D之间(通过C)的距离为1,C位于D和B的中央(见图1(a))。现在我们考虑在等间隔等离散世界时间点(t=0,1,2……)的蚁群系统情况。假设每单位时间有30只蚂蚁从A到B,另三十只蚂蚁从E到D,其行走速度都为1(一个单位时间所走距离为1),在行走时,一只蚂蚁可在时刻t留下浓度为1的信息素。为简单起见,设信息素在时间区间(t+1,t+2)的中点(t+1.5)时刻瞬时完全挥发。在t=0时刻无任何信息素,但分别有30只蚂蚁在B、30只蚂蚁在D等待出发。它们选择走哪一条路径是完全随机的,因此在两个节点上蚁群可各自一分为二,走两个方向。但在t=1时刻,从A到B的30只蚂蚁在通向H的路径上(见图1(b))发现一条浓度为15的信息素,这是由15只从B走向H的先行蚂蚁留下来的;而在通向C的路径上它们可以发现一条浓度为30的信息素路径,这是由15只走向BC的路径的蚂蚁所留下的气息与15只从D经C到达B留下的气息之和(图1(c))。这时,选择路径的概率就有了偏差,向C走的蚂蚁数将是向H走的蚂蚁数的2倍。对于从E到D来的蚂蚁也是如此。 (a)(b)(c) 图1 蚁群路径搜索实例 这个过程一直会持续到所有的蚂蚁最终都选择了最短的路径为止。 这样,我们就可以理解蚁群算法的基本思想:如果在给定点,一只蚂蚁要在不同的路径中选择,那么,那些被先行蚂蚁大量选择的路径(也就是信息素留存较浓的路径)被选中的概率就更大,较多的信息素意味着较短的路径,也就意味着较好的问题回答。

群智能算法教学讲义

第六章群智能算法 智能优化计算 6.1 群智能 6.1.1 群智能的概念 6.1.2 群智能算法 6.2 蚁群优化算法原理 6.2.1 蚁群算法的起源 6.2.2 蚁群算法的原理分析 6.3 基本蚁群优化算法 6.3.1 蚂蚁系统的模型与实现 6.3.2 蚂蚁系统的参数设置和基本属性 6.4 改进的蚁群优化算法 6.4.1 蚂蚁系统的优点与不足 6.4.2 最优解保留策略蚂蚁系统 6.4.3 蚁群系统 6.4.4 最大-最小蚂蚁系统 6.4.5 基于排序的蚂蚁系统 6.4.6 各种蚁群优化算法的比较 智能优化计算 6.5 蚁群优化算法的应用 6.5.1 典型应用 6.5.2 医学诊断的数据挖掘 6.6 粒子群算法的基本原理 6.6.1 粒子群算法的提出 6.6.2 粒子群算法的原理描述 6.7 基本粒子群优化算法 6.7.1 基本粒子群算法描述 6.7.2 参数分析 6.7.3 与遗传算法的比较 6.8 改进粒子群优化算法 6.8.1 离散二进制PSO 6.8.2 惯性权重模型 6.8.3 收敛因子模型 6.8.4 研究现状 智能优化计算 6.9 粒子群优化算法的应用 6.9.1 求解TSP问题 6.9.2 其它应用 6.10 群智能算法的特点与不足 智能优化计算 6.1 群智能 智能优化计算 群智能(Swarm Intelligence, SI ) 人们把群居昆虫的集体行为称作“群智能”(“群体智能”、“群集智能”、“集群智能”

等) 特点 个体的行为很简单,但当它们一起协同工作时,却能够突现出非常复杂(智能)的行为特征。 6.1.1 群智能的概念 6.1 群智能 智能优化计算 描述 群智能作为一种新兴的演化计算技术已成为研究焦点,它与人工生命,特别是进化策略以及遗传算法有着极为特殊的关系。 特性 指无智能的主体通过合作表现出智能行为的特性,在没有集中控制且不提供全局模型的前提下,为寻找复杂的分布式问题求解方案提供了基础。 6.1.2 群智能算法 6.1 群智能 智能优化计算 优点 灵活性:群体可以适应随时变化的环境; 稳健性:即使个体失败,整个群体仍能完成任务; 自我组织:活动既不受中央控制,也不受局部监管。 典型算法 蚁群算法(蚂蚁觅食) 粒子群算法(鸟群捕食) 6.1.2 群智能算法 6.2 蚁群优化算法原理 智能优化计算 蚁群的自组织行为 “双桥实验” 通过遗留在来往路径 上的信息素 (Pheromone)的挥 发性化学物质来进行 通信和协调。 6.2.1 蚁群算法的起源 6.2 蚁群优化算法原理 智能优化计算 蚁群的自组织行为 “双桥实验” 6.2.1 蚁群算法的起源 6.2 蚁群优化算法原理 智能优化计算 提出蚁群系统 1992年,意大利学者M. Dorigo在其博士论文中提出 蚂蚁系统(Ant System)。

kNN算法综述

kNN算法综述 王宇航13120476 (北京交通大学计算机与信息技术学院,北京,100044) 摘要:kNN算法是著名的模式识别统计学方法,是最好的文本分类算法之一,在机器学习分类算法中占有相当大的地位,是最简单的机器学习算法 之一。本文对kNN算法及相关文献做一份总结,详细介绍kNN算法的思想、原理、实现步骤以及具体实现代码,并分析了算法的优缺点及其各种改进方 案。本文还介绍了kNN算法的发展历程、重要的发表的论文。本文在最后介 绍了kNN算法的应用领域,并重点说明其在文本分类中的实现。 关键字:kNN算法;k近邻算法;机器学习;文本分类 Abstract:KNN algorithm,a famous statistical method of pattern recognition, which is one of the best algorithms for dealing with text categorization,is playing an important role in machine learning classification algorithm,and it is one of the simplest algorithms in machine learning.This paper mainly summaries the kNN algorithm and its related literature,and detailed introduces its main idea,principle, implementation steps and specific implementation code,as well as analyzes the advantages and disadvantages of the algorithm and its various improvement schemes.This paper also introduces the development course of kNN algorithm,its important published paper.In the final,this paper introduces the application field of kNN algorithm,and especially in text categorization. Keywords:KNN algorithm,K neighbor algorithm,Machine learning,Text classification 1引言 分类是数据挖掘中的核心和基础技术,在经营、决策、管理、科学研究等多个领域都有着广泛的应用。目前主要的分类技术包括决策树、贝叶斯分类、kNN分类、人工神经网络等。在这些方法中,kNN分类是一种简单、有效、非参数的方法,现已经广泛应用于文本分类、模式识别、图像及空间分类等领域。本文从各个角度对kNN算法进行较为全面的总结。 本文的结构如下: 在第二部分,主要介绍kNN算法的基本原理、思想、实现步骤、Java实现代码以及发展历程和经典论文。 第三部分是对kNN算法的诸多不足之处进行的讨论,并给出一些改进的方案。 第四部分介绍的是kNN算法如何处理多标签数据。 第五部分介绍了kNN算法目前的主要应用领域,并着重说明了其在文本分类中的出色表现。

群智能优化算法综述

现代智能优化算法课程群智能优化算法综述 学生姓名: 学号: 班级: 2014年6月22日

摘要 工程技术与科学研究中的最优化求解问题十分普遍,在求解过程中,人们创造与发现了许多优秀实用的算法。群智能算法是一种新兴的演化计算技术,已成为越来越多研究者的关注焦点,智能优化算法具有很多优点,如操作简单、收敛速度快、全局收敛性好等。群智能优化是智能优化的一个重要分支,它与人工生命,特别是进化策略以及遗传算法有着极为特殊的联系。群智能优化通过模拟社会性昆虫的各种群体行为,利用群体中个体之间的信息交互和合作实现寻优。本文综述群智能优化算法的原理、主要群智能算法介绍、应用研究及其发展前景。 关键词:群智能;最优化;算法

目录 摘要 (1) 1 概述 (3) 2 定义及原理 (3) 2.1 定义 (3) 2.2 群集智能算法原理 (4) 3 主要群智能算法 (4) 3.1 蚁群算法 (4) 3.2 粒子群算法 (5) 3.3 其他算法 (6) 4 应用研究 (7) 5 发展前景 (7) 6 总结 (8) 参考文献 (9)

1 概述 优化是人们长久以来不断研究与探讨的一个充满活力与挑战的领域。很多实际优化问题往往存 在着难解性,传统的优化方法如牛顿法、共扼梯度法、模式搜索法、单纯形法等己难以满足人们需求。 因此设计高效的优化算法成为众多科研工作者的研究目标。随着人类对生物启发式计算的研究, 一些社会性动物( 如蚁群、蜂群、鸟群) 的自组织行为引起了科学家的广泛关注。这些社会性动物在漫长的进化过程中形成了一个共同的特点: 个体的行为都很简单, 但当它们一起协同工作时, 却能够“突现”出非常复杂的行为特征。基于此,人们设计了许多优化算法,例如蚁群算法、粒子群优化算法、混合蛙跳算法、人工鱼群算法,并在诸多领域得到了成功应用。目前, 群智能理论研究领域主要有两种算法: 蚁群算法(Ant Colony Optimization, ACO) 和粒子群优化算法(ParticleSwarm Optimization, PSO)。 2 定义及原理 2.1 定义 群集智能优化算法源于对自然界的生物进化过程或觅食行为的模拟。它将搜索和优化过程模拟成个体的进化或觅食过程,用搜索空间中的点模拟自然界中的个体;将求解问题的目标函数度量成个体对环境的适应能力;将个体的优胜劣汰过程或觅食过程类比为搜索和优化过程中用好的可行解取代较差可行解的迭代过程。从而,形成了一种以“生成+检验”特征的迭代搜索算法,是一种求解极值问题的自适应人工智能技术。各类优化算法实质上都是建立问题的目标函数,求目标函数的最优解,因而实际工程优化问题均可转化为函数优化问题。其表达形式如下: 求: ,,2,1,0)(..), (min , ,,2,1,),,,(21Lm j X g t s X f n L i x L x x X i T n i =≤== 。Ω∈X 其中, i X 为设计变量;)(X f 为被优化的目标函数;0)(≤X g j 为约束函数;Ω为设计变量的 可行域。

动态规划算法原理与的应用

动态规划算法原理及其应用研究 系别:x x x 姓名:x x x 指导教员: x x x 2012年5月20日

摘要:动态规划是解决最优化问题的基本方法,本文介绍了动态规划的基本思想和基本步骤,并通过几个实例的分析,研究了利用动态规划设计算法的具体途径。关键词:动态规划多阶段决策 1.引言 规划问题的最终目的就是确定各决策变量的取值,以使目标函数达到极大或极小。在线性规划和非线性规划中,决策变量都是以集合的形式被一次性处理的;然而,有时我们也会面对决策变量需分期、分批处理的多阶段决策问题。所谓多阶段决策问题是指这样一类活动过程:它可以分解为若干个互相联系的阶段,在每一阶段分别对应着一组可供选取的决策集合;即构成过程的每个阶段都需要进行一次决策的决策问题。将各个阶段的决策综合起来构成一个决策序列,称为一个策略。显然,由于各个阶段选取的决策不同,对应整个过程可以有一系列不同的策略。当过程采取某个具体策略时,相应可以得到一个确定的效果,采取不同的策略,就会得到不同的效果。多阶段的决策问题,就是要在所有可能采取的策略中选取一个最优的策略,以便得到最佳的效果。动态规划是一种求解多阶段决策问题的系统技术,可以说它横跨整个规划领域(线性规划和非线性规划)。在多阶段决策问题中,有些问题对阶段的划分具有明显的时序性,动态规划的“动态”二字也由此而得名。动态规划的主要创始人是美国数学家贝尔曼(Bellman)。20世纪40年代末50年代初,当时在兰德公司(Rand Corporation)从事研究工作的贝尔曼首先提出了动态规划的概念。1957年贝尔曼发表了数篇研究论文,并出版了他的第一部著作《动态规划》。该著作成为了当时唯一的进一步研究和应用动态规划的理论源泉。在贝尔曼及其助手们致力于发展和推广这一技术的同时,其他一些学者也对动态规划的发展做出了重大的贡献,其中最值得一提的是爱尔思(Aris)和梅特顿(Mitten)。爱尔思先后于1961年和1964年出版了两部关于动态规划的著作,并于1964年同尼母霍思尔(Nemhauser)、威尔德(Wild)一道创建了处理分枝、循环性多阶段决策系统的一般性理论。梅特顿提出了许多对动态规划后来发展有着重要意义的基础性观点,并且对明晰动态规划路径的数

软件工程-原理、方法与应用【第三版】复习总结

第一章绪论 1.每18个月芯片的性能和速度均提高一倍,每隔12年软件生产大约提高一倍。 2.软件:是能够完成预定功能和性能的可执行的计算机诚信度。包括使程序正常执行所需的数据,以及有关描述程 序操作和使用的文档。即:软件= 程序+ 文档 3.软件的特征: 软件的开发不同于硬件设计、不同于硬件制造、不同于硬件维修。 4.软件危机出现的原因: 软件维护费用的急剧上升,直接威胁计算机应用的扩大; 软件生产技术进步缓慢,是家居软件危机的重要原因。 -------------------------------------------------------------------------------------------------------------------------------------------------------------------- 5.软件工程学的范畴: 软件开发技术(软件开发方法学、软件工具、软件工程环境)、软件工程管理(软件管理学、软件经济学、度量学)。 6.软件工程:是指导计算机软件开发和维护的工程学科。它采用工程的概念、原理、技术和方法来开发与维护软件, 目的是为了实现按照预期的进度和经费完成软件生产计划,同时提高软件的生产率和可靠性。 7.软件的发展:大体经历了程序、软件、软件产品3个阶段。 8.工具和方法是软件开发技术的2大支柱。 9.3种编程泛型: 过程式编程泛型、面向对象编程泛型、基于构件技术的编程泛型 10.面向对象程序设计中,数据和操作被封装在一个对象中,对象之间则是通过消息相互联系。 11.构件:标准化/规格化的对象类。 12.常用变成力度的大小来比较3种编程泛型的差异。 粒度由小到大依次是:过程式编程范式、面向对象编程范式、基于构件的编程泛型。 13.软件工程的分化: 传统软件工程:结构化分析-》结构化设计-》面向过程编码-》软件测试 面向对象软件工程:OO分析与对象抽取-》对象详细设计-》面向对象的编码与测试 基于构件的软件工程(以可复用构件和测试工具为后盾): 领域分析和测试计划定制-》领域设计-》建立可复用构件库-》按‘构件集成模型’查找与集成构件 14.分析先于设计,设计先于编码,使程序(的结构)适合于问题(的结构)。 第二章软件生存周期与软件过程 1.软件生存周期:计划、开发、运行3个时期。 需求分析-》软件分析-》软件设计-》编码测试-》软件测试-》运行维护 2.需求分析(用户视角):功能需求、性能需求、环境约束、外部接口描述。 3.软件分析(开发人员视角):建立与需求模型一致的,与实现无关的软件分析模型。 4.软件设计:总体设计/概要设计、详细设计(确定软件的数据结构和操作)。 5.单元测试通常与编码同时进行。 6.软件测试:单元测试、集成测试、系统测试。 7.Boehm软件生存周期的划分:系统需求、软件需求、概要设计、详细设计、编码纠错、测试和预运行、系统维护。-------------------------------------------------------------------------------------------------------------------------------------------------------------------- 8.瀑布模型特点:阶段间的顺序性和依赖性、推迟实现的观点、保证质量的观点。 9.瀑布模型存在的问题:只有在需求分析准确的前提下,才能得到预期的结果。 快速原型模型:原型系统只包括对未来系统的主要功能以及系统的重要接口。特点:快速开发工具、循环、低成本。种类:渐进型、抛弃型。

蚁群算法原理及在TSP中的应用(附程序)

蚁群算法原理及在TSP 中的应用 1 蚁群算法(ACA )原理 1.1 基本蚁群算法的数学模型 以求解平面上一个n 阶旅行商问题(Traveling Salesman Problem ,TSP)为例来说明蚁群算法ACA (Ant Colony Algorithm )的基本原理。对于其他问题,可以对此模型稍作修改便可应用。TSP 问题就是给定一组城市,求一条遍历所有城市的最短回路问题。 设()i b t 表示t 时刻位于元素i 的蚂蚁数目,()ij t τ为t 时刻路径(,)i j 上的信息量,n 表示TSP 规模,m 为蚁群的总数目,则1()n i i m b t ==∑;{(),}ij i i t c c C τΓ=?是t 时刻集合C 中元素(城市)两两连接ij t 上残留信息量的集合。在初始时刻各条路径上信息量相等,并设 (0)ij const τ=,基本蚁群算法的寻优是通过有向图 (,,)g C L =Γ实现的。 蚂蚁(1,2,...,)k k m =在运动过程中,根据各条路径上的信息量决定其转移方向。这里用禁忌表(1,2,...,)k tabu k m =来记录蚂蚁k 当前所走过的城市,集合随着 k tabu 进化过程作动态调整。在搜索过程中,蚂蚁根据各条路径上的信息量及路 径的启发信息来计算状态转移概率。()k ij p t 表示在t 时刻蚂蚁k 由元素(城市)i 转移 到元素(城市)j 的状态转移概率。 ()*()()*()()0k ij ij k k ij ij ij s allowed t t j allowed t t p t αβ αβτητη??????????? ∈?????=????? ??? ∑若否则 (1) 式中,{}k k allowed C tabuk =-表示蚂蚁k 下一步允许选择的城市;α为信息启发式因子,表示轨迹的相对重要性,反映了蚂蚁在运动过程中所积累的信息在蚂蚁运动时所起作用,其值越大,则该蚂蚁越倾向于选择其他蚂蚁经过的路径,蚂蚁之间协作性越强;β为期望启发式因子,表示能见度的相对重要性,反映了蚂蚁在运动过程中启发信息在蚂蚁选择路径中的重视程度,其值越大,则该状态转移概率越接近于贪心规则;()ij t η为启发函数,其表达式如下: 1 ()ij ij t d η= (2)

KNN算法应用

应用场景 (1)文本分类:文本分类主要应用于信息检索,机器翻译,自动文摘,信息过滤,邮件分类等任务。文本分类在搜索引擎中也有着大量的使用,网页分类/分层技术是检索系统的一项关键技术,搜索引擎需要研究如何对网页进行分类、分层,对不同类别的网页采用差异化的存储和处理,以保证在有限的硬件资源下,提供给用户一个高效的检索系统,同时提供给用户相关、丰富的检索结果。在搜索引擎中,文本分类主要有这些用途:相关性排序会根据不同的网页类型做相应的排序规则;根据网页是索引页面还是信息页面,下载调度时会做不同的调度策略;在做页面信息抽取时,会根据页面分类的结果做不同的抽取策略;在做检索意图识别的时候,会根据用户所点击的url所属的类别来推断检索串的类别。 (2)回归:通过找出一个样本的k个最近邻居,将这些邻居的属性的平均值赋给该样本,就可以得到该样本的属性。更有用的方法是将不同距离的邻居对该样本产生的影响给予不同的权值(weight),如权值与距离成正比。 (3)可以使用knn算法做到比较通用的现有用户产品推荐,基于用户的最近邻(长得最像的用户)买了什么产品来推荐是种介于电子商务网站和sns网站之间的精确营销。只需要定期(例如每月)维护更新最近邻表就可以,基于最近邻表做搜索推荐可以很实时。 文本分类 1.KNN 算法最初由Cover 和Hart 于1968 年提出,该算法的基本思想是:根据传统的向量空间模型,文本内容被形式化为特征空间中的加权特征向量,即 D = D (T1,W1;T2,W2;…;Tn,Wn)。对于一个测试文本,计算它与训练样本集中每个文本的相似度,找出K 个最相似的文本,根据加权距离和判断测试文本所属的类别。 具体算法步骤如下: (1) 对于一个测试文本,根据特征词形成测试文本向量。 (2) 计算该测试文本与训练集中每个文本的文本相似度,计算公式为: 式中: x 为测试文本的特征向量;Sim(x,di)为相似度计算公式;b 为阈值,有待于优化选择;而y(di,Cj)的取值为1 或0,如果di属于Cj,则函数值为1,否则为0 。 (5)比较类的权重,将文本分到权重最大的那个类别中。 2.传统KNN 分类系统 传统的KNN 分类过程如图5-1:

蚁群算法综述

《智能计算—蚁群算法基本综述》 班级:研1102班 专业:计算数学 姓名:刘鑫 学号: 1107010036 2012年

蚁群算法基本综述 刘鑫 (西安理工大学理学院,研1102班,西安市,710054) 摘要:蚁群算法( ACA)是一种广泛应用于优化领域的仿生进化算法。ACA发展背景着手,分析比较国内外ACA研究团队与发展情况立足于基本原理,分析其数学模型,介绍了六种经典的改进模型,对其优缺点进行分析,简要总结其应用领域并对其今后的发展、应用做出展望。 关键词:蚁群;算法;优化;改进;应用 0引言 专家发现单个蚂蚁只具有一些简单的行为能力。但整个蚁群却能完成一系列复杂的任务。这种现象是通过高度组织协调完成的1991年。意大利学者M.Dorigo 首次提出一种新型仿生算法ACA。研究了蚂蚁的行为。提出其基本原理及数学模型。并将之应用于寻求旅行商问题(TSP)的解。 通过实验及相关理论证明,ACA有着有着优化的选择机制的本质。而这种适应和协作机制使之具有良好的发现能力及其它算法所没有的优点。如较强的鲁棒性、分布式计算、易与其他方法结合等;但同时也不应忽略其不足。如搜索时间较长,若每步进行信息素更新,计算仿真时所占用CPU时间过长:若当前最优路径不是全局最优路径,但其信息素浓度过高时。靠公式对信息素浓度的调整不能缓解这种现象。会陷人局部收敛无法寻找到全局最优解:转移概率过大时,虽有较快的收敛速度,但会导致早熟收敛。所以正反馈原理所引起的自催化现象意在强化性能好的解,却容易出现停滞现象。笔者综述性地介绍了ACA对一些已有的提出自己的想法,并对其应用及发展前景提出了展望。 1 蚁群算法概述 ACA源自于蚁群的觅食行为。S.Goss的“双桥”实验说明蚂蚁总会选择距食物源较短的分支蚂蚁之间通过信息素进行信息的传递,捷径上的信息素越多,吸引的蚂蚁越多。形成正反馈机制,达到一种协调化的高组织状态该行为称集体自催化目前研究的多为大规模征兵,即仅靠化学追踪的征兵。 1 .1 蚁群算法的基本原理

混合群智能优化算法研究及应用

混合群智能优化算法研究及应用 优化问题广泛地存在于科学研究和工程实践中。群智能优化算法是优化算法中最新的一个分支,也是最热门的发展方向。群智能优化算法是通过模拟自然界中生物间相互合作、共享信息等群体行为而建立起来的随机搜索算法,相较于经典优化算法具有结构简单、易于实现等优点。不同的群智能优化算法是模拟不同生物行为形成的,所以它们各具特点和适用场景。然而,单一的群智能优化算法均有其局限性,如搜索精度不够高、收敛速度慢、性能受参数影响较大和容易陷入局部最优等。将不同群智能优化算法有机结合,设计混合群智能优化算法是一种提高算法性能的有效方法,具有重要的研究意义。本文的主要研究内容及创新点包括以下几个方面:(1)针对单目标数值优 化问题提出了一种基于跟随蜂搜索的自适应粒子群算法(Follower Bee Search Based Adapitve Particle Swarm Optimization,F-APSO)。首先在经典粒子群算法粒子飞行轨迹分析的基础上提出了一种自适 应的粒子群算法(Adapitve Particle Swarm Optimization,APSO), 提高了算法在求解单峰问题时的性能。然后提出了一种针对自适应粒子群算法的稳定性分析方法,基于该方法对APSO进行了稳定性分析,给出了能够保证算法稳定的参数取值条件。接着通过引入人工蜂群算法中的跟随蜂搜索,提高了算法的开拓性,并将APSO的稳定性条件拓展到了 F-APSO中。仿真实验表明F-APSO在求解单目标数值优化问题时在解的质量和时间消耗上都具有良好表现。将F-APSO用于解决矿山生产排程优化问题,与原有生产方案相比优化后的方案在不同铁

机器学习十大算法8:kNN

Chapter8 k NN:k-Nearest Neighbors Michael Steinbach and Pang-Ning Tan Contents 8.1Introduction (151 8.2Description of the Algorithm (152 8.2.1High-Level Description (152 8.2.2Issues (153 8.2.3Software Implementations (155 8.3Examples (155 8.4Advanced Topics (157 8.5Exercises (158 Acknowledgments (159 References (159 8.1Introduction One of the simplest and rather trivial classi?ers is the Rote classi?er,which memorizes the entire training data and performs classi?cation only if the attributes of the test object exactly match the attributes of one of the training objects.An obvious problem with this approach is that many test records will not be classi?ed because they do not

exactly match any of the training records.Another issue arises when two or more training records have the same attributes but different class labels. A more sophisticated approach,k-nearest neighbor(k NNclassi?cation[10,11,21],?nds a group of k objects in the training set that are closest to the test object,and bases the assignment of a label on the predominance of a particular class in this neighborhood.This addresses the issue that,in many data sets,it is unlikely that one object will exactly match another,as well as the fact that con?icting information about the class of an object may be provided by the objects closest to it.There are several key elements of this approach:(ithe set of labeled objects to be used for evaluating a test object’s class,1(iia distance or similarity metric that can be used to compute This need not be the entire training set. 151 152kNN:k-Nearest Neighbors the closeness of objects,(iiithe value of k,the number of nearest neighbors,and(iv the method used to determine the class of the target object based on the classes and distances of the k nearest neighbors.In its simplest form,k NN can involve assigning an object the class of its nearest neighbor or of the majority of its nearest neighbors, but a variety of enhancements are possible and are discussed below. More generally,k NN is a special case of instance-based learning[1].This includes case-based reasoning[3],which deals with symbolic data.The k NN approach is also an example of a lazy learning technique,that is,a technique that waits until the query arrives to generalize beyond the training data. Although k NN cl assi?cation is a classi?cation technique that is easy to understand and implement,it performs well in many situations.In particular,a well-known result by Cover and Hart[6]shows that the classi?cation error2of the nearest neighbor rule is

软件工程-原理、方法及应用(史济民第二版)答案

软——应 课习题 件工程原理、方法与用后答案最完整版 绪论 1.什么是软件危机?为什么会产生软件危机? 答:软件危机是指在计算机软件的开发和维护过程中遇到的一系列严重问题。 (1).软件维护费用急剧上升,直接威胁计算机应用的夸大。 (2).软件生产技术进步缓慢 2. 什么是软件生产工程化?工程化生产方法与早期的程序设计方法主要差别在哪里? 答:结构化程序设计地出现,使许多产业界认识认识到必须把软件生产从个人化方式改变为工程化。采用工程的概念、原理、技术和方法开发与维护软件,把经过时间考验而证明正确的管理技术和当前能够得到的最好的技术方法结合起来,以经济地开发出高质量的软件并有效地维护它,这就是软件工程,同时这也是工程化生产方法。 3. 分别说明(1)软件开发方法与开发工具;(2)软件技术与软件管理的相互关系。 答:(1)工具和方法,是软件开发技术的两大支柱,它们密切相关。当一种方法提出来并证明有效后,往往随之研制出相应的工具,来帮助实现和推行这种方法。新方法在推行初期,总有人不愿接受和采用。若将新方法融合于工具之中,使人们通过使用工具来了解新方法,就能更快促进新方法的推广。 (2)在工业生产中,即使有先进的技术和设备,管理不善的企业也不能获得良好的效益。 软件在生产中不能按质按时完成计划,管理混乱往往是其中的重要原因。所以对于一个理想的软件工程环境,应该同时具备技术和管理两个方面。 4.试从你的亲身实践,谈谈软件工具在软件开发中的作用。 答:用C++开发一个软件,是校园一卡通的模块。首先,要在编辑程序支持下在计算机中输入源程序。然后编译程序,把源程序翻译成目标程序。如果发现错误,就重新调入编辑程序对源程序进行修改。编译通过后,再调用连接程序吧所有通过了编译目标程序连同与之有关的程序连接起来,构成一个能在计算机上运行的可执行软件。编译程序,编辑程序,连接程序以及支持他们的计算机操作系统,都属于软件工具。离开这些工具,软件开发就是去了支持,变得十分困难和低效,甚至不能运行。5.什么是软件工程环境?谈谈你对环境重要性的认识。 答:方法与工具相结合,再加上配套的软、硬件支持就形成环境。例如在批处理时代,用户开发的程序是分批送入计算机中心的计算机的,有了错误,就得下机修改。程序员对自己写的程序只能继续地跟踪,思路经常被迫中断,效率难于提高。分时系统的使用,使开发人员从此能在自己的终端上跟踪程序的开发,仅此一点,就明显提高了开发的效率。 6. 何谓面向对象软件工程?简述它与传统软件工程在各型软件开发中的作用。 答:以面向对象程序设计为基础。 7. 软件按规模大小可分成哪几类?简述软件工程中各型软件开发中的作用。 答:按规模分为极小、小、中、大、甚大、极大。 (1)中小型软件:软件工程对改进软件质量,提高程序员生产率和满足用户的需求,有很大的作用。(2)大型软件:这类软件必须从头至尾坚持软件工程的方法,严格遵守标准文档格式和正规的复审制度,才能避免或减少混乱,真正开发出大型的软件。 8. 什么是形式化软件开发方法?实现这类开发的困难和出路在哪里?

KNN算法实验报告

KNN算法实验报告 一试验原理 K最近邻(k-NearestNeighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。 该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。KNN算法中,所选择的邻居都是已经正确分类的对象。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决 定待分样本所属的类别。KNN方法虽然从原理上也依赖于极限定理,但在类别决策时,只与极少量的相邻样本有关。由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合。 KNN算法不仅可以用于分类,还可以用于回归。通过找出一个样本的k个最近邻居,将这些邻居的属性的平均值赋给该样本,就可以得到该样本的属性。更有用的方法是将不同距离的邻居对该样本产生的影响给予不同的权值(weight),如权值与距离成正比。 该算法在分类时有个主要的不足是,当样本不平衡时,如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数。该算法只计算“最近的”邻居样本,某一类的样本数量很大,那么或者这类样本并不接近目标样本,或者这类样本很靠近目标样本。无论怎样,数量

并不能影响运行结果。可以采用权值的方法(和该样本距离小的邻居权值大)来改进。该方法的另一个不足之处是计算量较大,因为对每一个待分类的文本都要计算它到全体已知样本的距离,才能求得它的K个最近邻点。目前常用的解决方法是事先对已知样本点进行剪辑,事先去除对分类作用不大的样本。该算法比较适用于样本容量比较大的类域的自动分类,而那些样本容量较小的类域采用这种算法比较容易产生误分。 二试验步骤 那么根据以上的描述,我把结合使用反余弦匹配和kNN结合的过程分成以下几个步骤: 1.计算出样本数据和待分类数据的距离 2.为待分类数据选择k个与其距离最小的样本 3.统计出k个样本中大多数样本所属的分类 4.这个分类就是待分类数据所属的分类 数学表达:目标函数值可以是离散值(分类问题),也可以是连续值(回归问题).函数形势为f:n维空间R—〉一维空间R。 第一步:将数据集分为训练集(DTrn)和测试集(DTES)。 第二步:在测试集给定一个实例Xq;在训练集(DTrn)中找到与这个实例Xq的K-最近邻子集{X1、、、、XK},即:DKNN。 第三步:计算这K-最近邻子集得目标值,经过加权平均: ^f(Xq)=(f(X1)+...+f(XK))/k作为f(Xq)的近似估计。改进的地方:对

分子对接的原理,方法及应用

分子对接的原理,方法及应用 (PPT里弄一些分子对接的照片,照片素材文件里有) 分子对接 是将已知三维结构数据库中的分子逐一放在靶标分子的活性位点处。通过不断优化受体化合物的位置、构象、分子内部可旋转键的二面角和受体的氨基酸残基侧链和骨架,寻找受体小分子化合物与靶标大分子作用的最佳构象,并预测其结合模式、亲和力和通过打分函数挑选出接近天然构象的与受体亲和力最佳的配体的一种理论模拟分子间作用的方法。 通过研究配体小分子和受体生物大分子的相互作用,预测其亲和力,实现基于结构的药物设计的一种重要方法。 原理: 按照受体与配体的形状互补,性质互补原则,对于相关的受体按其三维结构在小分子数据库直接搜索可能的配体,并将它放置在受体的活性位点处,寻找其合理的放置取向和构象,使得配体与受体形状互补,性质互补为最佳匹配 (配体与受体结合时,彼此存在静电相互作用,氢键相互作用,范德华相互作用和疏水相互作用,配体与受体结合必须满足互相匹配原则,即配体与受体几何形状互补匹配,静电相互作用互补匹配,氢键相互作用互补匹配,疏水相互作用互补匹配) 目的: 找到底物分子和受体分子的最佳结合位置 问题: 如何找到最佳的结合位置以及如何评价对接分子之间的结合强度 方法: 1、首先建立大量化合物的三维结构数据库 2、将库中的分子逐一与靶分子进行“对接” 3、通过不断优化小分子化合物的位置以及分子内部柔性键的二面角,寻找小分子化合物与靶标大分子作用的最佳构象,计算其相互作用及结合能 4、在库中所有分子均完成了对接计算之后,即可从中找出与靶标分子结合的最佳分子 应用: 1)直接揭示药物分子和靶点之间的相互作用方式 2)预测小分子与靶点蛋白结合时的构象 3)基于分子对接方法对化合物数据库进行虚拟筛选,用于先导化合物的发现

群智能优化算法综述

现代智能优化算法课程群智能优化算法综述学生姓名: 学号: 班级: 2014年6月22日

摘要 工程技术与科学研究中的最优化求解问题十分普遍,在求解过程中,人们创造与发现了许多优秀实用的算法。群智能算法就是一种新兴的演化计算技术,已成为越来越多研究者的关注焦点,智能优化算法具有很多优点,如操作简单、收敛速度快、全局收敛性好等。群智能优化就是智能优化的一个重要分支,它与人工生命,特别就是进化策略以及遗传算法有着极为特殊的联系。群智能优化通过模拟社会性昆虫的各种群体行为,利用群体中个体之间的信息交互与合作实现寻优。本文综述群智能优化算法的原理、主要群智能算法介绍、应用研究及其发展前景。 关键词:群智能;最优化;算法

目录 摘要 0 1 概述 (2) 2 定义及原理 (2) 2、1 定义 (2) 2、2 群集智能算法原理 (3) 3 主要群智能算法 (3) 3、1 蚁群算法 (3) 3、2 粒子群算法 (4) 3、3 其她算法 (5) 4 应用研究 (6) 5 发展前景 (6) 6 总结 (7) 参考文献 (8)

1 概述 优化就是人们长久以来不断研究与探讨的一个充满活力与挑战的领域。很多实际优化问题往往存 在着难解性,传统的优化方法如牛顿法、共扼梯度法、模式搜索法、单纯形法等己难以满足人们需求。 因此设计高效的优化算法成为众多科研工作者的研究目标。随着人类对生物启发式计算的研究, 一些社会性动物( 如蚁群、蜂群、鸟群) 的自组织行为引起了科学家的广泛关注。这些社会性动物在漫长的进化过程中形成了一个共同的特点: 个体的行为都很简单, 但当它们一起协同工作时, 却能够“突现”出非常复杂的行为特征。基于此,人们设计了许多优化算法,例如蚁群算法、粒子群优化算法、混合蛙跳算法、人工鱼群算法,并在诸多领域得到了成功应用。目前, 群智能理论研究领域主要有两种算法: 蚁群算法(Ant Colony Optimization, ACO) 与粒子群优化算法(ParticleSwarm Optimization, PSO)。 2 定义及原理 2、1 定义 群集智能优化算法源于对自然界的生物进化过程或觅食行为的模拟。它将搜索与优化过程模拟成个体的进化或觅食过程,用搜索空间中的点模拟自然界中的个体;将求解问题的目标函数度量成个体对环境的适应能力;将个体的优胜劣汰过程或觅食过程类比为搜索与优化过程中用好的可行解取代较差可行解的迭代过程。从而,形成了一种以“生成+检验”特征的迭代搜索算法,就是一种求解极值问题的自适应人工智能技术。各类优化算法实质上都就是建立问题的目标函数,求目标函数的最优解,因而实际工程优化问题均可转化为函数优化问题。其表达形式如下: 求: ,,2,1,0)(..), (min , ,,2,1,),,,(21Lm j X g t s X f n L i x L x x X i T n i =≤== 。Ω∈X 其中,i X 为设计变量;)(X f 为被优化的目标函数;0)(≤X g j 为约束函数;Ω为设计变量的可行

相关文档