文档视界 最新最全的文档下载
当前位置:文档视界 › 散热器的表面积计算

散热器的表面积计算

散热器的表面积计算
散热器的表面积计算

散热器的表面积计算:

S = 0.86W/(△T*a))

(平方米)

式中

△T——散热器温度与周围环境温度(T a)之差(℃);

a——传导系数,是由空气的物理性质及空气流速决定的。

a的值可以表示为:

A = Nu*λ/L

式中λ——热电导率由空气的物理性质决定;

L——散热器海拔高度();

Nu——空气流速系数。

Nu值由下式决定

Nu = 0.664* [(V/V1)^(1/2)]*[Pr^(1/3)]

式中V——动黏性系数,是空气的物理性质;

V1——散热器表面的空气流速;

Pr——参数(见表1)。

散热器选择的计算方法

一,各热参数定义:

Rja———总热阻,℃/W;

Rjc———器件的内热阻,℃/W;

Rcs———器件与散热器界面间的界面热阻,℃/W;

Rsa———散热器热阻,℃/W;

Tj———发热源器件内结温度,℃;

Tc———发热源器件表面壳温度,℃;

Ts———散热器温度,℃;

Ta———环境温度,℃;

Pc———器件使用功率,W;

ΔTsa ———散热器温升,℃;

二,散热器选择:

Rsa =(Tj-Ta)/Pc - Rjc -Rcs

式中:Rsa(散热器热阻)是选择散热器的主要依据。

Tj 和Rjc 是发热源器件提供的参数,

Pc 是设计要求的参数,

Rcs 可从热设计专业书籍中查表,或采用Rcs=截面接触材料厚度/(接触面积X 接触材料导热系数)。

(1)计算总热阻Rja:Rja= (Tjmax-Ta)/Pc

(2)计算散热器热阻Rsa 或温升ΔTsa:Rsa = Rja-Rtj-Rtc

ΔTsa=Rsa×Pc

(3)确定散热器

按照散热器的工作条件(自然冷却或强迫风冷),根据Rsa 或ΔTsa 和Pc 选择散热器,查所选散热器的散热曲线(Rsa 曲线或ΔTsa 线),曲线上查出的值小于计算值时,就找到了合适的热阻散热器及其对应的风速,根据风速流经散热器截面核算流量及根据散热器流阻曲线上风速对应的阻力压降,选择满足流量和压力工作点的风扇。

散热器热阻曲线

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

三,散热器尺寸设计:

对于散热器,当无法找到热阻曲线或温升曲线时,可以按以下方法确定:按上述公式求出散热器温升ΔTsa,然后计算散热器的综合换热系数α:α=7.2ψ1ψ2ψ3{√√ [(Tf-Ta)/20]}

式中:

ψ1———描写散热器L/b 对α的影响,(L 为散热器的长度,b 为两肋片的间距);

ψ2———描写散热器h/b 对α的影响,(h 为散热器肋片的高度);

ψ3———描写散热器宽度尺寸W 增加时对α的影响;

√√ [(Tf-Ta)/20]———描写散热器表面最高温度对周围环境的温升对α的影响;

以上参数可以查表得到。

计算两肋片间的表面所散的功率q0

q0 =α×ΔTfa×(2h+b)×L

根据单面带肋或双面带肋散热器的肋片数n,计算散热功率Pc′

单面肋片:Pc′=nq0

双面肋片:Pc′=2nq0

(单面肋,简单的说,就是一边带肋,一边是一个平面。利于在特定场合下的装配,例如在电源模块上。)

若Pc′ >Pc 时则能满足要求。

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

四,估算散热器表面积:

由Q=HA(T1-T2)结合修正系数推得:

S = 0.86W/(△T*a))

(平方米)

式中

△T——散热器温度与周围环境温度(Ta)之差(℃);

α(h)——换热系数,是由空气的物理性质及空气流速决定的。

α的值可以表示为:

α= Nu*λ/L

式中λ——热电导率由空气的物理性质决定;

L——散热器高度;

Nu——空气流速系数。

Nu值由下式决定

Nu = 0.664* [(V/V1)^(1/2)]*[Pr^(1/3)]

式中 V——动黏性系数,是空气的物理性质;

V1——散热器表面的空气流速;

Pr——参数(见下表)。

温度t/℃动黏性系数热电导率Pr

0 0.138 0.0207 0.72

20 0.156 0.0221 0.71

40 0.175 0.0234 0.71

60 0.196 0.0247 0.71

80 0.217 0.0260 0.70

100 0.230 0.0272 0.70

120 0.262 0.0285

0.70

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~`

五,计算阻力压降:

计算流经散热器阻力压降:

在算出换热系数h(α)之后,根据预选的散热器表面的空气流速V,计算流经散热器的空气阻力压降:

△P=f*(L/D)*(1/2)*(ρV2)

式中:ΔP ——沿程压力损失,Pa;

V ——空气平均流速,m/s;

f ——沿程阻力系数;

ρ——空气密度,kg/m3;

L ——沿程长度,m;

D ——当量直径,m。(D=4散热器截面面积/截面周长)。

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

六,计算流量:

计算流经散热器流量

Q=AV

式中

Q---流量

A--风量流经散热器截面积

V---风量流经散热器风速

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

七,风扇选择:

根据计算获得的Q和△P,选择风扇PQ曲线内包含Q与△P点即可。

风扇PQ曲线

Ⅰ、Ⅱ、Ⅲ三条曲线分别代表不同系统的特性曲线。系统特性曲线与风扇的特性曲线的交点就是该风扇的工作点,推荐系统工作在C 点,低阻力工作点。

风扇选型工作点在实际风扇曲线下方即可满足要求。

(精选文档)散热器的表面积计算

散热器的表面积计算: S = 0.86W/(△T*a)) (平方米) 式中 △T——散热器温度与周围环境温度(T a)之差(℃); a——传导系数,是由空气的物理性质及空气流速决定的。 a的值可以表示为: A = Nu*λ/L 式中λ——热电导率由空气的物理性质决定; L——散热器海拔高度(); Nu——空气流速系数。 Nu值由下式决定 Nu = 0.664* [(V/V1)^(1/2)]*[Pr^(1/3)] 式中V——动黏性系数,是空气的物理性质; V1——散热器表面的空气流速; Pr——参数(见表1)。

散热器选择的计算方法 一,各热参数定义: Rja———总热阻,℃/W; Rjc———器件的内热阻,℃/W; Rcs———器件与散热器界面间的界面热阻,℃/W; Rsa———散热器热阻,℃/W; Tj———发热源器件内结温度,℃; Tc———发热源器件表面壳温度,℃; Ts———散热器温度,℃; Ta———环境温度,℃; Pc———器件使用功率,W; ΔTsa ———散热器温升,℃; 二,散热器选择: Rsa =(Tj-Ta)/Pc - Rjc -Rcs 式中:Rsa(散热器热阻)是选择散热器的主要依据。 Tj 和Rjc 是发热源器件提供的参数, Pc 是设计要求的参数, Rcs 可从热设计专业书籍中查表,或采用Rcs=截面接触材料厚度/(接触面积X 接触材料导热系数)。 (1)计算总热阻Rja:Rja= (Tjmax-Ta)/Pc (2)计算散热器热阻Rsa 或温升ΔTsa:Rsa = Rja-Rtj-Rtc ΔTsa=Rsa×Pc (3)确定散热器 按照散热器的工作条件(自然冷却或强迫风冷),根据Rsa 或ΔTsa和Pc 选择散热器,查所选散热器的散热曲线(Rsa 曲线或ΔTsa 线),曲线上查出的值小于计算值时,就找到了合适的热阻散热器及其对应的风速,根据风速流经散热器截面核算流量及根据散热器流阻曲线上风速对应的阻力压降,选择满足流量和压力工作点的风扇。

散热器设计的基本计算(最新整理)

散热器设计的基本计算 一、概念 1、热路:由热源出发,向外传播热量的路径。在每个路径上,必定经过一些不同的介质, 热路中任何两点之间的温度差,都等于器件的功率乘以这两点之间的热阻,就像电路中的欧姆定律,与电路等效关系如下。 热路电路 热耗P (W)电流V ab I (A) 温差△T=T1-T2 (℃)电压V ab=V a-V b(V) 热阻R th=△T/P (℃/ W)电阻R=V ab/I (Ω) 热阻串联R th=R th1+R th2+…电阻串联R=R1+R2+… 热阻并联1/R th=1/R th1+1/R th2+…电阻并联1/R=1/R1+1/R2+… 2、热阻:在热路中,各种介质及接触状态,对热量的传递表现出的不同阻碍作用—— 在热路中产生温度差,形成对热路中两点间指标性的评价。 符号——Rth 单位——℃/W。 ?稳态热传递的热阻计算: R th= (T1-T2)/P T1——热源温度(无其他热源)(℃) T2——导热系统端点温度(℃) ?热路中材料热阻的计算: R th=L/(K·S) L——材料厚度(m) S——传热接触面积(m2) 3、导热率:是指当温度垂直向下梯度为1℃/m时,单位时间内通过单位水平截面积所 传递的热量。 符号——K or λ单位——W/m-K,

铝合金10702261900平面 铝合金1050209硅胶垫佳日丰泰 5.0铝合金6063201矽胶套帽佳日丰泰 1.0铝合金6061160相变基膜佳日丰泰 1.4铝合金7075 130矽硅膜鑫鑫顺源0.9铁80导热膏KDS-2 0.84不锈钢17 空气 0.04 二、热设计的目标 1、确保任何元器件不超过其最大工作结温(T jmax ) ?推荐:器件选型时应达到如下标准 民用等级:T jmax ≤150℃ 工业等级:T jmax ≤135℃军品等级:T jmax ≤125℃ 航天等级:T jmax ≤105℃ ?以电路设计提供的,来自于器件手册的参数为设计目标2、温升限值 器件、内部环境、外壳: △T ≤60℃ 器件每升高2℃,可靠性下降10%;器件温升为50℃时,寿命只有温升25℃的1/6,电解电容温升超过10℃,寿命下降1/2。三、计算 1、TO220封装+散热器 1)结温计算?热路分析 热传递通道:管芯j →功率外壳c →散热器 s →环境空气a

空间几何体的表面积和体积公式大全

空间几何体的表面积与体积公式大全 一、 全(表)面积(含侧面积) 1、 柱体 ① 棱柱 ② 圆柱 2、 锥体 ① 棱锥:h c S ‘ 底棱锥侧21= ② 圆锥:l c S 底圆锥侧2 1 = 3 、 台体 ① 棱台:h c c S )(2 1 ‘下底上底棱台侧+= ② 圆台:l c c S )(2 1 下底上底棱台侧+= 4、 球体 ① 球:r S 24π=球 ② 球冠:略 ③ 球缺:略 二、 体积 1、 柱体 ① 棱柱 ② 圆柱 2 、 锥体 ① 棱锥 ② 圆锥

3、 ① 棱台 ② 圆台 4、 球体 ① 球: r V 33 4 π=球 ② 球冠:略 ③ 球缺:略 说明:棱锥、棱台计算侧面积时使用侧面的斜高h ' 计算;而圆锥、圆台的侧面积计算时使用母线l 计算。 三、 拓展提高 1、 祖暅原理:(祖暅:祖冲之的儿子) 夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。 最早推导出球体体积的祖冲之父子便是运用这个原理实现的。 2、 阿基米德原理:(圆柱容球) 圆柱容球原理:在一个高和底面直径都是r 2 的圆柱形容器内装一个最大的 球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的3 2 。

分析:圆柱体积:r r h S V r 3 222)(ππ=?==圆柱 圆柱侧面积:r h c S r r 2 42)2(ππ=?==圆柱侧 因此:球体体积:r r V 333 4 23 2ππ=?=球 球体表面积:r S 24π=球 通过上述分析,我们可以得到一个很重要的关系(如图) + = 即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、 台体体积公式 公式: )(3 1 S S S S h V 下下 上 上台++= 证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 。 延长两侧棱相交于一点P 。 设台体上底面积为S 上,下底面积为S 下高为h 。 易知:PDC ?∽PAB ?,设h PE 1=, 则h h PF +=1 由相似三角形的性质得: PF PE AB CD =

车用散热器散热面积的计算

车用散热器散热面积的计算 一、散热量的确定 1.用户已给散热量的按已给散热量计算. 2.对车用柴油机可按下式进行估算:Q=()P s式中P s表示发动机功率. 燃烧室为预燃室和涡流室的发动机取较大值P s 直接喷射式的发动机取较小值P s 增压的直喷柴油机可取P s 二、计算平均温度差Δt m 1.散热器的进水温度t s1 闭式冷却系可取t s1=95-100℃(节温器全开温度) 2.散热器出水温度t s2 t s2=t s1-Δt sΔt s是冷却水在散热器中的最大温降,对强制冷却 系可取Δt s=6-12℃ 3.进入散热器的空气温度t k1一般取t k1=40-45℃ 4.流出散热器的空气温度t k2 t k2= t k1+Δt kΔt k是空气流过散热器时的温升,可按下式计算: Δt k=Q/(3600×A Z×C P×V K×ρk) 式中A Z表示散热器芯部的正迎风面积; C P表示空气的定压比热容C P=kgf℃V K表示散热器前的空气流速,车用发动机可取V K=12-15m/s ρk表示空气密度,设定在一个大气压气温50℃下查表得ρk=1.09kg/m3

5.平均温差修正系数φ 汽车发动机的冷却形式,属于两种流体互不混合的交叉流式换热形式.与热力学的简单顺流与逆流的换热形式不同,所以要以修正系数φ对平均温度差结果进行计算修正.而φ值的大小取决于两个无量纲的参数P及R. P=(出气温度-进气温度)/(进水温度-进气温度) R=(进水温度-出水温度)/( 出气温度-进气温度) 查上表可得φ值 6.平均温差Δt m 根据传热学原理,平均温差Δt m可按下式计算: Δt m=φ{(Δt max-Δt min)/ ㏑(Δt max/Δt min)} Δt max= t s1- t k1Δt min= t s2- t k2

车用散热器散热面积的计算

车用散热器散热面积的计算散热量的确定 1.用户已给散热量的按已给散热量计算. 2.对车用柴油机可按下式进行估算:Q=()P s 式中P s 表示发动机功率. 燃烧室为预燃室和涡流室的发动机取较大值P s 直接喷射式的发动机取较小值P s 增压的直喷柴油机可取P s 计算平均温度差厶t m 1. 散热器的进水温度t s1 闭式冷却系可取t si=95-100C (节温器全开温度) 2. 散热器出水温度t s2 t s2= t s1-A t s △ t s是冷却水在散热器中的最大温降,对强制冷却系可取△ t s=6-12C 3?进入散热器的空气温度t ki 一般取t ki=40-45C 4.流出散热器的空气温度t k2 t k2= t kl+A t k △ t k是空气流过散热器时的温升,可按下式计算:△t k=Q/(3600 x A z X C P X V K X P k) 式中A z表示散热器芯部的正迎风面积;C P表示空气的定压比热容C P二kgf C V K表示散热器前的空气流速,车用发动机可取 V K=12-15m/s p k表示空气密度,设定在一个大气压气温50C下查

表得P k=1.09kg/m3 △ t max= t s1- t k1 △ t min= t s2- t k2

5?平均温差修正系数? 汽车发动机的冷却形式,属于两种流体互不混合的交叉流式换热形式?与热力学的简单顺流与逆流的换热形式不同,所以要以修正系数? 对平均温度差结果进行计算修正?而?值的大小取决于两个无量纲的参数P及R. P二出气温度-进气温度)/(进水温度-进气温度) R=进水温度-出水温度)/(出气温度-进气温度) P 查上表可得?值 6.平均温差△ t m 根据传热学原理,平均温差△ t m可按下式计算: △t m= ? {(△t max- △t min)/ I n (△t max/ △t min)}

热阻计算

热阻计算 一般,热阻公式中,Tcmax =Tj - P*Rjc的公式是在假设散热片足够大而且接触足够良好的情况下才成立的,否则还应该写成Tcmax =Tj - P*(Rjc+Rcs+Rsa)。Rjc表示芯片内部至外壳的热阻,Rcs表示外壳至散热片的热阻,Rsa表示散热片的热阻。没有散热片时,Tcmax =Tj - P*(Rjc+Rca)。Rca 表示外壳至空气的热阻。 一般使用条件用Tc =Tj - P*Rjc的公式近似。厂家规格书一般会给出,Rjc, P等参数。一般P是在25度时的功耗。当温度大于25度时,会有一个降额指标。 一、可以把半导体器件分为功率器件和小功率器件。 1、大功率器件的额定功率一般是指带散热器时的功率,散热器足够大时且散热良好时,可以认为其表面到环境之间的热阻为0,所以理想状态时壳温即等于环境温度。功率器件由于采用了特殊的工艺,所以其最高允许结温有的可以达到175度。但是为了保险起见,一律可以按150度来计算。适用公式:Tc =Tj - P*Rjc。设计时,Tj最大值为150,Rjc已知,假设环境温度也确定,根据壳温即等于环境温度,那么此时允许的P也就随之确定。 2、小功率半导体器件,比如小晶体管,IC,一般使用时是不带散热器的。所以这时就要考虑器件壳体到空气之间的热阻了。一般厂家规格书中会给出Rja,即结到环境之间的热阻。(Rja=Rjc+Rca)。 同样以三级管2N5551为例,其最大使用功率1.5W是在其壳温25度时取得的。假设此时环境温度恰好是25度,又要消耗1.5W的功率,还要保证结温也是25度,唯一的可能就是它得到足够良好的散热!但是一般像2N5551这样TO-92封装的三极管,是不可能带散热器使用的。所以此时,小功率半导体器件要用到的公式是: Tc =Tj - P*Rja Rja:结到环境之间的热阻。一般小功率半导体器件的厂家会在规格书中给出这个参数。 2N5551的Rja,厂家给的值是200度/W。已知其最高结温是150度,那么其壳温为25度时,允许的功耗可以把上述数据代入Tc =Tj - P*Rja 得到: 25=150-P*200,得到,P=0.625W。事实上,规格书中就是0.625W。因为2N5551不会加散热器使用,所以我们平常说的2N5551的功率是0.625W而不是1.5W! 还有要注意,SOT-23封装的晶体管其额定功率和Rja数据,是在焊接到规定的焊盘(有一定的散热功能)上时测得的。

散热器的选型与计算..

散热器的选型与计算 以7805 为例说明问题. 设I=350mA,Vin=12V, 则耗散功率Pd=(12V-5V)*0.35A=2.45W 按照TO-220封装的热阻θ JA=54℃/W,温升是132℃, 设室温25℃,那么将会达到7805的热保护点150℃,7805 会断开输出. 正确的设计方法是: 首先确定最高的环境温度, 比如60℃, 查出7805 的最高结温TJMAX=125℃ , 那么允许的温升是65℃. 要求的热阻是65℃ /2.45W=26℃/W.再查7805 的热阻,TO-220 封装的热阻θ JA=54℃/W, 均高于要求值,都不能使用,所以都必须加散热片,资料里讲到加散热片的时候, 应该加上4℃/W 的壳到散热片的热阻. 计算散热片应该具有的热阻也很简单, 与电阻的并联一样, 即 54//x=26,x=50 ℃/W.其实这个值非常大, 只要是个散热片即可满足. 散热器的计算: 总热阻RQj-a=(Tjmax-Ta)/Pd Tjmax : 芯组最大结温150℃ Ta : 环境温度85℃ Pd : 芯组最大功耗 Pd=输入功率- 输出功率 ={24×0.75+(-24) ×(-0.25)}-9.8 ×0.25 ×2

=5.5 ℃ /W 总热阻由两部分构成,其一是管芯到环境的热阻RQj-a, 其中包括结壳热阻RQj-C 和管壳到环境的热阻RQC-a.其二是散热器热阻RQd-a,两者并联构成总热阻. 管芯到环境的热阻经查手册知RQj-C=1.0 RQC-a=36 那么散热器热阻RQd-a 应<6.4. 散热器热阻RQd-a=[(10/kd)1/2+650/A]C 其中k:导热率铝为2.08 d: 散热器厚度cm A: 散热器面积cm2 C: 修正因子取1 按现有散热器考虑,d=1.0 A=17.6×7+17.6 ×1×13 算得散热器热阻RQd-a=4.1℃ /W, 散热器选择及散热计算目前的电子产品主要采用贴片式封装器件,但大功率器件及一些功率模块仍然有不少用穿孔式封装,这主要是可方便地安装在散热器上,便于散热。进行大功率器件及功率模块的散热计算,其目的是在确定的散热条件下选择合适的散热器,以保证器件或模块安全、可靠地工作。 散热计算 任何器件在工作时都有一定的损耗,大部分的损耗变成热量。小功率器件损耗小,无需散热装置。而大功率器件损耗大,若不采取散热措施,则管芯的温度可达到或超过允许的结温,器件将受到损坏。因此必须加散热装置,最常用的就是将功率器件安装在散热器上,利

空间几何体表面积与体积公式大全

空间几何体的表面积与体积公式大全 一、全(表)面积(含侧面积) 1、柱体 ①棱柱 ②圆柱 2、锥体 ①棱锥: ②圆锥: 3、台体 ①棱台: ②圆台: 4、球体 ①球: ②球冠:略 ③球缺:略 二、体积 1、柱体 ①棱柱 ②圆柱 2、锥体 ①棱锥 ②圆锥

3、台体 ①棱台 ②圆台 4、球体 ①球: ②球冠:略 ③球缺:略 说明:棱锥、棱台计算侧面积时使用侧面的斜高计算;而圆锥、圆台的侧面积计算时使用母线计算。 三、拓展提高 1、祖暅原理:(祖暅:祖冲之的儿子) 夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。 最早推导出球体体积的祖冲之父子便是运用这个原理实现的。 2、阿基米德原理:(圆柱容球) 圆柱容球原理:在一个高和底面直径都是的圆柱形容器内装一个最大的球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的。

分析:圆柱体积: 圆柱侧面积: 因此:球体体积: 球体表面积: 通过上述分析,我们可以得到一个很重要的关系(如图) += 即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、台体体积公式 公式: 证明:如图过台体的上下两底面中心连线的纵切面为梯形。 延长两侧棱相交于一点。 设台体上底面积为,下底面积为 高为。 易知:∽,设, 则 由相似三角形的性质得:

即:(相似比等于面积比的算术平方根) 整理得: 又因为台体的体积=大锥体体积—小锥体体积 ∴ 代入:得: 即: ∴ 4、球体体积公式推导 分析:将半球平行分成相同高度的若干层(),越大,每一层越近似于圆柱,时,每一层都可以看作是一个圆柱。这些圆柱的高为,则:每个圆柱的体积= 半球的体积等于这些圆柱的体积之和。 ……

散热与风量的计算doc资料

散热与风量的计算

风扇总热量=空气比热X空气重量X温差,这里的温差是指,你进风的温度与最终加热片的温度的差值,照你说 的,250-80(最加热片的温度)-25(进风空气的温度)=145度,你给的倏件还一样,就是热量不知道,或者电器做的 总功不知道,电器做的总功/4.2=风扇排出的总热量知道的话就可以根空气重量=风量/60X空气密度逆推出风量 . 设:半导体发热芯片平均温度T1(工作时的温度上限,也就是说改芯片能承受的最高温度,取决你的设计要 求了),散热片平均温度T2,散热片出口处空气温度T3 简化问题,假设: 1.散热片为热的良导体,达到热平衡时间忽略,则有T1=T2; 2.只考虑热传导,对流和辐射不予考虑。 又因为半导体发出的热量最终用来加热空气,则有: 880W=40CFM*空气比热*(T3-38°C)注意单位统一,至于空气的比热用定容的吧。。。 上式可以求出(实际上也就是估算而已)出口处空气温度T3, 根据散热片的散热公式(也是估算),有: P=λ*【T2-0.5(T3+38°C)】*A

其中:P为散热功率,λ为散热系数,A为与空气的接触面积,【T2-0.5 (T3+38°C)】为温差; 其中:λ可以通过对照试验求(好吧,还是估算)出来, 这样就能大概估算出需要的散热器面积A了。。。 P.S. 误差来源1:散热器温度和芯片温度肯定不相等,热传导需要时间,而且散热片不同位置的温度也不严格相同 ,只是处在动态平衡; 误差来源2:散热片的散热公式是凭感觉写的。。。应该没大错,但肯定很粗糙。。自己修正吧 能想到的就这么多了。。。 轴流风机风量散热器的信息讲解 2011-06-02 17:06 轴流风机风量散热器的信息讲解 风量是指风冷散热器风扇每分钟排出或纳入的空气总体积,如果按立方英尺来计算,单 位就是CFM;如果按立方米来算,就是CMM。散热器产品经常使用的风量单位是CFM(约

散热器的选型与计算

散热器的选型与计算 以7805为例说明问题. 设I=350mA,Vin=12V,则耗散功率Pd=(12V-5V)*0.35A=2.45W 按照TO-220封装的热阻θJA=54℃/W,温升是132℃,设室温25℃,那么将会达到7805的热保护点150℃,7805会断开输出. 正确的设计方法是: 首先确定最高的环境温度,比如60℃,查出7805的最高结温TJMAX=125℃,那么允许的温升是65℃.要求的热阻是65℃/2.45W=26℃/W.再查7805的热阻,TO-220封装的热阻θJA=54℃/W,均高于要求值,都不能使用,所以都必须加散热片,资料里讲到加散热片的时候,应该加上4℃/W的壳到散热片的热阻. 计算散热片应该具有的热阻也很简单,与电阻的并联一样,即54//x=26,x=50℃/W.其实这个值非常大,只要是个散热片即可满足. 散热器的计算: 总热阻RQj-a=(Tjmax-T a)/Pd Tjmax :芯组最大结温150℃ Ta :环境温度85℃ Pd : 芯组最大功耗 Pd=输入功率-输出功率 ={24×0.75+(-24)×(-0.25)}-9.8×0.25×2 =5.5℃/W

总热阻由两部分构成,其一是管芯到环境的热阻RQj-a,其中包括结壳热阻RQj-C和管壳到环境的热阻RQC-a.其二是散热器热阻RQd-a,两者并联构成总热阻.管芯到环境的热阻经查手册知RQj-C=1.0 RQC-a=36 那么散热器热阻RQd-a应<6.4. 散热器热阻RQd-a=[(10/kd)1/2+650/A]C 其中k:导热率铝为2.08 d:散热器厚度cm A:散热器面积cm2 C:修正因子取1 按现有散热器考虑,d=1.0A=17.6×7+17.6×1×13 算得散热器热阻RQd-a=4.1℃/W, 散热器选择及散热计算 目前的电子产品主要采用贴片式封装器件,但大功率器件及一些功率模块仍然有不少用穿孔式封装,这主要是可方便地安装在散热器上,便于散热。进行大功率器件及功率模块的散热计算,其目的是在确定的散热条件下选择合适的散热器,以保证器件或模块安全、可靠地工作。 散热计算 任何器件在工作时都有一定的损耗,大部分的损耗变成热量。小功率器件损耗小,无需散热装置。而大功率器件损耗大,若不采取散

热传导计算

热传导计算 随着微电子技术的飞速发展,芯片的尺寸越来越小,同时运算速度越来越快,发热量也就越来越大,如英特尔处理器3.6G 奔腾4终极版运行时产生的热量最大可达115W ,这就对芯片的散热提出更高的要求。设计人员就必须采用先进的散热工艺和性能优异的散热材料来有效的带走热量,保证芯片在所能承受的最高温度以内正常工作。 如图 1所示,目前比较常用的一种散热方式是使用散热器,用导热材料和工具将散热器安装于芯片上面,从而将芯片产生的热量迅速排除。本文介绍了根据散热器规格、芯片功率、环境温度等数据,通过热传导计算来求得芯片工作温度的方法。 芯片的散热过程 由于散热器底面与芯片表面之间会存在很多沟壑或空隙,其中都是空气。由于空气是热的不良导体,所以空气间隙会严重影响散热效率,使散热器的性能大打折扣,甚至无法发挥作用。为了减小芯片和散热器之间的空隙,增大接触面积,必须使用导热性能好的导热材料来填充,如导热胶带、导热垫片、导热硅酯、导热黏合剂、相转变材料等。如图2所示,芯片发出的热量通过导热材料传递给散热器,再通过风扇的高速转动将绝大部分热量通过对流(强制对流和自然对流)的方式带走到周围的空气中,强制将热量排除,这样就形成了从芯片,然后通过散热器和导热材料,到周围空气的散热通路。 表征热传导过程的物理量

在图3的导热模型中,达到热平衡后,热传导遵循傅立叶传热定律: Q="K"·A·(T1-T2)/L (1) 式中:Q为传导热量(W);K为导热系数(W/m℃);A 为传热面积(m2);L为导热长度(m)。(T1-T2)为温度差。 热阻R表示单位面积、单位厚度的材料阻止热量流动的能力,表示为: R=(T1-T2)/Q=L/K·A (2) 对于单一均质材料,材料的热阻与材料的厚度成正比;对于非单一材料,总的趋势是材料的热阻随材料的厚度增加而增大,但不是纯粹的线形关系。 对于界面材料,用特定装配条件下的热阻抗来表征界面材料导热性能的好坏更合适,热阻抗定义为其导热面积与接触表面间的接触热阻的乘积,表示如下: Z=(T1-T2)/(Q/A)=R·A (3) 表面平整度、紧固压力、材料厚度和压缩模量将对接触热阻产生影响,而这些因素又与实际应用条件有关,所以界面材料的热阻抗也将取决于实际装配条件。导热系数指物体在单位长度上产生1℃的温度差时所需要的热功率,是衡量固体热传导效率的固有参数,与材料的外在形态和热传导过程无关,而热阻和热阻抗是衡量过程传热能力的物理量。 芯片工作温度的计算 如图4的热传导过程中,总热阻R为: R="R1"+R2+R3 (4) 式中:R1为芯片的热阻;R2为导热材料的热阻;R3为散热器的热阻。导热材料的热阻R2为: R2=Z/A (5) 式中:Z为导热材料的热阻抗,A为传热面积。芯片的工作温度T2为: T2=T1+P×R (6)

散热器简化设计计算方法

壁挂散热器价格简化设计计算方法 一. 金旗舰散热量Q的计算 1.基本计算公式: Q=S×W×K×4.1868÷3600 (Kw) 式中: ①.Q —散热器散热量(KW)=发动机水套发热量×(1.1~1.3) ②.S —散热器散热面积(㎡)=散热器冷却管的表面积+2×散热带 的表面积。 ③.W —散热器进出水、进出风的算术或对数平均液气温差(℃), 设计标准工况分为:60℃、55℃、45℃、35℃、25℃。它们分别对应散热器允许适用的不同环境大气压和自然温度工况条件。④.K —散热系数(Kcal/m.h.℃)。它对应关联为:散热器冷却管、散热带、钎焊材料选用的热传导性能质量的优劣;冷却管与散热带钎焊接合率的质量水平的优劣;产品内外表面焊接氧化质量水平的优劣;冷却管内水阻值(通水断面积与水流量的对应关联—水与金属的摩擦流体力学),散热带风阻值(散热带波数、波距、百叶窗开窗的翼宽、角度的对应关联—空气与金属的摩擦流体阻力学)质量水平的优劣。总体讲:K值是代表散热器综合质量水平的关键参数,它包容了散热器从经营管理理念、设计、工装设备、物料的选用、采购供应、制造管理控制全过程的综合质量水平。根据多年的经验以及

数据收集,铜软钎焊散热器的K值为:65~95 Kcal/m2.h.℃;改良的簿型双波浪带铜软钎焊散热器的K值为:85~105 Kcal/m2.h.℃;铝硬钎焊带电子风扇系统的散热器的K值为:120~150 Kcal/m2.h.℃。充分认识了解掌握利用K值的内涵,可科学合理的控制降低散热器的设计和制造成本。准确的K值需作散热器风洞试验来获取。 ⑤.4.1868和3600 —均为热能系数单位与热功率单位系数换算值⑥.发动机水套散热量=发动机台架性能检测获取或根据发动机升功 率、气门结构×经验单位系数值来获取。 二、计算程序及方法 1. 散热面积S(㎡) S=冷却管表面积F1+2×散热带表面积F2 F1={ [2×(冷却管宽-冷却管两端园孤半径)]+2π冷却管两端园孤半径}×冷却管有效长度×冷却管根数×10 F2=散热带一个波峰的展开长度×一根散热带的波峰数×散热带的 宽度×散热带的根数×2×10 2. 算术平均液气温差W(℃) W=[(进水温度+出水温度)÷2]-[(进风温度+出风温度)÷2] 常用标准工况散热器W值取60℃,55℃,增强型取45℃,35℃。这要根据散热器在什么工况环境使用条件下来选取。 3. 散热系数K

发动机散热器的设计计算

发动机散热器的设计计算 散热片面积是冷却水箱的基本参数,通常单位功率所需散热面积为0.20~0.28㎡/KW。发动机后置的车辆冷却条件比较差,工程机械行走速度慢没有迎风冷却,因此所配置的水箱散热面积宜选用上限。 水箱所配相关管道不能太小,其中四缸机的管道内径≧37mm,六缸机的管道内径≧42mm。 水箱迎风面积要求尽可能大一点,通常情况下为0.31~0.37㎡/KW,后置车、工程车辆还要大一些,由于道路条件改善,长时间的高速公路上高速行驶,或者容易超载,经常爬坡的车辆也要选得大一点。 对冷却液的要求: 1.冷却作用:有效的带走一定的热量,使发动机得到冷却,防止过热。 2.防冻作用:防止冷却液结冰而导致水箱和柴油机水腔冻裂。 3.防氧化和腐蚀:冷却液可防止金属件的氧化和腐蚀。 为改善发动机的工作条件,进一步提高其冷却性能,发动机后置或者重型车都配置了膨胀水箱。膨胀水箱应高于散热水箱50mm左右,必须具有相当于冷却系统总容积6%的冷却液膨胀空间,储备水量应是冷却系统总容积的11%,有暖风时达到20%,冷却液液面不能淹没加水伸长颈管,加水伸长颈管上部必须设通气孔,通气管不宜小于φ3.2mm,膨胀水箱最低液面以下水深不得低于50mm,以防止空气进入注水管。 由于受到发动机水循环系统进出口口径大小的限制,发动机进水接口外径为34mm(散热器出水接口外径也为34mm),发动机回水接口外径为35mm(散热器回水接口外径为35mm)。 本产品所选用的发动机额定功率为:110kw 在设计或选用冷却部件时应以散入冷却系统的热量Q为原始数据,来计算冷却系统的循环水量和冷却空气量:

用经验式 =???==3600 21.0431*******.03600u e e W h p Ag Q 69.14kJ/s=59450kcal/h 燃料热能传给冷却系的分数,取同类机型的统计量,%,柴油机A=0.23~0.30,取A=0.25 e g -燃料消耗率,kg/kw.h ;柴油机为0.210 e P -发动机有效功率,取最大功率110kw 若水冷式机油散热器,要增加散热量,W Q 增大5%~10%. 在算出发动机所需的散走的热量后,可计算冷却水循环量 187.41000814.69??=?= W W W W W C r t Q V =206.41L/min W t ?-冷却水循环的容许温升(6?-12?),取8? W r -水的密度,(1000kg/3m ) W C -水比热(4.187kJ/kg.C ?) 实际冷却水循环量为:==W a V V 2.1247.69L/min 冷却空气需要量:047.101.12014.69??=?= Pa W W W W C r t Q V =3.27m 3/s a t ?-散热器前后流动空气的温度差,取20C ? a r -空气密度,一般a r 取1.01kg/3m Pa C -空气的定压比热,可取Pa C =1.047kJ/kg.C ? 二.散热器设计 1.散热器的计算所根据的原始参数是散热器散发的热量和散热器的外形尺寸。 散热器散发的热量就等于发动机传给冷却液的热量。 已知散热器散发的热量后,所需散热面积F 可由下式计算:

散热片计算方法

征热传导过程的物理量 在图3的导热模型中,达到热平衡后,热传导遵循傅立叶传热定律: Q=K·A·(T1-T2)/L (1) 式中:Q为传导热量(W);K为导热系数(W/m℃);A 为传热面积(m2);L为导热长度(m).(T1-T2)为温度差. 热阻R表示单位面积、单位厚度的材料阻止热量流动的能力,表示为: R=(T1-T2)/Q=L/K·A(2) 对于单一均质材料,材料的热阻与材料的厚度成正比;对于非单一材料,总的趋势是材料的热阻随材料的厚度增加而增大,但不是纯粹的线形关系. 对于界面材料,用特定装配条件下的热阻抗来表征界面材料导热性能的好坏更合适,热阻抗定义为其导热面积与接触表面间的接触热阻的乘积,表示如下: Z=(T1-T2)/(Q/A)=R·A (3) 表面平整度、紧固压力、材料厚度和压缩模量将对接触热阻产生影响,而这些因素又与实际应用条件有关,所以界面材料的热阻抗也将取决于实际装配条件.导热系数指物体在单位长度上产生1℃的温度差时所需要的热功率,是衡量固体热传导效率的固有参数,与材料的外在形态和热传导过程无关,而热阻和热阻抗是衡量过程传热能力的物理量. 芯片工作温度的计算 如图4的热传导过程中,总热阻R为: R=R1+R2+R3 (4) 式中:R1为芯片的热阻;R2为导热材料的热阻;R3为散热器的热阻.导热材料的热阻R2为: R2=Z/A (5) 式中:Z为导热材料的热阻抗,A为传热面积.芯片的工作温度T2为:

T2=T1+P×R (6) 式中:T1为空气温度;P为芯片的发热功率;R为热传导过程的总热阻.芯片的热阻和功率可以从芯片和散热器的技术规格中获得,散热器的热阻可以从散热器的技术规格中得到,从而可以计算出芯片的工作温度T2. 实例 下面通过一个实例来计算芯片的工作温度.芯片的热阻为1.75℃/W,功率为5W,最高工作温度为90℃,散热器热阻为1.5℃/W,导热材料的热阻抗Z为5.8℃cm2/W,导热材料的传热面积为5cm2,周围环境温度为50℃.导热材料理论热阻R4为: R4=Z/A=5.8 (℃·cm2/W)/ 5(cm2)=1.16℃/W(7) 由于导热材料同芯片和散热器之间不可能达到100%的结合,会存在一些空气间隙,因此导热材料的实际热阻要大于理论热阻.假定导热材料同芯片和散热器之间的结合面积为总面积的60%,则实际热阻R3为: R3=R4/60%=1.93℃/W(8) 总热阻R为: R=R1+R2+R3=5.18℃/W (9) 芯片的工作温度T2为: T2=T1+P×R=50℃+(5W× 5.18℃/W)=75.9℃ (10) 可见,芯片的实际工作温度75.9℃小于芯片的最高工作温度90℃,处于安全工作状态. 如果芯片的实际工作温度大于最高工作温度,那就需要重新选择散热性能更好的散热器,增加散热面积,或者选择导热效果更优异的导热材料,提高整体散热效果,从而保持芯片的实际工作温度在允许范围以内(作者:方科 )转载

汽车水散热器的概述及理论设计计算

汽车水散热器的概述 及理论设计计算 一、散热器概述 1汽车散热器的定义: 汽车散热器是水冷式发动机冷却系统的关键部件。通过强制水循环对发动机进行冷却,是保证发动机在正常的温度范围内连续工作的换热装置。 1、散热器在汽车中的重要地位 1汽车总成 产值比重按不同的车型能够占汽车总成的1~2.5% 2发动机总成 产值比重按不同的车型能够占发动机的15%左右 3、散热器结构的发展 1管片式开窗结构 2铜质管带式平片结构 3铜质管带式开窗结构 4铝质汽车散热器 5铜塑水箱或铝塑水箱 4、散热器的结构 1基本结构 2带补偿水壶结构 3带膨胀水箱结构

三、汽车的整体结构 温度过高及过低的坏处 温度过高 3温度过高时大多数零件都受热膨胀,温度越高,膨胀越大4零件在高温下会降低强度,不能很好地工作 5温度过高时,其润滑油粘度降低,会加剧零件的磨损 6气缸内的温度过高时,进入气缸内的新鲜空气很快膨胀,就减少了进气量,降低功率。 7在汽油机中,气缸内温度过高时,容易产生爆炸现象 温度过低 2燃料不能完全燃烧,使燃料消耗增加 3使润滑油粘度增高,零件的摩擦阻力加大,消耗较多的功率,因而减少了输出功率 4废气中的水蒸气与硫化物生成一种叫亚硫酸的液滴腐蚀零件5传走的热能增加,转变为机械功的热能减少,造成过多的散热损失.汽车分类最新标准 以前的分类是我国1988年6月发布的有关标准GB/T3730.1-1988。 2目前新标准已将汽车的分类作了修改: 3一是废除了“轿车”的提法 4二是不再将”越野车”单独分类 5三是将汽车分为乘用车和商用车两大类 乘用车(不超过9座):

1分为普通乘用车、活顶乘用车、高级乘用车、小型乘用车、敞篷车、仓背乘用车、旅行车、多用途乘用车、短头乘用车、越野乘用车、专用乘用车。 商用车: 2分为客车、货车和半挂牵引车 3客车细分为小型客车、城市客车、长途客车、铰接客车、无轨客车、越野客车、专用客车。 4货车细分为普通货车、多用途货车、全挂牵引车、越野货车、专用作业车、专用货车。 RV车-------休闲车 RV大致分为3大类型 1MPV:是在轿车底盘基础上开发的。 2SUV:是一种越野车、休闲车概念的延伸。 六、水散热器的设计 散热器在汽车零部件中是强度较薄弱的环节,要求散热器在有限的空间内应具有足够的散热能力和较高的使用寿命。 1、水套的总散热量的计算 (1)Qn=q * N q----水套的比散热量,取1994~2563KJ/KW*h,柴油取上限。 N----最大功率(KW) Qn----最大功率点工况水套总散热量(KJ/h) (2)Qm=q*Me*Ne/9550 q----水套的比散热量

冷却系统计算

冷却系统计算 一、 闭式强制冷却系统原始参数 都以散入冷却系统的热量 Q W 为原始数据,计算冷却系统的循环水量、冷却 空气量,以便设计或选用水泵、散热器、风扇 1.冷却系统散走的热量Q W 冷却系统散走的热量Q W ,受很多复杂因素的影响,很难精确计算,初估Q W ,可以用下列经验公式估算: 3600 h N g Q u e e W A (千焦/秒) (1-1) A ---传给冷却系统的热量占燃料热能的百分比,对汽油机A=0.23~0.30, 对柴油机A=0.18~0.25 g e ---内燃机燃料消耗率(千克/千瓦.小时) N e ---内燃机功率(千瓦) h u ---燃料低热值(千焦/千克) 如果内燃机还有机油散热器,而且是水油散热器,则传入冷却系统中的热量,也应将传入机油中的热量计算在冷却系统中,则按上式计算的热量Q W 值应增大5~10% 一般把最大功率(额定工况)作为冷却系统的计算工况,但应该对最大扭矩工况进行验算,因为当转速降低时可能形成蒸汽泡(由于气缸体水套中压力降低)和内燃机过热的现象。 具有一般指标的内燃机,在额定工况时,柴油机g e 可取0.21~0.27千克/千瓦.小时,汽油机g e 可取0.30~0.34千克/千瓦.小时,柴油和汽油的低热值可分别取41870千焦/千克和43100千焦/千克,将此值带入公式即得 汽油机Q W =(0.85~1.10)N e 柴油机Q W =(0.50~0.78)N e

车用柴油机可取Q W=(0.60~0.75)N e,直接喷射柴油机可取较小值,增压的直接喷射式柴油机由于扫气的冷却作用,加之单位功率的冷却面积小,可取Q =(0.50~0.60)N e,精确的Q W应通过样机的热平衡试验确定。 W 取Q W=0.60N e 考虑到机油散热器散走的热量,所以Q W在上式计算的基础上增大10% 额定功率: ∴对于420马力发动机Q W=0.6*309=185.4千焦/秒 增大10%后的Q W=203.94千焦/秒 ∴对于360马力发动机Q W=0.6*266=159.6千焦/秒 增大10%后的Q W=175.56千焦/秒 ∴对于310马力发动机Q W=0.6*225=135千焦/秒 增大10%后的Q W=148.5千焦/秒 最大扭矩: ∴对于420马力发动机Q W=0.6*250=150千焦/秒 增大10%后的Q W=165千焦/秒 ∴对于360马力发动机Q W=0.6*245=147千焦/秒 增大10%后的Q W=161.7千焦/秒 ∴对于310马力发动机Q W=0.6*180=108千焦/秒 增大10%后的Q W=118.8千焦/秒 2.冷却水的循环量 根据散入冷却系统中的热量,可以算出冷却水的循环量V W

所有图形的面积体积表面积公式

长方形的周长=(长+宽)×2 正方形的周长=边长×4 长方形的面积=长×宽 正方形的面积=边长×边长 三角形的面积=底×高÷2 平行四边形的面积=底×高 梯形的面积=(上底+下底)×高÷2 直径=半径×2 半径=直径÷2 圆的周长=圆周率×直径= 圆周率×半径×2 圆的面积=圆周率×半径×半径 长方体的表面积= (长×宽+长×高+宽×高)×2 长方体的体积=长×宽×高 正方体的表面积=棱长×棱长×6 正方体的体积=棱长×棱长×棱长

圆柱的表面积=上下底面面积+侧面积圆柱的体积=底面积×高 圆锥的体积=底面积×高÷3 长方体(正方体、圆柱体) 的体积=底面积×高 平面图形 名称符号周长C和面积S 正方形a—边长C=4a S=a2 长方形a和b-边长C=2(a+b) S=ab 三角形a,b,c-三边长 h-a边上的高 s-周长的一半 A,B,C-内角 其中s=(a+b+c)/2 S=ah/2

=[s(s-a)(s-b)(s-c)]1/2 =a2sinBsinC/(2sinA) 四边形d,D-对角线长 α-对角线夹角S=dD/2·sinα平行四边形a,b-边长 h-a边的高 α-两边夹角S=ah =absinα 菱形a-边长 α-夹角 D-长对角线长 d-短对角线长S=Dd/2 =a2sinα 梯形a和b-上、下底长 h-高 m-中位线长S=(a+b)h/2

圆r-半径 d-直径C=πd=2πr S=πr2 =πd2/4 扇形r—扇形半径 a—圆心角度数 C=2r+2πr×(a/360) S=πr2×(a/360) 弓形l-弧长 b-弦长 h-矢高 r-半径 α-圆心角的度数S=r2/2·(πα/180-sinα)=r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2 =παr2/360 - b/2·[r2-(b/2)2]1/2 =r(l-b)/2 + bh/2

电源功率器件散热器计算

电源功率器件散热器计算 一、7805 设计事例 设I=350mA,Vin=12V,则耗散功率 Pd=(12V-5V)*0.35A=2.45W。按照TO-220 封装的热阻θJA=54℃/W,温升是132℃,设室温25℃,那么 将会达到7805 的 热保护点150℃,7805 会断开输出。 二、正确的设计方法是: 首先确定最高的环境温度,比如60℃,查出民品7805 的最高结 温 Tj(max)=125℃,那么允许的温升是65℃。要求的热阻是 65℃/2.45W=26℃/W。 再查7805 的热阻,TO-220 封装的热阻θJA=54℃/W, TO-3 封装(也就是大家说的“铁壳”)的热阻θJA=39℃/W,均 高于要求值,都不能使用(虽然达不到热保护点,但是超指标使用还 是不对的),所以不论那种封装都必须加散热片。资料里讲到加散热片 的时候,应该加上4℃/W 的壳到散热片的热阻。 计算散热片应该具有的热阻也很简单,与电阻的并联一样,即 54//x=26, x=50℃/W。其实这个值非常大,只要是个散热片即可满足。 三、散热片尺寸设计 散热片计算很麻烦的,而且是半经验性的,或说是人家的实测结果。 基本的计算方法是:

1.最大总热阻θja =(器件芯的最高允许温度TJ -最高环境 温度 TA )/ 最大耗散功率 其中,对硅半导体,TJ 可高到125℃,但一般不应取那么高,温度太高会降 低可靠性和寿命。 最高环境温度TA 是使用中机箱内的温度,比气温会高。 最大耗散功率见器件手册。 2.总热阻θja=芯到壳的热阻θjc +壳到散热片的θcs +散热片到环 境的θsa 其中,θjc 在大功率器件的DateSheet 中都有,例如3---5 θcs对TO220 封装,用2 左右,对TO3 封装,用3 左右,加导热硅脂后, 该值会小一点,加云母绝缘后,该值会大一点。 散热片到环境的热阻θsa 跟散热片的材料、表面积、厚度都有关系,作为 参考,给出一组数据例子。 a.对于厚2mm 的铝板,表面积(平方厘米)和热阻(℃/W)的对应关系是: 中间的数据可以估计了。

1-3-2-1散热器面积及片数的计算方法

1-3-2-1散热器面积及片数的计算方法

项目一:室内热水供暖工程施工 模块三:散热器施工安装 单元2 散热器的计算 1-3-2-1散热器面积及片数的计算方法 1.计算散热器的散热面积 供暖房间的散热器向房间供应热量以补偿 房间的热损失。根据热平衡原理,散热器的散热量应等于房间的供暖设计热负荷。 散热器散热面积的计算公式为 321)(βββn pj t t K Q F -= (2-1-2) 式中 F ——散热器的散热面积(m 2); Q ——散热器的散热量(W ); K ——散热器的传热系数[W/(m 2·℃)]; t pj ——散热器内热媒平均温度(℃); t n ——供暖室内计算温度(℃); β1——散热器组装片数修正系数; β2——散热器连接形式修正系数; β3——散热器安装形式修正系数。 2.确定散热器的传热系数K 散热器的传热系数K 是表示当散热器内热 媒平均温度t pj 与室内空气温度t n 的差为1℃时,

每1 m2散热面积单位时间放出的热量。选用散热器时希望散热器的传热系数越大越好。 影响散热器传热系数的最主要因素是散热器内热媒平均温度与室内空气温度的差值Δt pj 。另外散热器的材质、几何尺寸、结构形式、表面喷涂、热媒种类、温度、流量、室内空气温度、散热器的安装方式、片数等条件都将影响传热系数的大小。因而无法用理论推导求出各种散热器的传热系数值,只能通过实验方法确定。 国际化标准组织(ISO)规定:确定散热器的传热系数 K值的实验,应在一个长×宽×高为(4±0.2)m×(4±0.2)m×(2.8±0.2)m的封闭小室内,保证室温恒定下进行,散热器应无遮挡,敞开设置。 通过实验方法可得到散热器传热系数公式 K=a(Δt pj )b=a (t pj -t n ) b (2-1-3) 式中 K——在实验条件下,散热器的传热系数[W/(m2·℃)]; a 、b——由实验确定的系数,取决于散热器的类型和安装方式;

相关文档
相关文档 最新文档