文档视界 最新最全的文档下载
当前位置:文档视界 › 高考数学椭圆与双曲线的经典性质50条

高考数学椭圆与双曲线的经典性质50条

椭圆与双曲线的对偶性质--(必背的经典结论)

椭 圆

1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.

2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直

径的圆,除去长轴的两个端点.

3. 以焦点弦PQ 为直径的圆必与对应准线相离.

4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.

5. 若000(,)P x y 在椭圆22

22

1x y a b +=上,则过0

P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22

221x y a b

+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切

点弦P 1P 2的直线方程是00221x x y y

a b

+=.

7. 椭圆22

221x y a b

+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点

12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2

F PF S b γ

?=.

8. 椭圆22

221x y a b

+=(a >b >0)的焦半径公式:

10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).

9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和

AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.

10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和

A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.

11. AB 是椭圆22

221x y a b

+=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则

2

2OM AB b k k a ?=-,即0202y a x b K AB -=。

12. 若000(,)P x y 在椭圆22

221x y a b

+=内,则被Po 所平分的中点弦的方程是22

00002222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆

22

22

1x y a b +=内,则过Po 的弦中点的轨迹方程是

22002222x x y y x y a b a b

+=+. 双曲线

1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.

2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴

为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交.

4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:

P 在左支)

5. 若000(,)P x y 在双曲线22221x y a b

-=(a >0,b >0)上,则过0P 的双曲线的切线方程

是00221x x y y

a b

-=. 6. 若000(,)P x y 在双曲线22

221x y a b

-=(a >0,b >0)外 ,则过Po 作双曲线的两条切

线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y

a b

-=.

7. 双曲线22

221x y a b

-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意

一点12

F PF γ∠=,则双曲线的焦点角形的面积为122

t 2

F PF S b co γ?=. 8. 双曲线22

221x y a b

-=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c

当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.

当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--

9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,

连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF. 10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶

点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.

11. AB 是双曲线22

221x y a b

-=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB

的中点,则0202y a x b K K AB OM =?,即020

2y a x b K AB =。

12. 若000(,)P x y 在双曲线22

221x y a b

-=(a >0,b >0)内,则被Po 所平分的中点弦的方

程是22

00002222x x y y x y a b a b

-=-.

13. 若000(,)P x y 在双曲线22

221x y a b

-=(a >0,b >0)内,则过Po 的弦中点的轨迹方程

是22002222x x y y x y a b a b

-=-. 椭圆与双曲线的对偶性质--(会推导的经典结论)

椭 圆

1. 椭圆22

221x y a b

+=(a >b >o )的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直

线交椭圆于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22

221x y a b

-=.

2. 过椭圆22

221x y a b

+= (a >0, b >0)上任一点00(,)A x y 任意作两条倾斜角互补的直线

交椭圆于B,C 两点,则直线BC 有定向且20

20BC b x k a y =(常数).

3. 若P 为椭圆22

221x y a b

+=(a >b >0)上异于长轴端点的任一点,F 1, F 2是焦点,

12PF F α∠=, 21PF F β∠=,则

tan t 22

a c co a c αβ

-=+. 4. 设椭圆22

221x y a b

+=(a >b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为椭圆上

任意一点,在△PF 1F 2中,记12F PF α∠=, 12PF F β∠=,12F F P γ∠=,则有

sin sin sin c

e a

αβγ==+.

5. 若椭圆22

221x y a b

+=(a >b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当0

<e 1时,可在椭圆上求一点P ,使得PF 1是P 到对应准线距离d 与PF 2的比例中项.

6. P 为椭圆22

221x y a b

+=(a >b >0)上任一点,F 1,F 2为二焦点,A 为椭圆内一定点,

则2112||||||2||a AF PA PF a AF -≤+≤+,当且仅当2,,A F P 三点共线时,等号成立.

7. 椭圆22

0022

()()1x x y y a b

--+=与直线0Ax By C ++=有公共点的充要条件是22222

00()A a B b Ax By C +≥++. 8. 已知椭圆22

221x y a b

+=(a >b >0),O 为坐标原点,P 、Q 为椭圆上两动点,且

OP OQ ⊥.(1)22

221111||||OP OQ a b +=+;(2)|OP|2+|OQ|2

的最大值为22224a b a b +;(3)OPQ S ?的最小值是22

22

a b a b

+. 9. 过椭圆22

221x y a b

+=(a >b >0)的右焦点F 作直线交该椭圆右支于M,N 两点,弦

MN 的垂直平分线交x 轴于P ,则

||||2PF e

MN =. 10. 已知椭圆22

221x y a b

+=( a >b >0) ,A 、B 、是椭圆上的两点,线段AB 的垂直平

分线与x 轴相交于点0(,0)P x , 则2222

0a b a b x a a ---<<. 11. 设P 点是椭圆22

221x y a b

+=( a >b >0)上异于长轴端点的任一点,F 1、F 2为其焦点

记12F PF θ∠=,则(1)2122||||1cos b PF PF θ

=+.(2) 12

2

tan 2PF F S b γ?=. 12. 设A 、B 是椭圆22

221x y a b

+=( a >b >0)的长轴两端点,P 是椭圆上的一点,

PAB α∠=, PBA β∠=,BPA γ∠=,c 、e 分别是椭圆的半焦距离心率,则有

(1)22222|cos |||s ab PA a c co αγ

=-.(2) 2

tan tan 1e αβ=-.(3) 222

22cot PAB a b S b a γ?=-. 13. 已知椭圆22

221x y a b

+=( a >b >0)的右准线l 与x 轴相交于点E ,过椭圆右焦点F

的直线与椭圆相交于A 、B 两点,点C 在右准线l 上,且BC x ⊥轴,则直线AC 经过线段EF 的中点.

14. 过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,则相应交点与相应

焦点的连线必与切线垂直.

15. 过椭圆焦半径的端点作椭圆的切线交相应准线于一点,则该点与焦点的连线必与焦

半径互相垂直.

16. 椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数

e(离心率).

(注:在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.) 17. 椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比e. 18. 椭圆焦三角形中,半焦距必为内、外点到椭圆中心的比例中项.

椭圆与双曲线的对偶性质--(会推导的经典结论)

双曲线

1. 双曲线22

221x y a b

-=(a >0,b >0)的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴

平行的直线交双曲线于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22

221x y a b

+=.

2. 过双曲线22

221x y a b

-=(a >0,b >o )上任一点00(,)A x y 任意作两条倾斜角互补

的直线交双曲线于B,C 两点,则直线BC 有定向且20

20BC b x k a y =-(常数).

3. 若P 为双曲线22

221x y a b

-=(a >0,b >0)右(或左)支上除顶点外的任一点,F 1,

F

2

是焦点, 12PF F α∠=, 21PF F β∠=,则

t a n t 22

c a co c a αβ

-=+(或t a n t 22

c a co c a βα

-=+). 4. 设双曲线22

221x y a b

-=(a >0,b >0)的两个焦点为F 1、F 2,P (异于长轴端点)

为双曲线上任意一点,在△PF 1F 2中,记12F PF α∠=,

12PF F β∠=,12F F P γ∠=,则有

sin (sin sin )c

e a

αγβ==±-.

5. 若双曲线22

221x y a b

-=(a >0,b >0)的左、右焦点分别为F 1、F 2,左准线为L ,

则当1<e 1时,可在双曲线上求一点P ,使得PF 1是P 到对应准线距离

d 与PF 2的比例中项.

6. P 为双曲线22

221x y a b

-=(a >0,b >0)上任一点,F 1,F 2为二焦点,A 为双曲线内

一定点,则21||2||||AF a PA PF -≤+,当且仅当2,,A F P 三点共线且

P 和2,A F 在y 轴同侧时,等号成立.

7. 双曲线22

221x y a b -=(a >0,b >0)与直线0Ax By C ++=有公共点的充要条

件是22222

A a

B b

C -≤.

8. 已知双曲线22

221x y a b

-=(b >a >0),O 为坐标原点,P 、Q 为双曲线上两动

点,且OP OQ ⊥. (1)22221111||||OP OQ a b +=-;(2)|OP|2+|OQ|2

的最小值为22224a b b a -;(3)OPQ

S ?的最小值是22

22

a b b a -. 9. 过双曲线22

221x y a b

-=(a >0,b >0)的右焦点F 作直线交该双曲线的右支于

M,N 两点,弦MN 的垂直平分线交x 轴于P ,则

||||2PF e

MN =. 10. 已知双曲线22

221x y a b

-=(a >0,b >0),A 、B 是双曲线上的两点,线段AB 的

垂直平分线与x 轴相交于点0(,0)P x , 则220a b x a

+≥或22

0a b x a +≤-.

11. 设P 点是双曲线22

221x y a b

-=(a >0,b >0)上异于实轴端点的任一点,F 1、F 2

为其焦点记12

F PF θ∠=,则(1)2122||||1cos b PF PF θ

=-.(2) 122

cot 2PF F S b γ?=. 12. 设A 、B 是双曲线22

221x y a b

-=(a >0,b >0)的长轴两端点,P 是双曲线上的

一点,PAB α∠=, PBA β∠=,BPA γ∠=,c 、e 分别是双曲线的半焦距离

心率,则有(1)2222

2|cos |

|||s |

ab PA a c co αγ=-. (2) 2

tan tan 1e αβ=-.(3) 222

2

2cot PAB a b S b a

γ?=+. 13. 已知双曲线22

221x y a b

-=(a >0,b >0)的右准线l 与x 轴相交于点E ,过双曲

线右焦点F 的直线与双曲线相交于A 、B 两点,点C 在右准线l 上,且BC x

轴,则直线AC经过线段EF 的中点.

14.过双曲线焦半径的端点作双曲线的切线,与以长轴为直径的圆相交,则相应交

点与相应焦点的连线必与切线垂直.

15.过双曲线焦半径的端点作双曲线的切线交相应准线于一点,则该点与焦点的连

线必与焦半径互相垂直.

16.双曲线焦三角形中,外点到一焦点的距离与以该焦点为端点的焦半径之比为常

数e(离心率).

(注:在双曲线焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点).

17.双曲线焦三角形中,其焦点所对的旁心将外点与非焦顶点连线段分成定比e.

18.双曲线焦三角形中,半焦距必为内、外点到双曲线中心的比例中项.

高考数学椭圆与双曲线的经典性质50条技巧归纳总结

椭圆与双曲线的对偶性质--(必背的经典结论) 高三数学备课组 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直 径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22 22 1x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切 点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和 AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和 A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2O M A B b k k a ?=-, 即020 2y a x b K AB -=。 12. 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是22 00002222x x y y x y a b a b +=+.

高考数学 双曲线

第51讲 双曲线 1.双曲线的定义 平面内与两个定点F 1,F 2的__距离的差的绝对值__等于常数(小于||F 1F 2)的点的轨迹叫做双曲线.这两个定点叫做__双曲线的焦点__,两焦点间的距离叫做__双曲线的焦距__. 集合P ={}M ||| ||MF 1-||MF 2=2a ,||F 1F 2=2c ,其中a ,c 为常数,且a >0,c >0. (1)当__a <c __时,点P 的轨迹是双曲线; (2)当__a =c __时,点P 的轨迹是两条射线; (3)当__a >c __时,点P 不存在. 2.双曲线的标准方程和几何性质 x ≥a 或x ≤-a ,y ∈R y ≤-a 或y ≥a ,x ∈R

3.常用结论(1)双曲线的焦点到渐近线x a 2-y b 2=0(a >0,b >0)的距离为b .如右图△OFH 是分别以边a ,b ,c 为边长的直角三角形. (2)如下图: x 2a 2+y 2b 2=1(a >b >0) x 2a 2-y 2 b 2=1(a >0,b >0) 则有:P 1,P 2两点坐标都为????c ,b 2 a ,即||FP 1=||FP 2=b 2 a . 1.思维辨析(在括号内打“√”或“×”). (1)平面内到点F 1 (0,4),F 2(0,-4)距离之差等于6的点的轨迹是双曲线.( × ) (2)平面内到点F 1(0,4),F 2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.( × ) (3)方程x 2m -y 2 n = 1(mn >0)表示焦点在x 轴上的双曲线.( × ) (4)双曲线方程x 2m 2-y 2n 2=λ(m >0,n >0,λ≠0)的渐近线方程是x 2m 2-y 2n 2=0,即x m ±y n = 0.( √ ) 解析 (1)错误.由双曲线的定义知,应为双曲线的一支,而非双曲线的全部. (2)错误.因为||||MF 1-||MF 2=8=||F 1F 2,表示的轨迹为两条射线. (3)错误.当m >0,n >0时表示焦点在x 轴上的双曲线,而m <0,n <0时则表示焦点在y 轴上的双曲线.

高考数学椭圆与双曲线的经典性质50条经典法则

椭圆与双曲线的对偶性质--(必背的经典结论) 高三数学备课组 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积 为122 tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆 准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于 点N ,则MF ⊥NF. 11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则2 2OM AB b k k a ?=-,即0 202y a x b K AB -=。 12. 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆22221x y a b +=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b +=+. 双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端 点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交. 4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支) 5. 若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y y a b -=. 6. 若000(,)P x y 在双曲线22 221x y a b -=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2 的直线方程是00221x x y y a b -=. 7. 双曲线22 221x y a b -=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦 点角形的面积为122 t 2 F PF S b co γ ?=. 8. 双曲线22 221x y a b -=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c 当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-. 当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =-- 9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦 点F 的双曲线准线于M 、N 两点,则MF ⊥NF. 10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和 A 1Q 交于点N ,则MF ⊥NF.

高中数学解析几何专题之椭圆汇总解析版

圆锥曲线第1讲 椭圆 【知识要点】 一、椭圆的定义 1. 椭圆的第一定义: 平面内到两个定点1F 、2F 的距离之和等于定长a 2( 2 12F F a >)的点的轨迹叫椭圆,这两 个定点叫做椭圆的焦点,两个焦点之间的距离叫做焦距。 注1:在椭圆的定义中,必须强调:到两个定点的距离之和(记作a 2)大于这两个定点之间的距离 2 1F F (记作c 2),否则点的轨迹就不是一个椭圆。具体情形如下: (ⅰ)当c a 22>时,点的轨迹是椭圆; (ⅱ)当c a 22=时,点的轨迹是线段21F F ; (ⅲ)当c a 22<时,点的轨迹不存在。 注2:若用M 表示动点,则椭圆轨迹的几何描述法为 a MF MF 221=+(c a 22>, c F F 221=),即 2 121F F MF MF >+. 注3:凡是有关椭圆上的点与焦点的距离问题,通常可利用椭圆的第一定义求解,即隐含条件: a MF MF 221=+千万不可忘记。 2. 椭圆的第二定义: 平面内到某一定点的距离与它到定直线的距离之比等于常数e (10<>b a ); (2)焦点在y 轴、中心在坐标原点的椭圆的标准方程是122 22=+b x a y (0>>b a ).

注1:若题目已给出椭圆的标准方程,那其焦点究竟是在x 轴还是在y 轴,主要看长半轴跟谁走。长半轴跟x 走,椭圆的焦点在x 轴;长半轴跟y 走,椭圆的焦点在y 轴。 (1)注2:求椭圆的方程通常采用待定系数法。若题目已指明椭圆的焦点的位置,则可设 其方程为12222=+b y a x (0>>b a )或122 22=+b x a y (0>>b a );若题目未指明椭圆的焦 点究竟是在x 轴上还是y 轴上,则中心在坐标原点的椭圆的方程可设为 12 2=+ny mx (0>m ,0>n ,且n m ≠). 三、椭圆的性质 以标准方程122 22=+b y a x (0>>b a )为例,其他形式的方程可用同样的方法得到相关结论。 (1)范围:a x a ≤≤-,b y b ≤≤-; (2)对称性:关于x 轴、y 轴轴对称,关于坐标原点中心对称; (3)顶点:左右顶点分别为)0,(1a A -,)0,(2a A ;上下顶点分别为),0(1b B ,),0(2b B -; (4)长轴长为a 2,短轴长为b 2,焦距为c 2; (5)长半轴a 、短半轴b 、半焦距c 之间的关系为2 2 2 c b a +=; (6)准线方程:c a x 2 ± =; (7)焦准距:c b 2 ; (8)离心率: a c e = 且10<

高考数学双曲线

2021年新高考数学总复习第九章《平面解析几何》 双曲线 1.双曲线定义 平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距. 集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0. (1)当2a<|F1F2|时,P点的轨迹是双曲线; (2)当2a=|F1F2|时,P点的轨迹是两条射线; (3)当2a>|F1F2|时,P点不存在. 2.双曲线的标准方程和几何性质 标准方程 x2 a2- y2 b2=1 (a>0,b>0) y2 a2- x2 b2=1 (a>0,b>0) 图形 性质 范围x≥a或x≤-a,y∈R x∈R,y≤-a或y≥a 对称性对称轴:坐标轴对称中心:原点 顶点A1(-a,0),A2(a,0)A1(0,-a),A2(0,a) 渐近线y=± b a x y=± a b x 离心率e= c a,e∈(1,+∞),其中c=a 2+b2 实虚轴 线段A1A2叫做双曲线的实轴,它的长|A1A2|=2a,线段B1B2叫做双 曲线的虚轴,它的长|B1B2|=2b;a叫做双曲线的实半轴长,b叫做 双曲线的虚半轴长 a,b,c 的关系 c2=a2+b2 (c>a>0,c>b>0) 概念方法微思考

1.平面内与两定点F 1,F 2的距离之差的绝对值等于常数2a 的动点的轨迹一定为双曲线吗?为什么? 提示 不一定.当2a =|F 1F 2|时,动点的轨迹是两条射线; 当2a >|F 1F 2|时,动点的轨迹不存在; 当2a =0时,动点的轨迹是线段F 1F 2的中垂线. 2.方程Ax 2+By 2=1表示双曲线的充要条件是什么? 提示 若A >0,B <0,表示焦点在x 轴上的双曲线;若A <0,B >0,表示焦点在y 轴上的双曲线.所以Ax 2+By 2=1表示双曲线的充要条件是AB <0. 3.与椭圆标准方程相比较,双曲线标准方程中,a ,b 只限制a >0,b >0,二者没有大小要求,若a >b >0,a =b >0,0b >0时,10时, e =2(亦称等轴双曲线),当0 2. 题组一 思考辨析 1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)平面内到点F 1(0,4),F 2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.( × ) (2)方程x 2m -y 2n =1(mn >0)表示焦点在x 轴上的双曲线.( × ) (3)双曲线方程x 2m 2-y 2n 2=λ(m >0,n >0,λ≠0)的渐近线方程是x 2m 2-y 2n 2=0,即x m ±y n =0.( √ ) (4)等轴双曲线的渐近线互相垂直,离心率等于 2.( √ ) (5)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)与x 2b 2-y 2a 2=1(a >0,b >0)的离心率分别是e 1,e 2,则1e 21+1e 22 =1(此条件中两条双曲线称为共轭双曲线).( √ ) 题组二 教材改编 2.若双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为( ) A. 5 B .5 C. 2 D .2 答案 A 解析 由题意知焦点到其渐近线的距离等于实轴长,双曲线的渐近线方程为x a ±y b =0,即bx ±ay =0,

高中数学椭圆、双曲线、抛物线历年真题及详解

【考点8】椭圆、双曲线、抛物线 2009年考题 1、(2009湖北高考)已知双曲线141222 2 222=+=-b y x y x 的准线经过椭圆(b >0)的焦点,则b=( ) A.3 B.5 C.3 D.2 选C.可得双曲线的准线为2 1a x c =±=±,又因为椭圆焦点为2(4,0)b ±-所以有241b -=.即b 2=3故b=3. 2、(2009陕西高考)“0m n >>”是“方程2 21mx ny +=”表示焦点在y 轴上的椭圆”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D) 既不充分也不必要条件 【解析】选C.将方程2 2 1mx ny +=转化为 22 111x y m n +=, 根据椭圆的定义,要使焦点在y 轴上必须 满足 11 0,0,m n >>且11n m >,故选C.3、(2009湖南高考)抛物线 28y x =-的焦点坐标是( ) A .(2,0) B .(- 2,0) C .(4,0) D .(- 4,0) 【解析】选B.由 28y x =-,易知焦点坐标是(,0)(2,0)2 p - =-,故选B. 4、(2009全国Ⅰ)已知椭圆2 2:12 x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B , 若3FA FB =u u u r u u u r ,则||AF uuuu r =( ) (A) 2 (B) 2 3 (D) 3 【解析】选A.过点B 作BM l ⊥于M,并设右准线l 与X 轴的交点为N ,易知FN=1.由题意3FA FB =u u u r u u u r ,故2 ||3 BM =. 又由椭圆的第二定义,得222 ||233 BF = = ||2AF ∴=5、(2009江西高考)设1F 和2F 为双曲线22 221x y a b -=(0,0a b >>)的两个焦点, 若12F F ,,(0,2)P b 是正三角形的 三个顶点,则双曲线的离心率为( ) A . 32 B .2 C .5 2 D .3

高考数学椭圆与双曲线重要规律定理

椭圆与双曲线性质--(重要结论) 清华附中高三数学备课组 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的 两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是 002 2 1x x y y a b + =. 6. 若000(,)P x y 在椭圆 222 2 1x y a b + =外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程 是 002 2 1x x y y a b + =. 7. 椭圆 222 2 1x y a b + = (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点 角形的面积为1 2 2 tan 2 F P F S b γ ?=. 8. 椭圆 2 2 22 1x y a b + =(a >b >0)的焦半径公式: 10||M F a ex =+,20||M F a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦 点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆 222 2 1x y a b + =的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22 O M AB b k k a ?=- , 即0 2 02 y a x b K AB - =。 12. 若000(,)P x y 在椭圆222 2 1x y a b +=内,则被Po 所平分的中点弦的方程是 2 2 00002 2 2 2 x x y y x y a b a b + = + . 13. 若000(,)P x y 在椭圆 222 2 1x y a b +=内,则过Po 的弦中点的轨迹方程是22002 2 2 2 x x y y x y a b a b + = + . 双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长 轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交. 4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支) 5. 若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)上,则过0P 的双曲线的切线方程是 002 2 1x x y y a b - =. 6. 若000(,)P x y 在双曲线 222 2 1x y a b - =(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是002 2 1x x y y a b -=. 7. 双曲线 222 2 1x y a b - =(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=, 则双曲线的焦点角形的面积为1 2 2 t 2 F P F S b co γ ?=. 8. 双曲线 2 2 221x y a b -=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c 当00(,)M x y 在右支上时,10||M F ex a =+,20||M F ex a =-. 当00(,)M x y 在左支上时,10||M F ex a =-+,20||M F ex a =-- 9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别 交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF. 10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于 点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是双曲线 222 2 1x y a b - =(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 02y a x b K K AB OM = ?,即0 2 02 y a x b K AB = 。 12. 若000(,)P x y 在双曲线 222 2 1x y a b - =(a >0,b >0)内,则被Po 所平分的中点弦的方程是 2 2 00002 2 2 2 x x y y x y a b a b - = - . 13. 若000(,)P x y 在双曲线 222 2 1x y a b - =(a >0,b >0)内,则过Po 的弦中点的轨迹方程是 22002 2 2 2 x x y y x y a b a b - = - .

高三数学专题复习----椭圆

高三数学专题复习----椭圆 一 基础知识 (1)椭圆的第一定义第二定义,(2)椭圆的标准方程,(3)椭圆的性质,(4)椭圆和直线的位置关系 二 例题 1、方程m y x ++16m -252 2=1表示焦点在y 轴上的椭圆,则m 的取值范围是 ( ) (A)-162 9 2、已知椭圆长半轴与短半轴之比是5:3,焦距是8,焦点在x 轴上,则此椭圆的标准方程是( ) (A )5x 2+3y 2=1(B )25x 2+9y 2=1 (C )3x 2+5y 2=1 (D )9 x 2+25y 2 =1 3、椭圆5x 2 +4 y 2=1的两条准线间的距离是( ) (A )52 (B )10 (C )15 (D ) 3 50

4、以椭圆短轴为直径的圆经过此椭圆的焦点,则椭圆的离心率是( ) (A ) 2 1 (B )22(C )23(D )33 5、若椭圆 19822=++y k x 的离心率是2 1,则k 的值等于 ( ) (A)- 45 (B)45 (C)-45或4 (D)4 5 或4 6、椭圆mx 2+y 2=1的离心率是 2 3 ,则它的长半轴的长是( ) (A )1 (B )1或2 (C )2 (D ) 2 1 或1 7、已知椭圆的对称轴是坐标轴,离心率e= 3 2 ,长轴长为6,那么椭圆的方程是( )。 (A ) 36x 2+20y 2=1 (B )36x 2+20y 2=1或20x 2+36 y 2 =1 (C ) 9x 2+5y 2=1 (D )9x 2+5y 2=1或5 x 2+9y 2 =1

高考数学-圆锥曲线-双曲线题型总结

二、双曲线 1、(21)(本小题满分14分)08天津 已知中心在原点的双曲线C的一个焦点是()0,3 1 - F,一条渐近线的方程是0 2 5= -y x. (Ⅰ)求双曲线C的方程; (Ⅱ)若以()0≠k k为斜率的直线l与双曲线C相交于两个不同的点M,N,线段MN的垂直平分线与两坐 标轴围成的三角形的面积为 2 81 ,求k的取值范围. (21)本小题主要考查双曲线的标准方程和几何性质、直线方程、两条直线垂直、线段的定比分点等基础知识,考查曲线和方程的关系等解析几何的基本思想方法,考查推理运算能力.满分14分. (Ⅰ)解:设双曲线C的方程为 22 22 1 x y a b -=(0,0 a b >>).由题设得 229 a b b a ?+= ? ? = ? ? ,解得 2 2 4 5 a b ?= ? ? = ?? ,所以双曲线方程为 22 1 45 x y -=. 的方程为y kx m =+(0 k≠).点 11 (,) M x y, 22 (,) N x y的坐标满足方程组(Ⅱ)解:设直线l 22 1 45 y kx m x y =+ ? ? ? -= ?? 将①式代入②式,得 22 () 1 45 x kx m + -=,整理得222 (54)84200 k x kmx m ----=. 此方程有两个一等实根,于是2 50 4k -≠,且222 (8)4(54)(420)0 k m k m ?=-+-+>.整理得22 540 m k +->.③ 由根与系数的关系可知线段MN的中点坐标 00 (,) x y满足 12 02 4 254 x x km x k + == - , 002 5 54 m y kx m k =+= - . 从而线段MN的垂直平分线方程为 22 514 () 5454 m km y x k k k -=-- -- . 此直线与x轴,y轴的交点坐标分别为 2 9 (,0) 54 km k - , 2 9 (0,) 54 m k - .由题设可得22 19981 |||| 254542 km m k k ?= -- .整理得 22 2 (54) || k m k - =,0 k≠. 将上式代入③式得 22 2 (54) 540 || k k k - +->,整理得22 (45)(4||5)0 k k k --->,0 k≠.

高中数学椭圆的经典知识总结

高中数学椭圆的经典知识总结 椭圆知识点总结 1. 椭圆的定义:1,2 (1)椭圆:焦点在x 轴上时12222=+b y a x (222a b c =+)?{ cos sin x a y b ??==(参数方程,其中?为参数),焦点在y 轴上时22 22b x a y +=1(0a b >>)。方程22Ax By C +=表示椭圆的充要条件是什么? (ABC ≠0,且A ,B ,C 同号,A ≠B )。 2. 椭圆的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤;②焦点:两个 焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线:两条准线2a x c =±; ⑤离心率:c e a =,椭圆?01e <<, e 越小,椭圆越圆;e 越大,椭圆越扁。⑥通径2 2b a 2.点与椭圆的位置关系:(1)点00(,)P x y 在椭圆外?2200 221x y a b +>; (2)点00(,)P x y 在椭圆上?220 220b y a x +=1; (3)点00(,)P x y 在椭圆内?2200 221x y a b +< 3.直线与圆锥曲线的位置关系: (1)相交:0?>?直线与椭圆相交;(2)相切:0?=?直线与椭圆相切; (3)相离: 0?

高考数学椭圆与双曲线的经典性质技巧归纳总结

椭圆的定义、性质及标准方程 高三数学备课组 刘岩老师 1. 椭圆的定义: ⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。 ⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数 )10(<>=+b a b y a x 中心在原点,焦点在x 轴上 )0(12 2 22>>=+b a b x a y 中心在原点,焦点在y 轴上 图形 范围 x a y b ≤≤, x b y a ≤≤, 顶点 ()()()() 12120000A a A a B b B b --,、,,、, ()()()() 12120000A a A a B b B b --,、,,、, 对称轴 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F )0(221>=c c F F 离心率 )10(<<= e a c e )10(<<= e a c e 准线 2 a x c =± 2 a y c =±

高考数学专题复习:双曲线(含解析)

【学习目标】 1.理解双曲线的定义、几何图形和标准方程以及它的简单几何性质. 2.理解数形结合的思想. 3.了解双曲线的实际背景及其简单应用. 【高考模拟】 一、单选题 1.设、分别是双曲线C:的左右焦点,点在双曲线C的右支上,且,则() A. B. C. D. 【答案】B 【解析】 【分析】 根据双曲线的性质求出c的值,结合向量垂直和向量和的几何意义进行转化求解即可. 【详解】

【点睛】 本题主要考查双曲线性质的意义,根据向量垂直和向量和的几何意义是解决本题的关键. 2.设是双曲线的左右焦点,为左顶点,点为双曲线右支上一点, , ,, 为坐标原点,则 A . B . C . D . 【答案】D 【解析】 【分析】 先求出双曲线的方程为,再求出点P 的坐标,最后求 . 【详解】 【点睛】 (1)本题主要考查双曲线的几何性质和向量的数量积运算,考查双曲线方程的求法,意在考查学生对这些

知识的掌握水平和分析推理计算能力.(2) 双曲线的通径为. 3.已知直线的倾斜角为,直线与双曲线()的左、右两支分别交于、两点,且、都垂直于轴(其中、分别为双曲线的左、右焦点),则该双曲线的离心率为() A. B. C. D. 【答案】D 【解析】 【分析】 根据题意设点,,则,又由直线的倾斜角为,得,结合点在双曲线上,即可求出离心率. 【详解】 直线与双曲线的左、右两支分别交于、两点,且、都垂直于轴, 根据双曲线的对称性,设点,, 则,即,且, 又直线的倾斜角为, 直线过坐标原点,, ,整理得,即,解方程得,(舍) 故选D. 【点睛】 本题考查双曲线的几何性质、直线与双曲线的位置关系及双曲线离心率的求法,考查化简整理的运算能力和转化思想,属于中档题. 圆锥曲线离心率的计算,常采用两种方法: 1、通过已知条件构建关于的齐次方程,解出. 根据题设条件(主要用到:方程思想,余弦定理,平面几何相似,直角三角形性质等)借助之间的关系,得到关于的一元方程,从而解得离心率.

高考数学(理)二轮练习【专题6】(第2讲)椭圆、双曲线、抛物线(含答案)

第2讲椭圆、双曲线、抛物线 考情解读 1.以选择、填空的形式考查,主要考查圆锥曲线的标准方程、性质(特别是离心率),以及圆锥曲线之间的关系,突出考查基础知识、基本技能,属于基础题.2.以解答题的形式考查,主要考查圆锥曲线的定义、性质及标准方程的求解,直线与圆锥曲线的位置关系,常常在知识的交汇点处命题,有时以探究的形式出现,有时以证明题的形式出现.该部分题目多数为综合性问题,考查分析问题、解决问题的能力,综合运用知识的能力等,属于中、高档题,一般难度较大. 圆锥曲线的定义、标准方程与几何性质 |x|≤a,|y|≤b |x|≥a x≥0

热点一 圆锥曲线的定义与标准方程 例1 若椭圆C :x 29+y 2 2=1的焦点为F 1,F 2,点P 在椭圆C 上,且|PF 2|=4则∠F 1PF 2等于( ) A .30° B .60° C .120° D .150° (2)已知抛物线x 2=2py (p >0)的焦点与双曲线x 2-y 2=-1 2的一个焦点重合,且在抛物线上有一 动点P 到x 轴的距离为m ,P 到直线l :2x -y -4=0的距离为n ,则m +n 的最小值为________. 思维启迪 (1)△PF 1F 2中利用余弦定理求∠F 1PF 2;(2)根据抛物线定义得m =|PF |-1.再利用数形结合求最值. 答案 (1)C (2)5-1 解析 (1)由题意得a =3,c =7,所以|PF 1|=2. 在△F 2PF 1中, 由余弦定理可得cos ∠F 2PF 1=42+22-(27)22×4×2=-12. 又因为cos ∠F 2PF 1∈(0°,180°),所以∠F 2PF 1=120°. (2)易知x 2=2py (p >0)的焦点为F (0,1),故p =2, 因此抛物线方程为x 2=4y . 根据抛物线的定义可知m =|PF |-1, 设|PH |=n (H 为点P 到直线l 所作垂线的垂足), 因此m +n =|PF |-1+|PH |. 易知当F ,P ,H 三点共线时m +n 最小, 因此其最小值为|FH |-1=|-1-4| 5 -1=5-1. 思维升华 (1)对于圆锥曲线的定义不仅要熟记,还要深入理解细节部分:比如椭圆的定义中要求|PF 1|+|PF 2|>|F 1F 2|,双曲线的定义中要求||PF 1|-|PF 2||<|F 1F 2|,抛物线上的点到焦点的距离与到准线的距离相等的转化. (2)注意数形结合,画出合理草图. (1)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为3 2 .双曲线x 2-y 2=1的渐近线与椭 圆C 有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为( ) A.x 28+y 2 2=1 B.x 212+y 2 6=1 C.x 216+y 2 4 =1 D.x 220+y 2 5 =1

高考数学真题专题(理数) 双曲线

专题九 解析几何 第二十七讲 双曲线 2019年 1.(2019全国III 理10)双曲线C :22 42 x y -=1的右焦点为F ,点P 在C 的一条渐进线 上,O 为坐标原点,若=PO PF ,则△PFO 的面积为 A B C .D .2.(2019江苏7)在平面直角坐标系xOy 中,若双曲线2 2 21(0)y x b b -=>经过点(3,4), 则该双曲线的渐近线方程是 . 3.(2019全国I 理16)已知双曲线C :22 221(0,0)x y a b a b -=>>的左、右焦点分别为F 1,F 2, 过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =uuu r uu u r ,120F B F B ?=uuu r uuu r ,则C 的 离心率为____________. 4.(2019年全国II 理11)设F 为双曲线C :22 221(0,0)x y a b a b -=>>的右焦点,O 为坐标 原点,以OF 为直径的圆与圆222 x y a +=交于P ,Q 两点.若PQ OF =,则C 的离心率 为 A B C .2 D 5.(2019浙江2)渐近线方程为x ±y =0的双曲线的离心率是 A B .1 C D .2 6.(2019天津理5)已知抛物线2 4y x =的焦点为F ,准线为l ,若l 与双曲线 22 221(0,0)x y a b a b -=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为 C.2

2010-2018年 一、选择题 1.(2018浙江)双曲线2 213 x y -=的焦点坐标是 A .(, B .(2,0)-,(2,0) C .(0,, D .(0,2)-,(0,2) 2.(2018全国卷Ⅰ)已知双曲线C :2 213 -=x y ,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若?OMN 为直角三角形,则||MN = A . 3 2 B .3 C . D .4 3.(2018全国卷Ⅱ)双曲线22 221(0,0)-=>>x y a b a b A .=y B .=y C .=y x D .=y 4.(2018全国卷Ⅲ)设1F ,2F 是双曲线C :22 221(0,0)x y a b a b -=>>的左、右焦点,O 是 坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1|||PF OP =,则C 的离心率为 A B .2 C D 5.(2018天津)已知双曲线22 221(0,0)x y a b a b -=>>的离心率为2,过右焦点且垂直于x 轴 的直线与双曲线交于A ,B 两点.设A ,B 到双曲线同一条渐近线的距离分别为1d 和2d , 且126d d +=,则双曲线的方程为 A . 221412x y -= B .221124x y -= C .22139x y -= D .22 193 x y -=

高中数学【椭圆与双曲线】知识点总结

高中数学【椭圆与双曲线】知识点总结 姓名: (一)椭圆 1.椭圆的定义 如果平面内一动点到两定点距离之和等于正的常数(大于两定点的距离),则动点的规迹是椭圆 即|PF1|+|PF2|=2a 其中P是动点,F1,F2是定点且|F1F2|=2C 当a>c时表示 当a=c时表示 当a

标准方程 x,y的范围 顶点焦点对称轴对称中心 长半轴的长短半轴的长焦距 离心率e= 范围e越大椭圆越e越小椭圆越 准线焦半径公式|PF1|= |PF2|= (F1,F2分别为椭圆的下上两焦点,P为椭圆上的一点) 4.椭圆系 (1)共焦点的椭圆系方程为 22 2 1 x y k k c += - (其中k>c2,c为半焦距) (2 )具有相同离心率的标准椭圆系的方程 22 22 (0) x y a b λλ +=> (二) 双曲线 1.双曲线的定义 如果平面内一个动点到两定点距离之差的绝对值等于正的常数(小于两定点间的距离),那么动点的轨迹是双曲线 若一个动点到两定点距离之差等于一个常数,常数的绝对值小于两定点间的距离,那么动点的轨迹是双曲线的一支 F1,F2为两定点,P为一动点,(1)若||PF1|-|PF2||=2a ①0<2a<|F1F2|则动点P的轨迹是 ②2a=|F1F2|则动点P的轨迹是 ③2a=0则动点P的轨迹是 (2) 若|P F1|-|PF2|=2a ①0<2a<|F1F2|则动点P的轨迹是 ②2a=|F1F2|则动点P的轨迹是 ③2a=0则动点P的轨迹是 2.双曲线的标准方程

高中数学 高考双曲线

三、典型例题选讲 (一)考查双曲线的概念 例1 设P 是双曲线192 22=-y a x 上一点,双曲线的一条渐近线方程为023=-y x ,1F 、2F 分别是双曲线的左、右焦点.若3||1=PF ,则=||2PF ( ) A .1或5 B .6 C .7 D .9 分析:根据标准方程写出渐近线方程,两个方程对比求出a 的值,利用双曲线的定义求出 2||PF 的值. 解: 双曲线192 22=- y a x 渐近线方程为y =x a 3±,由已知渐近线为023=-y x , 122,||||||4a PF PF ∴=±∴-=,||4||12PF PF +±=∴ . 12||3,||0PF PF =>,7||2=∴ PF . 故选C . 归纳小结:本题考查双曲线的定义及双曲线的渐近线方程的表示法. (二)基本量求解 例2(2009山东理)设双曲线122 22=-b y a x 的一条渐近线与抛物线21y x =+只有一个公共 点,则双曲线的离心率为( ) A . 45 B .5 C .2 5 D .5 解析:双曲线12222=-b y a x 的一条渐近线为x a b y =,由方程组21 b y x a y x ? =???=+?,消去y ,得 210b x x a - +=有唯一解,所以△=2()40b a -=, 所以2b a = ,2c e a ====D . 归纳小结:本题考查了双曲线的渐近线的方程和离心率的概念,以及直线与抛物线的位置关 系,只有一个公共点,则解方程组有唯一解.本题较好地考查了基本概念、基本方法和基本技能. 例3(2009全国Ⅰ理)设双曲线22221x y a b -=(a >0,b >0)的渐近线与抛物线y =x 2 +1相切,

相关文档
相关文档 最新文档