文档视界 最新最全的文档下载
当前位置:文档视界 › 改进遗传算法在移动机器人路径规划中的应用

改进遗传算法在移动机器人路径规划中的应用

改进遗传算法在移动机器人路径规划中的应用
改进遗传算法在移动机器人路径规划中的应用

第28卷 第4期计 算 机 仿 真2011年4月 文章编号:1006-9348(2011)04-0193-03

改进遗传算法在移动机器人路径规划中的应用

石铁峰

(广西机电职业技术学院,广西南宁530007)

摘要:研究机器人路径规划问题,传统的遗传算法存在早熟收敛和收敛速度慢,影响路径规划的效率,针对移动机器人路径

规划的难题,为了提高路径规划的效率,提出一种基于遗传模拟退火算法的移动机器人最优路径规划方法。应用简化编码

长度的技术简化了工作路径编码方式,对于基于遗传算法产生初始路径种群后的各路径的适应值进行评价。经过多次交

叉、变异,并借助模拟退火中M etropolis算法的随机移动准则制定了高效的温度更新函数,获得了从起始点到目标点的一条

全局最优路径,并在M ATLAB环境中进行了仿真。仿真果证明算法的收敛速度、搜索质量和最优路径规划效率都有了明显

的提高。

关键词:移动机器人;遗传算法;模拟退火算法;路径规划

中图分类号:TP242 文献标识码:B

R esearch on Path P l anning for M obile Robot

Based on I mproved G enetic A lgorith m

S H I T ie-feng

(Guangx i T echno l og ical Co llege ofM achi nery and E lectr i c ity,N ann i ng Guangx i530007,Ch i na) AB STRACT:P re m ature and l ow er converg ent speed i s t w o puzzli ng prob l em s i n applying genetic a l go rith m,a ge

netica ll y si m u l a ted annea ling a l gor it hm o f opti m um path plann i ng f o r mob ile robo ts i s proposed.Chang i ng o f t w o-di

m ensiona l codes i nto one-di m ensi onal codes is adopted to si m p lify the encoding pa t h.An i n itia lization popu l ation

w as produced based on gene tic a l gor ith m,and the fitness value of each path is eva l uated.A n e ffi c ient temperature

updati ng function w as dev ised t hrough a se ries c rossover and m utation.And by adopti ng the random mov i ng ru l e of

M e tropo lis algorith m,a g l oba l op ti m a l path was obta i ned fro m the starti ng po i nt to the targe t po i nt.F i nall y,the feasi

b ili ty and e fficiency of this a l go rith m are verified i n the M a tl ab env iron m en.The si m u l a ti on results demonstrate that

the proposed algor i th m has achiev ed consi derab l e i m prove m en ts i n conve rgence speed,sea rch qua lity and the best

path com pared to the basic genetic a l gor it hm.

K EY W ORDS:M obil e robo t;G enetic algorith m;S i m u lated anneali ng a l gor it hm;Path planni ng

1 引言

路径规划是研究移动机器人技术的一个活跃课题,所谓路径规划是指移动机器人按照某一性能指标搜索一条从起始状态到目标状态的最优或次最优的无碰路径[1]。

目前,很多学者对路径规划做了大量的研究并提出一些方法,有栅格法和人工势场法等[2,3],但这些算法都存在着一些不足,栅格法当空间增大时所需存储空间剧增,决策速度慢[4];而人工势场法有可能产生极小路径点,使得机器人停滞不前,从全局上把握不了路径的质量[5]。近年来,遗传算法由于它的优化能力已经被广泛应用于移动机器人路径规划的研究中[6]。遗传算法把遗传算子引人到机器人学的研究领域,仿真结果表明它对机器人运动路径的改善具有良好的效果。尽管遗传算法应用于机遗传算法是目前路径规划研究中应用较多的一种方法,但是遗传算法运算进化代数众多,占据较大的存储空间和运算时间,本身所存在的一些缺陷,如解的早熟现象、局部寻优能力差等,保证不了对路径规划的计算效率和可靠性的要求[7]。

针对传统遗传算法的存在的问题,而模拟退火算法具有较强的局部搜索能力,所以把遗传算法与模拟退火相结合,提出一种遗传算法和模拟退火算法相结合的机器人路径规划方法。并进行了仿真实验,仿真结果表明使用该方法进行

收稿日期:2010-04-20

机器人路径规划寻优是实验结果证明了其可行性和有效性,具有很强的全局和局部搜索能力的优点。

2 机器人路径规划原理

机器人路径规划是实现移动机器人智能化的一个关键技术,它是指按照某一性能指标搜索一条从起始状态到目标状态的最优或近似最优的无碰撞路径。无论机器人路径规划属于哪种类别,采用何种规划算法,基本上都要遵循以下步骤:

1)建立环境模型,即将现实世界的问题进行抽象后建立相关的模型;

2)路径搜索方法,即寻找合乎条件的路径的算法。机器人路径规划的原理如图1所示。

建立环境模型路径搜索算法最优路径

图1 机器人路径规划原理图

从图1可知,路径搜索算法的选择是机器人路径规划最关键的一步。目前有多种路径搜索算法出现,包括有人工势场法、随机位图法、快速随机树、神经网络法等。这些算法都在不同的方面有着各自的优势,然而在总体上,这些路径规划算法都还存在各自的不足,如计算复杂度,局部最优解,地图适应性,全局及多目标优化能力。遗传算法是一种启发式搜索寻优方法,具有优良的全局寻优能力和隐含的并行计算特性,规划机器人路径中取得了较好的效果。

但传统的遗传算法存在着早熟和收敛速度慢这两个难题,早熟收敛导致产生局部最优值,而收敛速度慢影响遗传算法在实时性要求比较高的环境中的应用。为了解决这个难题,本文引入较强的局部搜索和摆脱局部最优点的能力的模拟退火算法对遗传算法进行改进,避免其局部最优值,加快其收敛收度。所以使用遗传算法与模拟退火算法相结合的方法,是解决上述问题的有效途径。

3 基于遗传算法模拟退算法的路径规划

3.1 初始路径生成与适应值确定

3.1 1 路径编码方式

遗传算法中,影响计算时间的主要因素是编码长度和搜索空间,太长的编码长度和太大的搜索空间都会使计算时间迅速增长,因此,采用简化编码长度技术,即把路径的二维编码简化为一维编码,编码采用浮点数编码方法,个体编码长度不固定,在初始种群产生时结合路径规划的免碰撞约束条件,使得每个个体都是可行路径。编码形式如图2所示。

y 1y

2

y

3

y

图2 路径编码方式

3.1 2 初始解群

为了减小搜索范围的盲目性,这里初始路径为随机生成的从出发点到目标点的任意一条可行路径集合。方法是:从起始点出发随机选取与起始点相邻的一个点作为下一个路径点,如此反复,直到找到终点为止。在路径的产生过程中,为了避免循环路径,规定在一条路径中当一个路径节点被选中以后,则给该节点一个标记,只有没有标注标记的节点才能被选作新的路径节点,每条路径选择完后,标记全部刷新。

3.1 3 适应度函数

每条路径的优劣评价通过适应度函数来给出。本文中,以路径长度和障碍物相交程度作为评价指标,并使所求解向这些指标渐小的方向进化,所以这里的适应度函数又被称为代价函数。使各项指标在代价函数中表现出来,于是该函数构造如下:

f(T

k

)=

1

N-1

i=1

p

i

+

2

N-1

i=1

i

(1)

其中:

1

2

为权重系数,分别强调了不同优化指标的重要

性。式中第1项为表示路径T

k

的总长度,p

i

表示路径T

k

中第i段直线段的长度。在后面的运行过程中,算法试图使代价函数最小化并认为使得该函数取得较小值的解为较优解。

3.2 遗传操作算子

遗传操作是决定GA性能的关键因素之一,下面对其进行具体的描述。

3.2 1 选择算子

选择算子将种群中的个体进行适应值评价,根据适应函数值的大小进行群体选择,选择方法采用最优解保存法。首先,使用适应度比例方法进行选择,然后将当前群体中适应度最高的个体直接复制到下一代群体中。各个个体的选择概率和其适应度值成比例,个体适应度越大,其被选择的概

率就越高。设群体大小为N,则个体i被选择的概率p

i

为:

p

i

=

f(i)

N

i=1

f(i)

(2)

3.2 2 交叉算子

选择算子只能在现有群体中寻优,而不能产生与父代不同的个体,交叉算子可使同一代的某对个体间,按一定的概率交换其中的部分基因,从而产生新的基因组合,可获得比父代更优的个体。交叉率的选择决定了交叉操作的频率,频率越高,可以越快地收敛到最优区域解,但是频率太高可能导致过早收敛。本文中采用单点交叉,交叉的位置和交叉的点数是随机确定的,用交叉后的子代个体代替原种群中的父代个体,产生新的种群。

3.2 3 变异算子

选择和交叉算子只能在现有基因型的排列组合内寻找最优,而不能产生新的基因型,这会使问题过早收敛而得不到最优解,变异算子可使基因型发生变化,从而扩大寻优范围避免陷入局部极小点。本文对交叉后的子代个体基因按小概率扰动经历变异,通常取很小的值,一般取0 001~0 4,本文在新的个体中加入[-0 15,0 15]之间的零均值高斯白

噪声作为随机扰动,寻找最优解。

3.3 模拟退火算法的参数设置

模拟退火算法中的起始温度T

和温度下降方法,以及停止温度的选择是影响整体算法行为和性能的关键所在,直接影响算法的收敛性。

1)初始温度的设定。主要思想是为了使平稳分布中每

一状态的概率相等,T

0=k ,k充分大, =m ax{f

c

c D-m i n f

c

c D};

2)温度下降方法采用快速退火方式,其特点是在高温区,温度的下降是比较快的;在低温区,降温的速率较小。温

度更新函数:T(t)=

T

1+ t

;

3)停止温度的设定。采用判断达到循环的总次数或当在同一个温度及一定的迭代次数内没有改进当前局部最优解时就认为达到停止温度,停止循环。

3.4 基于遗传模拟退火算法的路径规划算法步骤

用遗传模拟退火方法进行静态环境中机器人全局路径规划的步骤:

1)设置种群规模大小M,遗传代数计数器初始化:gen= 0,设置初始温度参数T

,生成初始路径集合P(gen);

2)计算P(gen)中各条路径的适应值:f it

1,f it

2

, ,f it

M

;

3)对现有种群实施如下操作,直到产生出下一代新的种群:

由选择算子从父代路径中进行子代路径选择操作:P

s (gen) selection[P(gen)];

由交叉算子进行子代路径交叉操作::由P

s

(g en)中第

i个个体P

si (g en)和第j个个体P

sj

(gen)交叉得到新个体P

ci

(gen)和P

cj (gen),并计算P

ci

(g en)和P

cj

(gen)的适应度函

数值。

根据式(5)和(6)的接受概率P

i 和P

j

来确定是接受

P

ci (gen)和P

cj

(g en)还是拒绝P

ci

(gen)和P

cj

(gen),最后得到

交叉退火之后的新种群P

c

(gen);

P

i =

exp(

f it(si)-f it(ci)

T

),fit(si)

1,fit(si) f it(ci)

(3)

P

i =

exp(

f it(sj)-f it(cj)

T

),fit(sj)

1,f it(sj) f it(cj)

(4)

根据变异算子进行子代路径变异操作,对第i个个体

变异得到P

m i (gen)新个体,再以式(5)的概率接受P

m i

(gen)

个体。最后得到变异退火之后的新种群P

m

(g en);

P(i i )=exp(

fit(i)-f it(i )

T

),fit(i )>fit(i)

1,fit(i ) f it(i)

(5)

其中,i为变异前状态,i 为变异后状态。

遗传代数终止条件是否满足,若不满足,则:P(gen+1)=P

m

(gen),转到步骤 ;若满足则转动步骤4);

4)终止条件判断。若不满足终止条件,则按降温表更新温度参数T,t t+1,转向3);若满足终止条件;则输出当前最优路径。

上述的基于模拟退火遗传算法的机器人路径规划流程如图3所示。

图3 遗传模拟退火算法的路径规则流程图

用上述的遗传模拟退火算法进行静态环境下的路径规划,主要有2个优点: 遗传模拟退火算法吸收了遗传算法中的交叉和变异的特性,从而它具有遗传算法本身所固有的特性即隐并行性; 模拟退火部分采用M etropo li s机制来接受和舍弃新解,又利用模拟退火算法从而避免了遗传算法陷入局部最优的问题

4 仿真实验结果与分析

为了验证本文提出的路径规划方法的有效性和可行性,利用M atl ab7 0对其进行了计算机仿真实验,通常最佳适应度和平均代数不能同时取到最小值,经过比较选择,取初始种群规模为20,交叉率为0 5,变异率为0 01,起始温度参数k为100,温度下降参数 为0 8,最大遗传代数200。选定各参数的取值后,进行了基于标准遗传算法和遗传模拟退火算法的路径规划仿真。

图4为两种算法最佳适应度收敛曲线的比较图,对比两条曲线,标准遗传算法在130代陷入局部最优解,最终搜索结果为13m,没达到理想的搜索结果。遗传模拟退火算法克服了收敛较慢,易陷入局部最优解的缺点,(下转第303页)

[2] 马义德,等.改进的基于高斯混合模型的运动目标检测方法

[J ].计算机应用,2007,(10):2544-2548.

[3] 巍瑞斌.基于多特征的运动目标跟踪[D].西北大学硕士学位

沦文,2007-6.

[4] 代凯乾,刘肖琳.基于图像序列的人体跟踪[J].计算机仿真,

2007,24(7).

[5] 孙志海,朱善安.多视频运动对象实时分割及跟踪技术[J ].

浙江大学学报(工学版),2008,42(9):1631-1635.

[6] D CLo w e .D isti n cti ve i m age f eatures fro m scale-i nvari an t key

points[J].In ternati onal Journal Co m puter V ision ,2004,60(2):91-110

.

[作者简介]

杨华庆(1974-),男(汉族),山东聊城人,硕士,

讲师,主要研究方向:网络安全、计算机技术应用。

(上接第195页)

算法在80代趋于稳定,搜索到全局最优解为13m ,搜索到的最优解即为机器人的静态最优路径,其收敛值所表示的安全和平滑性明显优于遗传算法。图5为图神经网络网络工作环境下的静态路径规划结果。其中虚线为标准遗传算法的最优解,实线为遗传模拟退火算法的最优解,从图5可知,遗传模拟退火算法的最

优路径比遗传算法要短得多。

5 结束语

针对传统遗算法局部搜索能力较差,收敛速度慢的缺点,提出一种基于遗传模拟退火算法的移动机器人路径规划方法,该算法避免了遗传算法收敛较慢、局部寻优能力差、易陷人局部极值点等缺点,使得遗传算法和模拟退火算法在路径规划中达到优势互补的目的。并通过仿真实验,实验结果表明,改进遗传算法搜索成功率更高、平均代价值更小、路径长度更短,可以达到了满意的规划效果和收敛速度。参考文献:

[1] 黄席秘,蒋卓强.基于遗传模拟退火算法的静态路径规划研究

[J].重庆工学院学报,2007,21(6):53-57.

[2] 唐国新,陈雄,袁杨.基于改进遗传算法的机器人路径规划

[J].计算机工程与设计,2007,28(18):4446-4449.

[3] C H ocaogl u,C S anderson .P l ann i ng mu lti p l e pat hs w ith evol u tion

ary s p eci ati on [J ].

I EEE T rans on E voluti onary Co m putation ,

2001,5(3):169-191.

[4] 田春颖,刘瑜.基于栅格地图的移动机器人完全遍历算法矩形

分解法[J].机械工程学报,2004,(10):56-61.

[5] 何小燕,等.In ternet 中的一种基于遗传算法的QoS 路由选择

策略[J].计算机学报,2000,23(11):1171-1178.

[6] 杜宗宗,刘国栋.基于遗传模拟退火算法的移动机器人路径规

划[J].计算机仿真,2009,26(12):11-121.

[7] 徐丽佳,蒲海波,蒋宏健.改进遗传算法的路径规划研究[J].

微计算机信息,2006,22(5):251-253

.

[作者简介]

石铁峰(1962-),男(壮族),广西南宁人,副教

授,研究方向:网络技术、网络教学。

遗传算法与机器人路径规划

遗传算法与机器人路径规划 摘要:机器人的路径规划是机器人学的一个重要研究领域,是人工智能和机器人学的一个结合点。对于移动机器人而言,在其工作时要求按一定的规则,例如时间最优,在工作空间中寻找到一条最优的路径运动。机器人路径规划可以建模成在一定的约束条件下,机器人在工作过程中能够避开障碍物从初始位置行走到目标位置的路径优化过程。遗传算法是一种应用较多的路径规划方法,利用地图中的信息进行路径规划,实际应用中效率比较高。 关键词:路径规划;移动机器人;避障;遗传算法 Genetic Algorithm and Robot Path Planning Abstract: Robot path planning research is a very important area of robotics, it is also a combine point of artificial intelligence and robotics. For the mobile robot, it need to be worked by certain rulers(e.g time optimal),and find a best movement path in work space. Robot path planning can be modeled that in the course of robots able to avoid the obstacles from the initial position to the target location,and it ruquire to work under ertain constraints. Genetic algorithm used in path planning is very common, when planning the path ,it use the information of map ,and have high eficient in actual. Key words: Path planning,mobile robot, avoid the obstacles, genetic algorithm 1路径规划 1.1机器人路径规划分类 (1)根据机器人对环境信息掌握的程度和障碍物的不同,移动机器人的路径规划基本上可分为以下几类: 1,已知环境下的对静态障碍物的路径规划; 2,未知环境下的对静态障碍物的路径规划; 3,已知环境下对动态障碍物的路径规划; 4,未知环境下的对动态障碍物的路径规划。 (2)也可根据对环境信息掌握的程度不同将移动机器人路径规划分为两种类型: 1,基于环境先验完全信息的全局路径规划; 2,基于传感器信息的局部路径规划。 (第二种中的环境是未知或部分未知的,即障碍物的尺寸、形状和位置等信息必须通过传感器获取。) 1.2路径规划步骤 无论机器人路径规划属于哪种类别,采用何种规划算法,基本上都要遵循以下步骤: 1, 建立环境模型,即将现实世界的问题进行抽象后建立相关的模型; 2, 路径搜索方法,即寻找合乎条件的路径的算法。 1.3路径规划方法

机器人路径规划方法的研究

第5期(总第156期) 2009年10月机械工程与自动化 M ECHAN I CAL EN G I N EER I N G & AU TOM A T I ON N o 15 O ct 1 文章编号:167226413(2009)0520194203 机器人路径规划方法的研究 李爱萍,李元宗 (太原理工大学机械工程学院,山西 太原 030024) 摘要:路径规划技术是机器人学研究领域中的一个重要部分。目前的研究主要分为全局规划方法和局部规划方法两大类。通过对机器人路径规划方法研究现状的分析,指出了各种方法的优点及不足,并对其发展方向进行了展望。 关键词:机器人;全局规划;局部规划中图分类号:T P 242 文献标识码:A 收稿日期:2009201207;修回日期:2009204218 作者简介:李爱萍(19792),女,山西晋中人,在读硕士研究生。 0 引言 路径规划技术是机器人学研究领域中的一个重要 部分。机器人的最优路径规划就是依据某个或某些优化准则(如工作代价最小、行走路线最短、行走时间最短等),在其工作空间中找到一条从起始状态到目标状态的最优路径。根据对环境信息的掌握程度不同,路径规划可分为:①全局路径规划:环境信息完全已知,根据环境地图按照一定的算法搜寻一条最优或者近似最优的无碰撞路径,规划路径的精确程度取决于获取环境信息的准确程度;②局部路径规划:环境信息完全未知或部分未知,根据传感器的信息来不断地更新其内部的环境信息,从而确定出机器人在地图中的当前位置及周围局部范围内的障碍物分布情况,并在此基础上,规划出一条从当前点到某一子目标点的最优路径。 1 全局规划方法111 栅格法 栅格法是目前研究最广泛的路径规划方法之一。该方法将机器人的工作空间分解为多个简单的区域(栅格),由这些栅格构成一个显式的连通图,或在搜索过程中形成隐式的连通图,然后在图上搜索一条从起始栅格到目标栅格的路径。一般路径只需用栅格的序号表示。但栅格的划分直接影响其规划结果,如果栅格划分过大,环境信息储藏量小,分辨率下降,规划能力就差;栅格划分过小,规划时间长,而且对信息存储能力的要求会急剧增加。112 可视图法 可视图法中的路径图由捕捉到的存在于机器人一 维网络曲线(称为路径图)自由空间中的节点组成。路径的初始状态和目标状态同路径图中的点相对应,这样路径规划问题就演变为在这些点间搜索路径的问题。要求机器人和障碍物各顶点之间、目标点和障碍物各顶点之间以及各障碍物顶点与顶点之间的连线均不能穿越障碍物,即直线是“可视的”。然后采用某种方法搜索从起始点到目标点的最优路径,搜索最优路径的问题就转化为从起始点到目标点经过这些可视直线的最短距离问题。该法能够求得最短路径,但需假设忽略机器人的尺寸大小,使得机器人通过障碍物顶点时离障碍物太近甚至接触,并且搜索时间长。113 拓扑法 拓扑法将规划空间分割成具有拓扑特征的子空间,根据彼此的连通性建立拓扑网络,在网络上寻找起始点到目标点的拓扑路径,最终由拓扑路径求出几何路径。拓扑法的基本思想是降维法,即将在高维几何空间中求路径的问题转化为低维拓扑空间中判别连通性的问题。其优点在于利用拓扑特征大大缩小了搜索空间,其算法的复杂性仅依赖于障碍物数目,在理论上是完备的;而且拓扑法通常不需要机器人的准确位置,对于位置误差也就有了更好的鲁棒性。缺点是建立拓扑网络的过程相当复杂,特别是在增加障碍物时如何有效地修正已经存在的拓扑网是有待解决的问题。 114 自由空间法 自由空间法采用预先定义的广义锥形或凸多边形等基本形状构造自由空间,并将自由空间表示为连通图,通过搜索连通图来进行路径规划。自由空间的构

移动机器人完全遍历路径规划算法研究

东南大学 硕士学位论文 移动机器人完全遍历路径规划算法研究 姓名:胡正聪 申请学位级别:硕士 专业:机械电子工程 指导教师:张赤斌 20080403

第一章绪论 第一章绪论 1.1移动机器人的发展史 社会的主体是人类,历史的推动者是人类,伟大的人类运用自己的智慧不断创造伟大的发明,不断推动社会的发展。邓小平同志说过:“科技是第一生产力。”生产力是社会发展的动力,所以人类推动社会发展就是要致力于发展生产力,致力于发展科技。人类不断发展生产力来提高自身认识自然、改造自然、得到自己所需物质的能力,这种能力的进化由最初的运用双手、简单工具、发展到运用畜力、发展到运用简单机器、发展到运用自动化设备、还会发展到我们无法想象的未来。 机器人就是生产力发展的产物。机器人的概念最早是在1920年的科幻小说中提出的,而早期的机器人如1939年美国纽约世界博览会上展出的西屋电气公司制造的家用机器人Elektro和1956年美国人乔治?德沃尔制造出的世界上第一台可编程的机器人都是一些实用价值不高的机器人,它们是现代机器人的雏形。上世纪60年代,由于传感器和计算机技术的发展及应用,兴起了全世界第二代机器人的研究热潮,并向人工智能进发。1968年,美国斯坦福研究所公布了他们研发成功的机器人Shakey。它带有视觉传感器,能根据人的指令发现并抓取积木。Shakey可以算是世界第一台智能机器人,它拉开了第三代机器人研发的序幕。到了上世纪80年代,发达国家都组建各种机器人研究机构,尤其是以美国为代表的国家将机器人的研究列入了军事发展计划,带动各国把机器人的研究推上了高潮,日本和欧洲各国都成立了各自的机器人研究中心和规划了自己的研究计划。进入90年代后,机器人的应用领域除了工业和军事外,还涉及到了服务和娱乐领域,以日本本田公司的ASIMO人型机器人和索尼公司的AIBO娱乐机器人为代表的机器人展示了机器人领域各方面的先进研究成果。在欧洲,2002年丹麦iRobot公司推出了吸尘器机器人Roomba,它能避开障碍,自动设计行进路线,还能在电量不足时,自动驶向充电座。Roomba是目前世界上销量最大、最商业化的家用机器人。2006年6月,微软公司推出MicrosoRRoboticsStudio,机器人模块化、平台统一化的趋势越来截明显,比尔?盖茨预言:“家用机器人很快将席卷伞球。” 图1.1丹麦iRobot公司推出的吸尘机器人Roomba[

机器人路径规划

1绪论 1.1机器人简介 1.1.1什么是机器人 机器人一词不仅会在科幻小说、动画片等上看到和听到,有时也会在电视上看到在工厂进行作业的机器人,在实际中也有机会看到机器人的展示。今天,说不定机器人就在我们的身过,但这里我们要讨论的是什么是机器人学研究的机器人。 机器人(robot)一词来源下1920年捷克作家卡雷尔. 查培克(Kapel Capek)所编写的戏剧中的人造劳动者,在那里机器人被描写成像奴隶那样进行劳动的机器。 后来作为一种虚构的机械出现在许多作品中,代替人们去完成某些工作。20世纪60年代出现了作为可实用机械的机器人。为了反这种机器人同虚构的机器人及玩具机器人加以区别,称其为工业机器人。 工业机器人的兴起促进了大学及研究所开展机器人的研究。随着计算机的普及,又积极地开展了带有智能的机器人的研究。到70年代,机器人作为工程对象已经被确认,机器人一词也受到公认。目前,机器人学的研究对象已不仅仅是工业机器人了。 即便是实际存在的机器人,也很难把它定义为机器人,而且其定义也随着时代在变化。这里简单地反具有下述性质的机械看作是机器人: 1.代替人进行工作:机器人能像人那样使用工具和机械,因此,数控机床和 汽车不是机器人。 2.有通有性:既可简单地变换所进行的作为,又能按照工作状况的变化相应 地进行工作。一般的玩具机器人不能说有通用性。 3.直接对个界作工作:不仅是像计算机那样进行计算,而且能依据计算结果 对外界结果对外界产生作用。 机器人学把这样定义的机器人作为研究对象。

1.1.2机器人的分类 机器人的分类方法很多,这里我们依据三个有代表性的分类方法列举机器人的种类。 首先,由天机器人要代替人进行作业,因此可根据代替人的哪一个器官来分类: 操作机器人(手):利用相当于手臂的机械手、相当于手指的手爪来使物体协作。 移动机器人(腿):虽然已开发出了2足步行和4足步行机器人,但实用的却是用车轮进行移动的机器人。(本文以轮式移动机器人作为研究对象)视觉机器人(眼):通过外观检查来除掉残次品,观看人的面孔认出是谁。虽然还有使用触觉的机器人,但由于它不是为了操作,所以不能说是触觉机器人。 也还有不仅代替单一器官的机器人,例如进行移动操作,或进行视觉和操作的机器人。 其次,按机器人的应用来分类: 工业机器人:可分为搬送、焊接、装配、喷漆、检查等机器人,主要用于工厂内。 极限作业器人:主要用在人们难以进入的核电站、海底、宇宙空间等进行作为的机器人。也包括建筑、农业机器人等。 娱乐机器人:有弹奏乐器的机器人、舞蹈机器人、宠物机器人等,具有某种程度的通用性。也有适应环境面改变行动的宠物机器人。 最后则是按照基于什么样的信息进行动作来分类: 表1基于动作信息的机器人分类

机器人路径运行操作步骤

3.23机器人路径运动操作步骤 任务:选取多个点构成一条路径,通过示教器完成机器人路径运动操作 相关知识:机器人路径示教器操作分为手动和自动两种模式 操作步骤: 一、手动模式 1、新建程序 (1)点击首页下拉菜单中“程序编辑器”选项,进入程序编辑器 (2)点击右上角“例行程序”选项,进如程序列表 (3)点击左下角“文件”,选择“新建例行程序”,新建例行程序 并命名 2、程序编写 (1)选择新建好的例行程序,进入程序编辑页面,点击左下角“添 加指令”,在右侧弹出菜单中选择轴运动指令“MoveJ” (2)根据需要修改显示的“MoveJ * ,v1000 , z50 , tool0”指令, *代表坐标点名称,v1000代表速度,z50代表路径选择幅度, tool0与工具坐标有关 (3)根据需要添加路径包含的点坐标并修改,完成全部路径点的设 置 3、调试 (1)从第一行“MoveJ”指令开始,利用示教器旋钮调节机器人至路 径点位,点击“修改位置”,程序与点位一一对应 (2)点位修改完成后,进行手动调试。点击“调试”选择“PP移动 至例行程序”,进入要调试的例行程序,光标选择调试的程序 行,再次点击“调试”,选择“PP移动至光标” (3)在右下角设置选项中选择机器人运行的速度

(4)左手按下示教器使能键,右手按下示教器上的“开始”按钮, 进行机器人路径运行操控 注意:机器人运行过程中不能松开示教器使能键 二、自动模式 1、完成手动调试模式调试后,点击“例行程序”菜单进入程序选择列表, 选择“Main”函数,进入函数编辑页面 2、光标选择,点击“添加指令”,在右侧弹出菜单中选择 “ProcCall”指令,将例行程序添加至主程序中 3、将机器人控制柜模式选择开关调到“自动模式” 4、点击示教器上的选项“确认” 5、按下控制柜上使能键,白色指示灯常亮 6、按下示教器上“开始”按钮,开始自动模式调试 7、自动模式下完成轨迹动作以后把控制柜上的“自动”模式旋转调回“手 动”模式

一种移动机器人的路径规划算法

一种移动机器人的路径规划算法 作者:霍迎辉,张连明 (广东工业大学自动化研究所广州510090 文章来源:自动化技术与应用点击数:1419 更新时间:2005-1-24 摘要:本文提出一种移动机器人路径规划最短切线路径算法。依据此算法,机器人能顺利地避开障碍物到达目标位置,其原理简单,计算快捷,容易实现。仿真结果验证了它的有效性和实用性。 关键词:移动机器人;路径规划;机器人避障 1引言 移动机器人路径规划问题是指在有障碍物的工作环境中寻找一条恰当的从给定起点到终点的运动路径,使机器人在运动过程中能安全、无碰撞地绕过所有的障碍物[1]。 障碍环境中机器人的无碰撞路径规划[2]是智能机器人研究的重要课题之一,由于在障碍空间中机器人运动规划的高度复杂性使得这一问题至今未能很好地解决。路径规划问题根据机器人的工作环境模型可以分为两种,一种是基于模型的路径规划,作业环境的全部信息都是预知的;另一种是基于传感器的路径规划,作业环境的信息是全部未知或部分未知的。 对机器人路径规划的研究,世界各国的专家学者们提出了许多不同的路径规划方法,主要可分为全局路径和局部路径规划方法。全局路径规划方法有位形空间法、广义锥方法、顶点图像法、栅格划归法;局部路径规划方法主要有人工势场法。这些方法都各有优缺点[3],也没有一种方法能够适用于任何场合。 本文提出一种最短切线路径的规划方法,其涉及的理论并不高深,计算简单,容易实现,可供侧重于应用的读者参考。下面将详细介绍该算法的基本原理,最后给出仿真实现的结果。 2最短切线路径算法 2.1算法基本原理 (1)首先判断机器人和给定的目标位置之间是否存在障碍物。如图1所示,以B代表目标位置,其坐标 为(x B,y B ),以R、A分别代表机器人及障碍物,坐标为(x R ,y R )、(x A ,y A )。Rr和Ra表示机器人和障 碍物的碰撞半径,也就是说在其半径以外无碰撞的危险。这里对碰撞半径的选择作出一点说明,碰撞半径越小,发生碰撞的危险度越大,但切线路径越短;碰撞半径越大,发生碰撞的危险度越小,但同时切线路径越长。要根据实际情况和控制要求来确定碰撞半径。若机器人与目标位置之间不存在障碍物,机器人可走直线直接到达目标位置,此时的直线方程可由两点式确定:

移动机器人路径规划技术综述

第25卷第7期V ol.25No.7 控制与决策 Control and Decision 2010年7月 Jul.2010移动机器人路径规划技术综述 文章编号:1001-0920(2010)07-0961-07 朱大奇,颜明重 (上海海事大学水下机器人与智能系统实验室,上海201306) 摘要:智能移动机器人路径规划问题一直是机器人研究的核心内容之一.将移动机器人路径规划方法概括为:基于模版匹配路径规划技术、基于人工势场路径规划技术、基于地图构建路径规划技术和基于人工智能的路径规划技术.分别对这几种方法进行总结与评价,最后展望了移动机器人路径规划的未来研究方向. 关键词:移动机器人;路径规划;人工势场;模板匹配;地图构建;神经网络;智能计算 中图分类号:TP18;TP273文献标识码:A Survey on technology of mobile robot path planning ZHU Da-qi,YAN Ming-zhong (Laboratory of Underwater Vehicles and Intelligent Systems,Shanghai Maritime University,Shanghai201306, China.Correspondent:ZHU Da-qi,E-mail:zdq367@https://www.docsj.com/doc/61489672.html,) Abstract:The technology of intelligent mobile robot path planning is one of the most important robot research areas.In this paper the methods of path planning are classi?ed into four classes:Template based,arti?cial potential?eld based,map building based and arti?cial intelligent based approaches.First,the basic theories of the path planning methods are introduced brie?y.Then,the advantages and limitations of the methods are pointed out.Finally,the technology development trends of intelligent mobile robot path planning are given. Key words:Mobile robot;Path planning;Arti?cial potential?eld;Template approach;Map building;Neural network; Intelligent computation 1引言 所谓移动机器人路径规划技术,就是机器人根据自身传感器对环境的感知,自行规划出一条安全的运行路线,同时高效完成作业任务.移动机器人路径规划主要解决3个问题:1)使机器人能从初始点运动到目标点;2)用一定的算法使机器人能绕开障碍物,并且经过某些必须经过的点完成相应的作业任务;3)在完成以上任务的前提下,尽量优化机器人运行轨迹.机器人路径规划技术是智能移动机器人研究的核心内容之一,它起始于20世纪70年代,迄今为止,己有大量的研究成果报道.部分学者从机器人对环境感知的角度,将移动机器人路径规划方法分为3种类型[1]:基于环境模型的规划方法、基于事例学习的规划方法和基于行为的路径规划方法;从机器人路径规划的目标范围看,又可分为全局路径规划和局部路径规划;从规划环境是否随时间变化方面看,还可分为静态路径规划和动态路径规划. 本文从移动机器人路径规划的具体算法与策略上,将移动机器人路径规划技术概括为以下4类:模版匹配路径规划技术、人工势场路径规划技术、地图构建路径规划技术和人工智能路径规划技术.分别对这几种方法进行总结与评价,展望了移动机器人路径规划的未来发展方向. 2模版匹配路径规划技术 模版匹配方法是将机器人当前状态与过去经历相比较,找到最接近的状态,修改这一状态下的路径,便可得到一条新的路径[2,3].即首先利用路径规划所用到的或已产生的信息建立一个模版库,库中的任一模版包含每一次规划的环境信息和路径信息,这些模版可通过特定的索引取得;随后将当前规划任务和环境信息与模版库中的模版进行匹配,以寻找出一 收稿日期:2009-08-30;修回日期:2009-11-18. 基金项目:国家自然科学基金项目(50775136);高校博士点基金项目(20093121110001);上海市教委科研创新项目(10ZZ97). 作者简介:朱大奇(1964?),男,安徽安庆人,教授,博士生导师,从事水下机器人可靠性与路径规划等研究;颜明重(1977?),男,福建泉州人,博士生,从事水下机器人路径规划的研究.

机器人路径动态规划

研究背景 近年来,机器人技术飞速发展,机器人的应用领域也在不断扩展。机器人的工作环境存在高度的多变性和复杂性,因此自主导航是实现真正智能化和完全自主移动的关键技术。机器人的导航问题可以归结为对“我在哪”、“我要去哪”以及“我如何到达那里”三个问题的回答。第三个问题就是路径规划,要求机器人在当前位置与目标位置之间寻找一条安全、合理、高效的路径,保证机器人能够安全地到达目标地点。机器人路径规划是机器人领域的一个研究热点。 一、课题应用 机器人的路径规划是机器人学的一个重要研究领域,是人工智能和机器人学的一个结合点。对于移动机器人而言,在其工作时要求按一定的规则,例如时间最优,在工作空间中寻找到一条最优的路径运动。机器人路径规划可以建模成在一定的约束条件下,机器人在工作过程中能够避开障碍物从初始位置行走到目标位置的路径优化过程。遗传算法是一种应用较多的路径规划方法,利用地图中的信息进行路径规划,实际应用中效率比较高。 智能移动机器人[1],是一个集环境感知、动态决策与规划、行为控制与执行等多功能于一体的综合系统。它集中了传感器技术、信息处理、电子工程、计算机工程、自动化控制工程以及人工智能等多学科的研究成果,代表机电一体化的最高成就,是目前科学技术发展最活跃的领域之一。随着机器人性能不断地完善,移动机器人的应用范围大为扩展,不仅在工业、农业、医疗、服务等行业中得到广泛的应用,而且在城市安全、国防和空间探测领域等有害与危险场合得到很好的应用。因此,移动机器人技术已经得到世界各国的普遍关注。 移动机器人的研究始于60 年代末期。斯坦福研究院(SRI)的Nils Nilssen 和Charles Rosen 等人,在1966年至1972 年中研发出了取名Shakey的自主移动机器人[1]。目的是研究应用人工智能技术,在复杂环境下机器人系统的自主推理、规划和控制。 根据移动方式来分,可分为:轮式移动机器人、步行移动机器人(单腿式、双腿式和多腿式)、履带式移动机器人、爬行机器人、蠕动式机器人和游动式机器人等类型;按工作环境来分,可分为:室内移动机器人和室外移动机器人;按控制体系结构来分,可分为:功能式(水平式)结构机器人、行为式(垂直式)结构机器人和混合式机器人;按功能和用途来分,可分为:医疗机器人、军用机器人、助残机器人、清洁机器人等; 一种由传感器、遥控操作器和自动控制的移动载体组成的机器人系统。移动机器人具有移动功能,在代替人从事危险、恶劣(如辐射、有毒等)环境下作业和人所不 及的(如宇宙空间、水下等)环境作业方面,比一般机器人有更大的机动性、灵活性。 移动机器人是一种在复杂环境下工作的,具有自行组织、自主运行、自主规划的智能机器人,融合了计算机技术、信息技术、通信技术、微电子技术和机器人技术等。 三、研究意义 路径规划技术是机器人研究领域中的一个重要分支,是机器人智能化的重要标志,是对

机器人路径规划

机器人路径规划 摘要:机器人路径规划是机器人技术的重要分支之一,路径规划技术的研究是研究机器人技术不可或缺的技术之一。本文首先介绍了当前研究人员热衷的ROS 系统是如何进行路径规划的,接着论述了作为群智能算法的蚁群算法应用于机器人的路径规划中。研究表明,可以将蚁群算法和ROS系统结合,进一步的进行机器人的路径规划。 关键词:路径规划,ROS系统,蚁群算法,机器人 1.引言 智能移动机器人技术是机器人技术的重要组成部分,应用前景十分广阔:工业,农业,国防,医疗,以及服务业等[1]。文献提出,未来数年内,中国服务机器人发展将超过传统的工业机器人[2],机器人路径规划技术是服务机器人研究的核心内容之一[3]。可见,研究机器人的路径规划问题十分必要。 随着机器人领域的快速发展和复杂化,代码的复用性和模块化的需求原来越强烈,而已有的开源机器人系统又不能很好的适应需求。2010年Willow Garage 公司发布了开源机器人操作系统ROS(robot operating system),很快在机器人研究领域展开了学习和使用ROS的热潮。ROS系统是起源于2007年斯坦福大学人工智能实验室的项目与机器人技术公司Willow Garage的个人机器人项目(Personal Robots Program)之间的合作,2008年之后就由Willow Garage来进行推动。ROS的运行架构是一种使用ROS通信模块实现模块间P2P的松耦合的网络连接的处理架构,它执行若干种类型的通讯,包括基于服务的同步RPC(远程过程调用)通讯、基于Topic的异步数据流通讯,还有参数服务器上的数据存储。ROS系统以其独特优点引起了研究人员的兴趣。 近年来,各国学者致力于机器人路径规划的研究且取得了相当丰硕的研究成果。目前已有多种算法用于规划机器人的路径,文献【4】将其主要分为经典方

机器人路径规划方法的研究进展与趋势

机器人路径规划方法的研究进展与趋势 朱明华,王霄,蔡兰 (江苏大学机械工程学院,江苏镇江212013) 摘要:对机器人路径规划的研究进行了概括和总结,阐述了机器人全局路径规划方法、局部路径规划方法及混合方法的研究现状、特点和主要成果,指出了其今后的发展方向及研究重点。 关键词:机器人;遗传算法;路径规划;粗糙集 中图分类号:T P242 文献标识码:A 文章编号:1001-3881(2006)3-005-4 R esearch P rogress and Future Develop m ent on Path P lanni n g for Robot Z HU M inghua,WANG X iao,CA I Lan (M echanical Eng i n eering Institute,Jiangsu Un i v ersity,Zhenjiang Jiangsu212013,China) Abstrac t:T he research of robo t pa t h plann i ng w as s umm arized,the research sta t us quo,character i stic and ma i n producti on of robo t g l obal path p l ann i ng m ethod,l oca l path p l ann i ng m ethod and hybr i d m ethod were expatiated,its deve l op m ent d irec tions and study f o cus w ere po i nted out. K eyword s:R obot;G enetic a l gor it hm s;P ath p lann i ng;R ough set 路径规划技术是机器人研究领域中的一个重要分支,是机器人导航中最重要的任务之一。蒋新松在文献[1]中为路径规划作出了这样的定义:路径规划是自治式移动机器人的一个重要组成部分,它的任务就是在具有障碍物的环境内按照一定的评价标准,寻找一条从起始状态(包括位置和姿态)到达目标状态(包括位置和姿态)的无碰路径。障碍物在环境中的不同分布情况当然直接影响到规划的路径,而目标位置的确定则是由更高一级的任务分解模块提供的。目前,根据对环境的掌握情况,机器人的路径规划问题可以大致分为二大类:基于环境先验信息的全局路径规划;基于不确定环境的传感器信息的局部路径规划。 1 全局路径规划方法(G lobal Pat h Plann i n g) 依据已获取的全局环境信息,给机器人规划出一条从起点至终点的运动路径。规划路径的精确程度取决于获取环境信息的准确程度。全局路径规划规划方法通常可以寻找最优解,但需要预先知道准确的全局环境信息。通常该方法计算量大,实时性差,不能较好地适应动态非确定环境。基于环境建模的全局路径规划的方法主要有:自由空间法、构型空间法和栅格法等。 1 1 自由空间法(Free Space Approach) 自由空间法采用预先定义的如广义锥形[2]和凸多边形[3]等基本形状构造自由空间,并将自由空间表示为连通图,然后通过搜索连通图来进行路径规划,此方法比较灵活,即使起始点和目标点改变,也不必重构连通图,但是算法的复杂程度与障碍物的多少成正比,且不能保证任何情况下都能获得最短路径。因而该方法仅适用于路径精度要求不高,机器人速度不快的场合。按照划分自由空间方法的不同又可分为:凸区法、三角形法、广义锥法。 1 2 构型空间法 为了简化问题,通常将机器人缩小为一点,将其周围的障碍物按比例相应地进行拓展,使机器人在障碍物空间中能够任意移动而不与障碍物及其边界发生碰撞。目前研究比较成熟的有可视图法[4]和优化算法(如D ijkstra法[5]、A*搜索算法[6]等)。 1 2 1 可视图法(V-G r aph) 通过起始点和目标点及障碍物的顶点在内的一系列点来构造可视图。连接这些点使某点与其周围的某可视点相连,即要求机器人和障碍物各顶点之间、目标点和障碍物各顶点以及各障碍物顶点与顶点之间的连线均不能穿越障碍物,也即直线是可视的。从而搜索最优路径的问题就转化为经过这些可视直线从起始点到目标点的最短距离问题。 1 2 2 优化算法(Optm i ization A l gorit hm) 优化算法可以删除一些不必要的连线以简化可视图,从而缩短搜索时间,求得最短路径。但是,优化算法缺乏灵活性,一旦起点和目标点改变,就必须重构可视图,并且搜索效率也较低。 1 3 栅格法(Grids) 栅格法[7]将机器人的工作环境分解成一系列具有二值信息的网格单元,并假设工作空间中障碍物的位置和大小已知且在机器人运动过程中不会发生变化。用尺寸相同的栅格对机器人的二维工作空间进行规划,栅格大小以机器人自身的尺寸为准。若某一栅格范围内不含任何障碍物,则称此栅格为自由栅格;反之,称为障碍栅格。这样,自由空间和障碍物均可表示为栅格块的集成。栅格的表识方法有两种:直角坐标法和序号法。直角坐标法如图1所示,以栅格阵左上角为坐标原点,水平向右为X轴正方向,竖直向

多机器人路径规划研究方法(一)

多机器人路径规划研究方法(一) 张亚鸣雷小宇杨胜跃樊晓平瞿志华贾占朝摘要:在查阅大量文献的基础上对多机器人路径规划的主要研究内容和研究现状进行了分析和总结,讨论了多机器人路径规划方法的评判标准,并阐述了研究遇到的瓶颈问题,展望了多机器人路径规划方法的发展趋势。 关键词:多机器人;路径规划;强化学习;评判准则 e,itexpoundedthebottleneckofthepathplanningresearchfor , ; 近年来,分布式人工智能(DAI)成为人工智能研究的一个重要分支。DAI 研究大致可以分为DPS (distributedproblemsolving )和MAS ()两个方面。一些从事机器人学的研究人员受多智能体系统研究的启发,将智能体概念应用于多机器人系统的研究中,将单个机器人视做一个能独立执行特定任务的智能体,并把这种多机器人系统称为多智能体机器人系统(MARS)。因此,本文中多机器人系统等同于多智能体机器人系统。目前,多机器人系统已经成为学术界研究的热点,而路径规划研究又是其核心部分。

机器人路径规划问题可以建模为一个带约束的优化问题,其包括地理环境信息建模、路径规划、定位和避障等任务,它是移动机器人导航与控制的基础。单个移动机器人路径规划研究一直是机器人研究的重点,且已经有许多成果 1~3],例如在静态环境中常见的有连接图法、可视图法、切线图法、Voronoi 图法、自由空间法、栅格法、拓扑法、链接图法、证据理论建图等;动态环境中常见的有粒子群算法、免疫算法、遗传算法、神经网络、蚁群算法、模拟退火算法、人工势场法等。然而,多机器人路径规划研究比单个机器人路径规划要复杂得多,必须考虑多机器人系统中机器人之间的避碰机制、机器人之间的相互协作机制、通信机制等问题。 1 多机器人路径规划方法单个机器人的路径规划是找出从起始点至终点的一条最短无碰路径。多个机器人的路径规划侧重考虑整个系统的最优路径,如系统的总耗时间最少路径或是系统总路径最短等。从目前国内外的研究来看,在规划多机器人路径时,更多考虑的是多机器人之间的协调和合作式的路径规划。 目前国内外多机器人路径规划研究方法分为传统方法、智能优化方法和其他方法三大类。其中传统方法主要有基于图论的方法(如可视图法、自由空间法、栅格法、Voronoi 图法以及人工势场方法等);智能优化方法主要有遗传算法、蚁群算法、免疫算法、神经网络、强化学 习等;其他方法主要有动态规划、最优控制算法、模糊控制等。它们中的大部分都是从单个机器人路径规划方法扩展而来的。 1)传统方法多机器人路径规划传统方法的特点主要体现在基于图论的基础

基于路径规划的智能机器人控制实验

I SSN C N 1 0 - 0 2 - 3 4 9 / 5 6 实验技术与管理 第27卷第12期201年1 2月 1 1 2 0 4 T E x p e r i m e n t a l T e c h n o l o g ya n d Ma n a g e m e n t Vo l .27N o .12D e c .201 基于路径规划的智能机器人控制实验 张佳,陈杰,窦丽华 ( 北京理工大学自动化学院,北京1081) 摘 验教学平台。在此平台上设计并开发了分别适用于本科生及硕士研究生的系列实验 规划、全区域覆盖路径规划以及多机器人队形控制等项实验内容。该实验能够让学生接触到先进的智能机 器人增强学生对自动化专业的学习兴趣提高了学生的动手能力和创新能力。 关键词智能机器人路径规划全区域覆盖队形控制 文献标志码文章编号 要 : 针对自动化专业学生 , 以 P i o n e e r 3 A T 系列的机器人为对象 , 搭建了基于路径规划的智能机器人实 , , 包括基于模型的路径 3 , , : ; ; ; 中图分类号 : T P 2 4 2 3 3 : A : 1 0 0 2 4 9 5 6 ( 2 0 1 0 ) 1 2 0 0 4 4 0 4 I n t e l l i g e n t r o b o t c o n t r o l e x p e r i m e n t s b as e d o n p a t h p l a n n i n g Zha n g J i a , Ch e n J i e , D o uL i hua ( S c h o o l o f A u t o m r a t i za t i o n , B e i e j i n g I n s t i t u t e o f T e c h n o l o g y , B e i j i r n g 1 0 0 0 8 1 r , Ch i n a ) A b s t r a c t : A i e m t i n g a t s t r ud e n n n i T t m o t t t s o f au t o e m a t i za m t e i o n m a j o r i , t h p i s p a p e m r t ak e s r o b n o o t s o r o f P i o n e e n 3 A T S e r i n e e sas o b p j e c t t a n d m c o n s t r u c sa n i x n t e l l i m g e o b o t x p o e r o e i n n t t o e a c h n e g l a t f o r , b as e d o p a t h p l a n t n i g .Bas ud e d e o n t h i s l a f o r b , as e r n i s e o x f p e p t e i e swh i c ha p p i n t d t u n d r p g r adua t i e t s c t ud e n t sa n d g adua e s t e n t s r g s p c t i v e l l ya r o n e d e s t i g n e da d l o e i r e m d. I t t n c l ud e s m d e l b as e d r p a t h p l p a o n n i n g o m p l t e t e c n v e a g e p a t h p t l a n n i n a e d m u l t c i r e b o f t o r m a t i e o n e x n p i e n . h e e x p e r i m t o f f e sa n o r t u n y f o r s ud e t s t w o r kw i hadva n c d i n t t e l i g t r b K o o s . I t n ha c e ss t t ud e n i s i n t e r e s t s t o l e a r n au t o m a t i za t i o n m a j o r . A l s o , s t ud e n t s i n n o va t i o n a b i l i y o u l d e i m p r o v e d b y e t h e e x p e o r e n t p . e y w o r d s : i n t l l i g e n r b t ; a t h p l a n n i n g ; c o m p l e t e c o v e r a g e ; f o r m a t i o n 自动化技术是一门涉及学科较多、应用广泛的综 1 实验平台的搭(智械科技) 合性科学技术。实验教学是自动化专业教学过程中 [1] 非常重要的一环。随着目前机器人技术的不断发展, 本课程选用的机器人是美国先锋(P i o n e r 3A T ) 系列机器人[。该系列机器人是目前世界上最成熟的 4] 机器人控制实验已逐步进入各个高校。机器人教学对 于培养和提高学生的创新精神和动手能力具有极其重 轮式移动机器人研究平台之一。通常科研人员对此系 要的作用[。在自动化专业开设机器人控制实验课 2 ] 列机器人的开发与研究都在控制台程序上运行,但需 要对v M a 机器人技术应用接口a 有较 深的了解因此需要花费大量时间阅读繁多的程序代 熟悉研究环境。由于实验学时有限为了能让学生 在最短的时间内最大程度地掌握机器人的有关知识 首先搭建了一个简单实用的实验平台。该平台的建立 能使学生在最短时间内熟悉各种底层动作在实验课 程中掌握基础理论和系统深入的专门知识。 整个平台系统包括个功能模块用户操作管理 模块、通信模块、控制模块、数据分析处理模块和显示 程, 不仅可以让学生接触到国际先进的机器人们的眼界还可以让学生学习先进的控制方法 些方法运用于机器人的实际控制上 提高学生的创新能力和动手能力 域的继续发展奠定坚实的基础。为此 重点实验室项目中购买了数台机器人 , , 开阔他 并将这 A c t i e d i A r i , , ,扩展他们的思维 , 码, , [ 3 ] , 为将来在控制领 , , 本校在北京市 , 针对自动化专 , 业的教学内容及要求,开设了机器人控制实验,取得了 良好的教学效果。 5 : 收稿日期 : 2 0 0 9 1 2 2 1 修改日期 : 2 0 1 0 0 3 1 5 管理模块。各模块所组成的功能结构如图 们之间通过数据信号和控制信号联系在一起 个统一的整体。在控制模块中为学生的实验操作 1 所示,它 基金项目 : 北京市教育委员会共建重点实验室资助项目 (CSYS ,构成一 1 0 0 0 (7 0417) 作者简介 : 张佳 1 9 8 0 ) , 女 ,北京市人 , 硕士 ,实验师 , 研究方向为机器 [ 5 ] , 人控制、智能控制和图像处理.

机器人路径规划问题

原理 设:U(X)为总引力场,()att U x 为目的地引力场,()rep U x 为障碍物排斥场;F(X)为总引力,()att F x 为引力,()rep F x 为斥力;,k η是正比例位置增益系数,0,,g X X X 分别代表机器人,目标和障碍物在空间中的位置。(,)||g g X X X X ρ=-表示机器人与目标之间的距离。00(,)||X X X X ρ=-为机器人在空间的位置与障碍物之间的距离。常数0ρ代表障碍物的影响距离,应根据障碍物和目标点的具体情况而定。 引力势场函数为: 21()(,)2 att g U X k X X ρ= 斥力势场函数为: 2000000111(,)()2(,)0 rep X X U X X X X X ηρρρρρρ????-≤??=????>? 总势场函数为: ()()()att rep U X U X U X =+ 力函数F(X)是势场函数U(X)的负梯度。 机器人所受的引力为: ()()att g F X k X X =- 斥力为: 00200000111 (,)()(,)(,)0 (,) rep X X F X X X X X X X ηρρρρρρρ???-≤???=????>? 合力为: ()()()att rep F X F X F X =+ 实验步骤 根据上述原理进行做实验,力求确定主要参数影响距离0ρ,引力参数k ,斥力系数η,以及机器人运动的步长l 。步骤: (1) 简历地图,确定机器人目标和障碍的位置,并确定矢量势场模型的矢量初始参数; (2) 计算机器人到球的距离,计算吸引力矢量; (3) 计算球场上障碍物对机器人的位置斥力,判断是否需要避障,计算斥力矢量; (4) 计算引力矢量和斥力矢量的和,并将该和矢量分解到x 和y 轴上,继而确定机器人下一步的位置点; (5)然后回到步骤(2),直到该位置点为终点。 核心代码: void find_Attract(double *Yatx,double *Yaty,int h0,int w0)//求引力

相关文档