文档视界 最新最全的文档下载
当前位置:文档视界 › 高一第二学期数学练习五必修五基本不等式含答案

高一第二学期数学练习五必修五基本不等式含答案

高一第二学期数学练习五必修五基本不等式含答案
高一第二学期数学练习五必修五基本不等式含答案

棉北中学高一数学练习五

典题精讲 例1(1)已知0<x <

31,求函数y=x(1-3x)的最大值; (2)求函数y=x+x

1

的值域. 思路分析:(1)由极值定理,可知需构造某个和为定值,可考虑把括号内外x 的系数变成互为相反数;(2)中,未指出x >0,因而不能直接使用基本不等式,需分x >0与x <0讨论. (1) 解法一:∵0<x <

31,∴1-3x >0.∴y=x(1-3x)= 31·3x(1-3x)≤31[2)31(3x x -+]2=12

1,当且仅当3x=1-3x , 即x=

61时,等号成立.∴x=61时,函数取得最大值12

1

. 解法二:∵0<x <31,∴31-x >0.∴y=x(1-3x)=3x(31-x)≤3[2

31

x

x -+]2=121, 当且仅当x=

31-x,即x=61时,等号成立.∴x=61时,函数取得最大值12

1. (2)解:当x >0时,由基本不等式,得y=x+x 1

≥2x

x 1?=2,当且仅当x=1时,等号成立. ∴y=x+

x

1

≥2. 当x <0时,y=x+x 1=-[(-x)+)(1x -].∵-x >0,∴(-x)+)

(1x -≥2,当且仅当-x=x -1,即x=-1时,等号成立. ∴y=x+

x 1≤-2. 综上,可知函数y=x+x

1

的值域为(-∞,-2]∪[2,+∞). 绿色通道:利用基本不等式求积的最大值,关键是构造和为定值,为使基本不等式成立创造条件,同时要注意等号成立的条件是否具备. 例2已知x >0,y >0,且

x 1+y

9

=1,求x+y 的最小值. 思路分析:要求x+y 的最小值,根据极值定理,应构建某个积为定值,这需要对条件进行必要的变形,下面给出三种解法,请仔细体会. 解法一:利用“1的代换”, ∵

x 1+y 9=1, ∴x+y=(x+y)·(x 1+y 9)=10+y

x x y 9+. ∵x >0,y >0,∴

y x

x y 9+≥2y

x

x y 9?

=6. 当且仅当y x x y 9=,即y=3x 时,取等号. 又

x 1+y

9

=1,∴x=4,y=12. ∴当x=4,y=12时,x+y 取得最小值16. 解法二:由

x

1+

y

9=1,得x=

9

-y y . ∵x >0,y >0,∴y >

9.x+y=

9-y y +y=y+999-+-y y =y+99-y +1=(y-9)+9

9-y +10.

∵y >9,∴y-9>0. ∴

999-+-y y ≥29

9

)9(-?-y y =6.

当且仅当y-9=

9

9

-y ,即y=12时,取得等号,此时x=4.∴当x=4,y=12时,x+y 取得最小值16. 解法三:由

x 1+y

9=1,得y+9x=xy , ∴(x-1)(y-9)=9. ∴x+y=10+(x-1)+(y-9)≥10+2)9)(1(--y x =16, 当且仅当x-1=y-9时取得等号.又x 1+y

9

=1, ∴x=4,y=12. ∴当x=4,y=12时,x+y 取得最小值16.

绿色通道:本题给出了三种解法,都用到了基本不等式,且都对式子进行了变形,配凑出基本不等式满足的条件,这是经常需要使用的方法,要学会观察,学会变形,另外解法二,通过消元,化二元问题为一元问题,要注意根据被代换的变量的范围对另外一个变量的范围的影响. 黑色陷阱:本题容易犯这样的错误:

x 1+y

9≥2xy 9①,即xy

6≤1,∴xy ≥6. ∴x+y≥2xy ≥2×6=12②.∴x+y 的最小值是12. 产生不同结果的原因是不等式①等号成立的条件是

x 1=y

9

,不等式②等号成立的条件是x=y.在同一个题目中连续运用了两次基本不等式,但是两个基本不等式等号成立的条件不同,会导致错误结论.

例3求f(x)=3+lgx+

x

lg 4

的最小值(0<x <1). 思路分析:∵0<x <1, ∴lgx <0,

x

lg 4

<0不满足各项必须是正数这一条件,不能直接应用基本不等式,正确的处理方法是加上负号变正数. 解:∵0<x <1,∴lgx <0,

x lg 4<0.∴-x lg 4>0. ∴(-lgx)+(-x lg 4)≥2)lg 4)(lg (x

x --=4.

∴lgx+

x lg 4≤-4.∴f(x)=3+lgx+x lg 4≤3-4=-1. 当且仅当lgx=x

lg 4

,即x=1001时取得等号.

则有f(x)=3+lgx+

x

lg 4

(0<x <1)的最小值为-1. 黑色陷阱:本题容易忽略0<x <1这一个条件. 例4如图3-4-1,动物园要围成相同的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成. 图3-4-1

(1)现有可围36 m 长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大?

(2)若使每间虎笼面积为24 m 2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋总长度最小?

思路分析:设每间虎笼长为x m ,宽为y m ,则(1)是在4x+6y=36的前提下求xy 的最大值;而(2)则是在xy=24的前提下来求4x+6y 的最小值.

解:(1)设每间虎笼长为x m ,宽为y m ,则由条件,知4x+6y=36,即2x+3y=18.设每间虎笼的面积为S ,则S=xy .

方法一:由于2x+3y≥2y x 32?=2xy 6, ∴2xy 6≤18,得xy≤227,即S≤2

27

. 当且仅当2x=3y 时等号成立. 由??

?=+=,1832,22y x y x 解得???==.

3,

5.4y x

故每间虎笼长为4.5 m ,宽为3 m 时,可使面积最大. 方法二:由2x+3y=18,得x=9-23y. ∵x >0,∴0<y <6. S=xy=(9-23y)y=2

3

(6-y)y. ∵0<y <6,∴6-y >0.∴S≤

23[2)6(y y +-]2=2

27. 当且仅当6-y=y,即y=3时,等号成立,此时x=4.5.故每间虎笼长4.5 m,宽3 m 时,可使面积最大. (2)由条件知S=xy=24. 设钢筋网总长为l,则l=4x+6y. 方法一:∵2x+3y≥2y x 32?=2xy 6=24, ∴l=4x+6y=2(2x+3y)≥48,当且仅当2x=3y 时,等号成

立. 由??

?==,

24,

32xy y x 解得???==.4,6y x 故每间虎笼长6 m ,宽4 m 时,可使钢筋网总长最小.

方法二:由xy=24,得x=

y 24. ∴l=4x+6y=y 96+6y=6(y 16+y)≥6×2y y

?16

=48, 当且仅当y

16

=y ,即y=4时,等号成立,此时x=6. 故每间虎笼长6 m,宽4 m 时,可使钢筋总长最小.

绿色通道:在使用基本不等式求函数的最大值或最小值时,要注意: (1)x,y 都是正数; (2)积xy (或x+y )为定值;

(3)x 与y 必须能够相等,特别情况下,还要根据条件构造满足上述三个条件的结论. 问题探究

一、问题某人要买房,随着楼层的升高,上下楼耗费的精力增多,因此不满意度升高.当住第n 层楼时,上下楼造成的不满意度为n.但高处空气清新,嘈杂音较小,环境较为安静,因此随着楼层的升高,环境不满意度降低.设住第n 层楼时,环境不满意程度为n

8

.则此人应选第几楼,会有一个最佳满意度.

二、某造纸厂拟建一座平面图形为矩形且面积为200平方米的二级污水处理池,池的深度一定,池的外圈周壁建造单价为每米400元,中间一条隔壁建造单价为每米100元,池底建造单价每平方米60元(池壁忽略不计).

问:污水处理池的长设计为多少米时可使总价最低.

三、某化工企业2007年底投入100万元,购入一套污水处理设备.该设备每年的运转费用是

0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后

每年的维护费都比上一年增加2万元.

x年的年平均污水处理费用y(万元);

(1)求该企业使用该设备

(2)问为使该企业的年平均污水处理费用最低,该企业几年后需要重新更换新的污水处理设备?

四、某商店预备在一个月内分批购入每张价值为20元的书桌共36台,每批都购入x台(x 是正整数),且每批均需付运费4元,储存购入的书桌一个月所付的保管费与每批购入书桌的总价值(不含运费)成正比,若每批购入4台,则该月需用去运费和保管费共52元,现在全月只有48元资金可以用于支付运费和保管费.

(1)求该月需用去的运费和保管费的总费用()x f;

(2)能否恰当地安排每批进货的数量,使资金够用?写出你的结论,并说明理由.

棉北中学高一数学练习五

典题精讲 例1(1)已知0<x <

31

,求函数y=x(1-3x)的最大值; (2)求函数y=x+

x

1

的值域. 思路分析:(1)由极值定理,可知需构造某个和为定值,可考虑把括号内外x 的系数变成互为相反数;(2)中,未指出x >0,因而不能直接使用基本不等式,需分x >0与x <0讨论. (1)解法一:∵0<x <31,∴1-3x >0.∴y=x(1-3x)= 31·3x(1-3x)≤31[2)31(3x x -+]2=12

1

,当且仅当3x=1-3x ,即x=

61时,等号成立.∴x=61时,函数取得最大值12

1. 解法二:∵0<x <31,∴31-x >0.∴y=x(1-3x)=3x(31-x)≤3[2

31

x

x -+]2=121, 当且仅当x=

31-x,即x=61时,等号成立.∴x=61时,函数取得最大值12

1. (2)解:当x >0时,由基本不等式,得y=x+x 1

≥2x

x 1?=2,当且仅当x=1时,等号成立. ∴y=x+x

1

≥2.

当x <0时,y=x+x 1=-[(-x)+)(1x -].∵-x >0,∴(-x)+)

(1x -≥2,当且仅当-x=x -1,即x=-1时,等号成立.

∴y=x+

x 1≤-2. 综上,可知函数y=x+x

1

的值域为(-∞,-2]∪[2,+∞). 绿色通道:利用基本不等式求积的最大值,关键是构造和为定值,为使基本不等式成立创造条件,同时要注意等号成立的条件是否具备. 变式训练1当x >-1时,求f(x)=x+

1

1

+x 的最小值. 思路分析:x >-1?x+1>0,变x=x+1-1时x+1与

1

1

+x 的积为常数. 解:∵x >-1,∴x+1>0. ∴f(x)=x+

11+x =x+1+11+x -1≥2)

1(1)1(+?+x x -1=1. 当且仅当x+1=

1

1

+x ,即x=0时,取得等号. ∴f(x)min =1. 例2已知x >0,y >0,且

x 1+y

9

=1,求x+y 的最小值. 思路分析:要求x+y 的最小值,根据极值定理,应构建某个积为定值,这需要对条件进行必要的变形,下面给出三种解法,请仔细体会. 解法一:利用“1的代换”, ∵

x 1+y 9=1, ∴x+y=(x+y)·(x 1+y 9)=10+y

x x y 9+. ∵x >0,y >0,∴

y x

x y 9+≥2y

x

x y 9?

=6. 当且仅当y x x y 9=,即y=3x 时,取等号. 又

x 1+y

9

=1,∴x=4,y=12. ∴当x=4,y=12时,x+y 取得最小值16. 解法二:由x 1+y 9=1,得x=9

-y y . ∵x >0,y >0,∴y >9. x+y=

9-y y +y=y+999-+-y y =y+99-y +1=(y-9)+9

9-y +10.

∵y >9,∴y-9>0. ∴

999-+-y y ≥29

9

)9(-?-y y =6.

当且仅当y-9=9

9

-y ,即y=12时,取得等号,此时x=4.∴当x=4,y=12时,x+y 取得最小值16. 解法三:由

x 1+y

9

=1,得y+9x=xy, ∴(x-1)(y-9)=9. ∴x+y=10+(x-1)+(y-9)≥10+2)9)(1(--y x =16, 当且仅当x-1=y-9时取得等号.又x 1+y

9=1, ∴x=4,y=12. ∴当x=4,y=12时,x+y 取得最小值16.

绿色通道:本题给出了三种解法,都用到了基本不等式,且都对式子进行了变形,配凑出基本不等式满足的条件,这是经常需要使用的方法,要学会观察,学会变形,另外解法二,通过消元,化二元问题为一元问题,要注意根据被代换的变量的范围对另外一个变量的范围的影响.

黑色陷阱:本题容易犯这样的错误:

x 1+y

9≥2xy 9①,即xy

6≤1,∴xy ≥6. ∴x+y≥2xy ≥2×6=12②.∴x+y 的最小值是12. 产生不同结果的原因是不等式①等号成立的条件是

x 1=y

9

,不等式②等号成立的条件是x=y.在同一个题目中连续运用了两次基本不等式,但是两个基本不等式等号成立的条件不同,会导致错误结论.

变式训练已知正数a,b,x,y 满足a+b=10,y

b

x a +=1,x+y 的最小值为18,求a,b 的值. 思路分析:本题属于“1”的代换问题. 解:x+y=(x+y)(

y b x a +)=a+x ay y bx ++b=10+x

ay

y bx +. ∵x,y >0,a,b >0,∴x+y≥10+2ab =18,即ab =4. 又a+b=10,∴??

?==8,2b a 或?

??==.2,8b a 例3求f(x)=3+lgx+

x

lg 4

的最小值(0<x <1). 思路分析:∵0<x <1, ∴lgx <0,

x

lg 4

<0不满足各项必须是正数这一条件,不能直接应用基本不等式,正确的处理方法是加上负号变正数. 解:∵0<x <1,∴lgx <0,

x lg 4<0.∴-x lg 4>0. ∴(-lgx)+(-x lg 4)≥2)lg 4)(lg (x

x --=4.

∴lgx+

x lg 4≤-4.∴f(x)=3+lgx+x lg 4≤3-4=-1. 当且仅当lgx=x

lg 4

,即x=1001时取得等号.

则有f(x)=3+lgx+

x

lg 4

(0<x <1)的最小值为-1. 黑色陷阱:本题容易忽略0<x <1这一个条件. 变式训练1已知x <

45,求函数y=4x-2+5

41-x 的最大值. 思路分析:求和的最值,应凑积为定值.要注意条件x <

4

5

,则4x-5<0. 解:∵x <45,∴4x-5<0. y=4x-5+541-x +3=-[(5-4x)+x 451

-]+3≤-2x

x 451)45(-?-+3=-2+3=1.

当且仅当5-4x=

x

451

-,即x=1时等号成立. 所以当x=1时,函数的最大值是1.

变式训练2当x <

23时,求函数y=x+3

28-x 的最大值. 思路分析:本题是求两个式子和的最大值,但是x·

3

28

-x 并不是定值,也不能保证是正值,所以,必

须使用一些技巧对原式变形.可以变为y=21(2x-3)+328-x +23=-(x x 238223-+-)+2

3,再求最值. 解:y=

21(2x-3)+328-x +23=-(x x 238223-+-)+23, ∵当x <2

3

时,3-2x >0,

x x 238223-+-≥x

x 2382232-?-=4,当且仅当x x 238223-=

-,即x=-21

时取等号. 于是y≤-4+

23=25-,故函数有最大值2

5

-. 例4如图3-4-1,动物园要围成相同的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成. 图3-4-1

(1)现有可围36 m 长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大?

(2)若使每间虎笼面积为24 m 2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋总长度最小?

思路分析:设每间虎笼长为x m ,宽为y m ,则(1)是在4x+6y=36的前提下求xy 的最大值;而(2)则是在xy=24的前提下来求4x+6y 的最小值.

解:(1)设每间虎笼长为x m ,宽为y m ,则由条件,知4x+6y=36,即2x+3y=18. 设每间虎笼的面积为S ,则S=xy .

方法一:由于2x+3y≥2y x 32?=2xy 6, ∴2xy 6≤18,得xy≤227,即S≤2

27

. 当且仅当2x=3y 时等号成立. 由??

?=+=,1832,22y x y x 解得???==.

3,

5.4y x

故每间虎笼长为4.5 m ,宽为3 m 时,可使面积最大. 方法二:由2x+3y=18,得x=9-23y. ∵x >0,∴0<y <6. S=xy=(9-23y)y=2

3

(6-y)y. ∵0<y <6,∴6-y >0.∴S≤

23[2)6(y y +-]2=2

27. 当且仅当6-y=y,即y=3时,等号成立,此时x=4.5.故每间虎笼长4.5 m,宽3 m 时,可使面积最大. (2)由条件知S=xy=24. 设钢筋网总长为l,则l=4x+6y. 方法一:∵2x+3y≥2y x 32?=2xy 6=24, ∴l=4x+6y=2(2x+3y)≥48,当且仅当2x=3y 时,等号成

立. 由??

?==,

24,

32xy y x 解得???==.4,6y x 故每间虎笼长6 m ,宽4 m 时,可使钢筋网总长最小.

方法二:由xy=24,得x=

y 24. ∴l=4x+6y=y 96+6y=6(y 16+y)≥6×2y y

?16

=48, 当且仅当y

16

=y ,即y=4时,等号成立,此时x=6. 故每间虎笼长6 m,宽4 m 时,可使钢筋总长最小.

绿色通道:在使用基本不等式求函数的最大值或最小值时,要注意: (1)x,y 都是正数; (2)积xy (或x+y )为定值;

(3)x 与y 必须能够相等,特别情况下,还要根据条件构造满足上述三个条件的结论.

问题探究

一、 问题某人要买房,随着楼层的升高,上下楼耗费的精力增多,因此不满意度升高.当住第n 层楼时,上下楼造成的不满意度为n.但高处空气清新,嘈杂音较小,环境较为安静,因此随着楼层的升高,环境不满意度降低.设住第n 层楼时,环境不满意程度为n

8

.则此人应选第几楼,会有一个最佳满意度.

导思:本问题实际是求n 为何值时,不满意度最小的问题,先要根据问题列出一个关于楼层的函数式,再根据基本不等式求解即可.

探究:设此人应选第n 层楼,此时的不满意程度为y . 由题意知y=n+

n

8. ∵n+

n 8

≥2248=?n

n , 当且仅当n=

n

8

,即n=22时取等号. 但考虑到n ∈N *

, ∴n≈2×1.414=2.828≈3,

即此人应选3楼,不满意度最低. 返回

二、某造纸厂拟建一座平面图形为矩形且面积为200平方米的二级污水处理池,池的深度一定,池的外圈周壁建造单价为每米400元,中间一条隔壁建造单价为每米100元,池底建造单价每平方米60元(池壁忽略不计).

问:污水处理池的长设计为多少米时可使总价最低.

解:设污水处理池的长为x 米,则宽为200

x

总造价f (x )=400×(2x +2×200x )+100×200

x

+60×200

=800×(x +225

x )+12000

≥1600x ·225

x

+12000

=36000(元)

当且仅当x =225

x

(x >0),

即x =15时等号成立.

返回

三、某化工企业2007年底投入100万元,购入一套污水处理设备.该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元. (1)求该企业使用该设备x 年的年平均污水处理费用

y (万元);

(2)问为使该企业的年平均污水处理费用最低,该企业几年后需要重新更换新的污水处理设备?

(2)由均值不等式得 返回

四、某商店预备在一个月内分批购入每张价值为20元的书桌共36台,每批都购入x 台(x 是正整数),且每批均需付运费4元,储存购入的书桌一个月所付的保管费与每批购入书桌的总价值(不含运费)成正比,若每批购入4台,则该月需用去运费和保管费共52元,现在全月只有48元资金可以用于支付运费和保管费. (1)求该月需用去的运费和保管费的总费用()x f ;

(2)能否恰当地安排每批进货的数量,使资金够用?写出你的结论,并说明理由.

解:(1)设题中比例系数为k ,若每批购入x 台,则共需分x 36

批,每批价值为20x 元.

由题意

()x k x x f 20436

?+?=

由 x =4时,y =52 得

51

8016=

=

k

()()

*

,3604144

N x x x x x f ∈≤<+=∴

(2)由(1)知

()()

*,3604144

N x x x x x f ∈≤<+=

()484144

2

=?≥∴x x x f (元)

当且仅当 x x 4144

=,即 6=x 时,上式等号成立.

故只需每批购入6张书桌,可以使资金够用.

人教版高中数学必修五教案1

第一章解三角形 1.1正弦定理和余弦定理 1.1.1正弦定理 知识结构梳理 几何法证明 正弦定理的证明 向量法证明 已知两角和任意一边 正弦定理正弦定理 正弦定理的两种应用 已知两边和其中一角的对角 解三角形 知识点1 正弦定理及其证明 1正弦定理: 2.正弦定理的证明: (1)向量法证明 (2)平面几何法证明 3.正弦定理的变形 知识点2 正弦定理的应用 1.利用正弦定理可以解决以下两类有关三角形的问题: (1)已知两角和任意一边,求其他两边和另一角; (2)已知两边和其中一边的对角,求另一边的对角,从而进一步求出其他的边和角。 2.应用正弦定理要注意以下三点: (1) (2) (3) 知识点3 解三角形

1.1.2余弦定理 知识点1 余弦定理 1. 余弦定理的概念 2. 余弦定理的推论 3. 余弦定理能解决的一些问题: 4. 理解应用余弦定理应注意以下四点: (1) (2) (3) (4) 知识点2 余弦定理的的证明 证法1: 证法2: 知识点3 余弦定理的简单应用 利用余弦定理可以解决以下两类解三角的问题: (1)已知三边求三角; (2)已知两边和它们的夹角,可以求第三边,进而求出其他角。 例1(山东高考)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,tanC=73. (1) 求C cos ; (2) 若 =2 5 ,且a+b=9,求c.

1.2应用举例 知识点1 有关名词、术语 (1)仰角和俯角: (2)方位角: 知识点2 解三角形应用题的一般思路 (1)读懂题意,理解问题的实际背景,明确已知和所求,准确理解应用题中的有关术语、名称,如仰角、俯角、视角、方位角等,理清量与量之间的关系; (2)根据题意画出示意图,将实际问题抽象成解三角形模型; (3)合理选择正弦定理和余弦定理求解; (4)将三角形的解还原为实际问题,注意实际问题中的单位、结果要求近似等。 1.3实习作业 实习作业的方法步骤 (1)首先要准备皮尺、测角仪器,然后选定测量的现场(或模拟现场),再收集测量数据,最后解决问题,完成实习报告。要注意测量的数据应尽量做到准确,为此可多测量几次,取平均值。要有创新意识,创造性地设计实施方案,用不同的方法收集数据,整理信息。 (2)实习作业中的选取问题,一般有:○1距离问题,如从一个可到达点到一个不可到达点之间的距离,或两个不可到达点之间的距离;②高度问题,如求有关底部不可到达的建筑物的高度问题。一般的解决方法就是运用正弦定理、余弦定理解三角形。

高中数学必修5基本不等式知识点总结

高中数学必修5基本不等式知识点总结 一.算术平均数与几何平均数 1.算术平均数 设a 、b 是两个正数,则 2 a b +称为正数a 、b 的算术平均数 2.几何平均数 a 、 b 的几何平均数 二基本不等式 1.基本不等式: 若0a >,0b >,则a b +≥,即 2 a b +≥2.基本不等式适用的条件 一正:两个数都是正数 二定:若x y s +=(和为定值),则当x y =时,积xy 取得最大值2 4 s 若xy p =(积为定值),则当x y =时,和x y +取得最小值 三相等:必须有等号成立的条件 注:当题目中没有明显的定值时,要会凑定值 3.常用的基本不等式 (1)()22 2,a b ab a b R +≥∈ (2)()22 ,2 a b ab a b R +≤∈ (3)()20,02a b ab a b +??≤>> ??? (4)()222,22a b a b a b R ++??≥∈ ??? . 三.跟踪训练 1.下列各函数中,最小值为2的是 ( ) A .1y x x =+ B .1sin sin y x x =+,(0,)2x π∈ C .2 y = D .1y x =+ 2.当02x π <<时,函数21cos 28sin ()sin 2x x f x x ++=的最小值是( )。

A. 1 B. 2 C. 4 D. 3.x >0,当x 取什么值,x +1x 的值最小?最小值是多少? 4.用20cm长的铁丝折成一个面积最大的矩形,应该怎样折? 5.一段长为30m的篱笆围成一个一边靠墙的矩形花园,墙长18m,这个矩形的长,宽各为多少时,花园的面积最大?最大面积是多少? 6.设0,0x y >>且21x y +=,求11x y +的最小值是多少? 7.设矩形ABCD(AB>AD)的周长是24,把?ABC沿AC向?ADC折叠,AB折过去后交CD与点P,设AB=x ,求?ADP的面积最大值及相应x 的值

高二数学必修五不等式测试题

不等式测试题 一、选择题(本大题共12小题,每小题5分,共60分。) 1.设a 1b B .1a-b >1 a C .a b > D .a 2>b 2 2.设,a b R ∈,若||0a b ->,则下列不等式中正确的是( ) A .0b a -> B .330a b +< C .220a b -< D .0b a +> 3.如果正数a b c d ,,,满足4a b cd +==,那么( ) A .ab c d +≤,且等号成立时a b c d ,,,的取值唯一 B .ab c d +≥,且等号成立时a b c d ,,,的取值唯一 C .ab c d +≤,且等号成立时a b c d ,,,的取值不唯一 D .ab c d +≥,且等号成立时a b c d ,,,的取值不唯一 4.已知直角三角形的周长为2,则它的最大面积为( ) A .3-2 2 B .3+2 2 C .3- 2 D .3+ 2 5.已知0,0a b >>,则11 a ++ ) A .2 B . C .4 D .5 6.若121212120,01a a b b a a b b <<<<+=+=,且,则下列代数式中值最大的是( ) A .1122a b a b + B .1212a a bb + C .12 21a b a b + D .12 7.当0∣3-x ∣的解集是( ) A .(3,+∞) B .(-∞,-3)∪(3,+∞) C .(-∞,-3)∪(-1,+∞) D .(-∞,-3)∪(-1,3)∪(3,+∞) 11.设y=x 2+2x+5+ 21 25 x x ++,则此函数的最小值为( ) A .174 B .2 C .26 5 D .以上均不对

高中数学必修五综合测试题(卷) 含答案解析

绝密★启用前 高中数学必修五综合考试卷 第I卷(选择题) 一、单选题 1.数列的一个通项公式是() A.B. C.D. 2.不等式的解集是() A.B.C.D. 3.若变量满足,则的最小值是() A.B.C.D.4 4.在实数等比数列{a n}中,a2,a6是方程x2-34x+64=0的两根,则a4等于( ) A.8B.-8C.±8D.以上都不对 5.己知数列为正项等比数列,且,则()A.1B.2C.3D.4 6.数列 1111 1,2,3,4, 24816 L前n项的和为() A. 2 1 22 n n n + +B. 2 1 1 22 n n n + -++C. 2 1 22 n n n + -+D. 2 1 1 22 n n n + - -+ 7.若的三边长成公差为的等差数列,最大角的正弦值为,则这个三角形的面积为() A.B.C.D. 8.在△ABC中,已知,则B等于( ) A.30°B.60°C.30°或150°D.60°或120° 9.下列命题中正确的是( ) A.a>b?ac2>bc2B.a>b?a2>b2 C.a>b?a3>b3D.a2>b2?a>b 10.满足条件,的的个数是( ) A.1个B.2个C.无数个D.不存在

11.已知函数满足:则应满足()A.B.C.D. 12.已知数列{a n}是公差为2的等差数列,且成等比数列,则为()A.-2B.-3C.2D.3 13.等差数列的前10项和,则等于() A.3 B.6 C.9 D.10 14.等差数列的前项和分别为,若,则的值为()A.B.C.D. 第II卷(非选择题) 二、填空题 15.已知为等差数列,且-2=-1,=0,则公差= 16.在中,,,面积为,则边长=_________. 17.已知中,,,,则面积为_________. 18.若数列的前n项和,则的通项公式____________ 19.直线下方的平面区域用不等式表示为________________. 20.函数的最小值是_____________. 21.已知,且,则的最小值是______. 三、解答题 22.解一元二次不等式 (1)(2) 23.△的角、、的对边分别是、、。 (1)求边上的中线的长;

高中数学必修五基本不等式题型(精编)

高中数学必修五基本不等式题型(精编) 变 2.下列结论正确的是 ( ) A .若a b >,则ac bc > B .若a b >,则22a b > C .若a c b c +<+,0c <,则a b > D >a b > 3. 若m =(2a -1)(a +2),n =(a +2)(a -3),则m ,n 的大小关系正确的是 例2、解下列不等式 (1)2230x x --≥ (2)2280x x -++> (3) 405x x ->- (4)405 x x -≥- (5)112x ≥ (6)已知R a ∈,解关于x 的不等式()()01<--x x a .

变、若不等式02<--b ax x 的解集为{} 32<

例5、 1. 积为定值 (1)函数1y x x =+ (x >0)的最小值是 . (2)设2a >,12 p a a =+-的最大值是 . (3)函数1y x x =+ (x <0)的最小值是 . (4) 变、 (1 )2y = 的最小值是 . (2) . 2. 和为定值 (1) ,y=x(4-x) 的最大值是 . (2), 的最大值是 . 例6、“1”的妙用 1. 2.已知正数,x y 满足21x y +=,则 y x 11+的最小值为______

高中数学必修五-不等式知识点精炼总结

高中数学必修五-不等式知识点精炼总结 4.公式: 3.解不等式 (1)一元一次不等式 3.基 本不等式定理 ? ?? ? ? ??????? ? ?????????????????-≤+?<≥+?>≥+ ??? ????+≤+≥+?? ?? ???????? ?+≤??? ??+≤+≥+≥+2a 1a 0a 2a 1a 0a b ,a (2b a a b )b a (2b a ab 2 b a 2b a ab 2b a ab )b a (2 1b a ab 2b a 2 22222 2 222倒数形式同号)分式形式根式形式整式形 式11 22a b a b --+≤≤≤+???? ? <<>> ≠>)0a (a b x )0a (a b x )0a (b ax 2.不等式的性质:8条性质.

(2)一元二次不等式: +bx+c x 1 x 2 x y O y x O x 1 y x O

一元二次不等式的求 解流程: 一化:化二次项前的系数为正数. 二判:判断对应方程的根. 三求:求对应方程的根. 四画:画出对应函数的图象. 五解集:根据图象写出不等式的解集. (3)解分式不等式: 高次不等式: (4)解含参数的不等式:(1) (x – 2)(ax – 2)>0 (2)x 2 – (a +a 2)x +a 3>0; (3)2x 2 +ax +2 > 0; 注:解形如ax 2+bx+c>0的不等式时分类讨 论的标准有: 1、讨论a 与0的大小; 2、讨论⊿与0的大小; 3、讨论两根的大小; 二、运用的数学思想: 1、分类讨论的思想; 2、数形结合的思想; 3、等与不等的化归思想 (4)含参不等式恒成立的问题: ??????????≠≤??≤>??>0)x (g 0)x (g )x (f 0) x (g )x (f 0)x (g )x (f 0)x (g ) x (f 0 )())((21>---n a x a x a x Λ

人教A版高中数学必修五不等式测试题

不等式测试题 一、选择题(本大题共12小题,每小题5分,共60分。) 1.设a 1b B .1a-b >1 a C .a b > D .a 2>b 2 2.设,a b R ∈,若||0a b ->,则下列不等式中正确的是( ) A .0b a -> B .330a b +< C .220a b -< D .0b a +> 3.如果正数a b c d ,,,满足4a b cd +==,那么( ) A .ab c d +≤,且等号成立时a b c d ,,,的取值唯一 B .ab c d +≥,且等号成立时a b c d ,,,的取值唯一 C .ab c d +≤,且等号成立时a b c d ,,,的取值不唯一 D .ab c d +≥,且等号成立时a b c d ,,,的取值不唯一 4.已知直角三角形的周长为2,则它的最大面积为( ) A .3-2 2 B .3+2 2 C .3- 2 D .3+ 2 5.已知0,0a b >>,则11 a b ++ ) A .2 B . C .4 D .5 6.若121212120,01a a b b a a b b <<<<+=+=,且,则下列代数式中值最大的是( ) A .1122a b a b + B .1212a a bb + C .12 21a b a b + D .1 2 7.当0

A.2 B.23 C.4 D.43 8.下列不等式中,与不等式“x <3”同解的是( ) A .x (x +4)2<3(x +4)2 B .x (x -4)2<3(x -4)2 C .x +x-4 <3+ x-4 D .x +21-21x x +<3+21 21 x x -+ 9.关于x 的不等式(x-2)(ax-2)>0的解集为{x ︱x ≠2,x ∈R },则a=( ) A .2 B .-2 C .-1 D .1 10.不等式∣x 2-x-6∣>∣3-x ∣的解集是( ) A .(3,+∞) B .(-∞,-3)∪(3,+∞) C .(-∞,-3)∪(-1,+∞) D .(-∞,-3)∪(-1,3)∪(3,+∞) 11.设y=x 2+2x+5+ 21 25 x x ++,则此函数的最小值为( ) A . 174 B .2 C .26 5 D .以上均不对 12.若方程x 2-2x +lg(2a 2-a)=0有两异号实根,则实数a 的取值范围是( ) A .(12 ,+∞) ∪(-∞,0) B .(0,12 ) C .(-12 ,0) ∪(12 ,1) D .(-1,0) ∪(1 2 ,+∞) 二、填空题:(本大题共4小题,每小题5分,共20分。) 13.0,0,a b >> 则 a b ++ 的最小值为 . 14.当(12)x ∈,时,不等式240x mx ++<恒成立,则m 的取值范围是 . 15.若关于x 的不等式22)12(ax x <-的解集为空集,则实数a 的取值范围是_______. 16.若21m n +=,其中0mn >,则12 m n +的最小值为_______. 三、解答题:(本大题共4小题,共40分。) 17(1)已知d c b a ,,,都是正数,求证:abcd bd ac cd ab 4))((≥++ (2)已知12,0,0=+>>y x y x ,求证:2231 1+≥+y x

高中数学必修五基本不等式学案

高中数学必修五基本不等式:ab≤a+b 2(学案) 学习目标:1.了解基本不等式的证明过程.2.能利用基本不等式证明简单的不等式及比较代数式的大小(重点、难点).3.熟练掌握利用基本不等式求函数的最值问题(重点). [自主预习·探新知] 1.重要不等式 如果a,b∈R,那么a2+b2≥2ab(当且仅当a=b时取“=”). 思考:如果a>0,b>0,用a,b分别代替不等式a2+b2≥2ab中的a,b,可得到怎样的不等式? [提示]a+b≥2ab. 2.基本不等式:ab≤a+b 2 (1)基本不等式成立的条件:a,b均为正实数; (2)等号成立的条件:当且仅当a=b时取等号. 思考:不等式a2+b2≥2ab与ab≤a+b 2成立的条件相同吗?如果不同各是 什么? [提示]不同,a2+b2≥2ab成立的条件是a,b∈R;ab≤a+b 2成立的条件 是a,b均为正实数. 3.算术平均数与几何平均数 (1)设a>0,b>0,则a,b的算术平均数为a+b 2,几何平均数为 (2)基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数. 思考:a+b 2≥ab与? ? ? ? ? a+b 2 2 ≥ab是等价的吗? [提示]不等价,前者条件是a>0,b>0,后者是a,b∈R. 4.用基本不等式求最值的结论 (1)设x,y为正实数,若x+y=s(和s为定值),则当x=y=s 2时,积xy有最

小值为2xy . (2)设x ,y 为正实数,若xy =p (积p 为定值),则当x =y =p 时,和x +y 有最大值为(x +y )2 4. 5.基本不等式求最值的条件 (1)x ,y 必须是正数. (2)求积xy 的最大值时,应看和x +y 是否为定值;求和x +y 的最小值时,应看积xy 是否为定值. (3)等号成立的条件是否满足. 思考:利用基本不等式求最值时应注意哪几个条件?若求和(积)的最值时,一般要确定哪个量为定值? [提示] 三个条件是:一正,二定,三相等.求和的最小值,要确定积为定值;求积的最大值,要确定和为定值. [基础自测] 1.思考辨析 (1)对任意a ,b ∈R ,a 2+b 2≥2ab ,a +b ≥2ab 均成立.( ) (2)对任意的a ,b ∈R ,若a 与b 的和为定值,则ab 有最大值.( ) (3)若xy =4,则x +y 的最小值为4.( ) (4)函数f (x )=x 2 +2 x 2+1 的最小值为22-1.( ) [答案] (1)× (2)√ (3)× (4)√ 2.设x ,y 满足x +y =40,且x ,y 都是正数,则xy 的最大值为________. 400 [因为x ,y 都是正数, 且x +y =40,所以xy ≤? ???? x +y 22 =400,当且仅当x =y =20时取等号.] 3.把总长为16 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是________ m 2. 16 [设一边长为x m ,则另一边长可表示为(8-x )m ,则面积S =x (8-x )≤? ???? x +8-x 22 =16,当且仅当x =4时取等号,故当矩形的长与宽相等,都为4 m 时面积取到最大值16 m 2.]

人教版高中数学必修5不等式练习题及答案

第三章 不等式 一、选择题 1.若a =20.5,b =log π3,c =log πsin 5 2π ,则( ). A .a >b >c B .b >a >c C .c >a >b D .b >c >a 2.设a ,b 是非零实数,且a <b ,则下列不等式成立的是( ). A .a 2<b 2 B .ab 2<a 2b C . 21ab <b a 21 D . a b <b a 3.若对任意实数x ∈R ,不等式|x |≥ax 恒成立,则实数a 的取值范围是( ). A .a <-1 B .|a |≤1 C .|a |<1 D .a ≥1 4.不等式x 3-x ≥0的解集为( ). A .(1,+∞) B .[1,+∞) C .[0,1)∪(1,+∞) D .[-1,0]∪[1,+∞) 5.已知f (x )在R 上是减函数,则满足f (11 -x )>f (1)的实数取值范围是( ). A .(-∞,1) B .(2,+∞) C .(-∞,1)∪(2,+∞) D .(1,2) 6.已知不等式f (x )=ax 2-x -c >0的解集为{x |-2<x <1},则函数y =f (-x )的图象为图中( ). A B C D 7.设变量x ,y 满足约束条件?? ? ??y x y x y x 2++- 则目标函数z =5x +y 的最大值是( ). A .2 B .3 C .4 D .5 8.设变量x ,y 满足?? ? ??5 --31+-3-+y x y x y x 设y =kx ,则k 的取值范围是( ). A .[ 21,3 4 ] B .[ 3 4 ,2] C .[ 2 1 ,2] D .[ 2 1 ,+∞) ≥0 ≤1 ≥1 ≥0 ≥1 ≤ 1 (第6题)

最新高一下学期期末复习之——必修五不等式知识点及主要题型-讲义含解答

不等式的基本知识 (一)不等式与不等关系 1、应用不等式(组)表示不等关系; 不等式的主要性质: (1)对称性:a b b a (2)传递性:c a c b b a >?>>, (3)加法法则:c b c a b a +>+?>; d b c a d c b a +>+?>>,(同向可加) (4)乘法法则:bc ac c b a >?>>0,; bc ac c b a 0, bd ac d c b a >?>>>>0,0(同向同正可乘) (5)倒数法则:b a a b b a 1 10,> (6)乘方法则:)1*(0>∈>?>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>?>>n N n b a b a n n 且 2、应用不等式的性质比较两个实数的大小:作差法(作差——变形——判断符号——结论) 3、应用不等式性质证明不等式 (二)解不等式 1、一元二次不等式的解法 一元二次不等式()00022≠<++>++a c bx ax c bx ax 或的解集: 设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、, ac b 42-=?, 0>? 0=? 0a )的图象 c bx ax y ++=2 c bx ax y ++=2 c bx ax y ++=2

一元二次方程 ()的根 2 > = + + a c bx ax 有两相异实根 ) ( , 2 1 2 1 x x x x< 有两相等实根 a b x x 2 2 1 - = =无实根的解集 )0 ( 2 > > + + a c bx ax{} 2 1 x x x x x> <或 ? ? ? ? ? ? - ≠ a b x x 2 R 的解集 )0 ( 2 > < + + a c bx ax{} 2 1 x x x x< ?>≥?? ≠ ? 4、不等式的恒成立问题:常应用函数方程思想和“分离变量法”转化为最值问题 若不等式()A x f>在区间D上恒成立,则等价于在区间D上() min f x A >若不等式()B x f<在区间D上恒成立,则等价于在区间D上() max f x B < (三)线性规划 1、用二元一次不等式(组)表示平面区域 二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线) 2、二元一次不等式表示哪个平面区域的判断方法 由于对在直线Ax+By+C=0同一侧的所有点(y x,),把它的坐标(y x,)代入

人教A版高中数学必修五讲义及题型归纳:基本不等式

基本不等式 1.均值定理:如果a , b +∈R (+R 表示正实数),那么 2 a b +,当且仅当a b =时,有等号成立. 此结论又称均值不等式或基本不等式. 2 2a b +2 a b +需要前提条件,a b +∈R . 2 a b +叫做a ,b a ,b 3.可以认为基本元素为ab ,a b +,22a b +;其中任意一个为定值,都可以求其它两个的最值. 考点1:常规基本不等式问题 例1.(1)已知0x >,则1 82x x +的最小值为( ) A .2 B .3 C .4 D .5 【解答】解:0x >Q ,1842x x ∴+=… 当且仅当1 82x x =即14x =时取等号, 故选:C . (2)已知3 05 x <<,则(35)x x -取最大值时x 的值为( ) A . 310 B .910 C . 95 D . 12 【解答】解:305 x << Q , 则2115359 (35)5(35)()5 5220 x x x x x x +--=?-?= ?, 当且仅当535x x =-即3 10 x =时取最大值 故选:A . (3)已知函数9 4(1)1 y x x x =-+>-+,当x a =时,y 取得最小值b ,则23a b +等于( ) A .9 B .7 C .5 D .3 【解答】解:1x >-Q ,10x ∴+>,

99 41511 y x x x x ∴=-+ =++-++ 5… 1=, 当且仅当9 11 x x += +,即2x =时取等号, y ∴取得最小值1b =,此时2x a ==, 237a b ∴+=. 故选:B . (4)已知0a >,0b >,且22a b +=,则ab 的最大值为( ) A . 12 B C .1 D 【解答】解:0a >Q ,0b >,且22a b +=, 则21 121(2)()2 222 a b ab a b +=??=g ? , 当且仅当2a b =且22a b +=即12a =,1b =时取得最大值1 2 . 故选:A . 考点2:基本不等式易错点 例2.(1)已知1x y +=,0y >,0x ≠,则1||2||1 x x y ++的最小值是( ) A . 1 2 B . 14 C . 34 D . 54 【解答】解:由1x y +=,0y >得10y x =->, 解得1x <且0x ≠, ①当01x <<时,1||12||121 x x x y x y +=+++, 122242x x x x x x x x +-=+=+ --, 12115()2442424 x x x x -= +++?=-…, 当且仅当 242x x x x -= -即23x =时取等号; ②当0x <时, 1||1()2||121 x x x y x y +=-+++,

高中数学必修五《基本不等式》优秀教学设计

课题:基本不等式 一、教材分析: 本节课选自《普通高中课程标准实验教科书·数学5·必修》(人教A版)中第三章第四节。本节课主要研究基本不等式的几何背景、代数证明和实际生活中的应用。 基本不等式在现实生活中运用比较广泛。本节课通过从生活与几何背景中得到基本不等式、证明不等式与回归生活解决实际问题的思路,体现新课标“数学有用”的理念。同时,运用基本不等式求最值也是数列研究的基本问题。通过对本节的研究,培养学生数形结合的思想方法。 二、学情分析: 在本节课之前学生已经学习了不等关系与不等式和一元二次不等式及其解法,对不等关系的一般性质和不等式的求解证明有了一定的理解,为基本不等式的学习提供了基础。 授课班级为高一(1)班,我班学生整体基础知识一般、部分学生思维较活跃,能够较好的掌握教材上的内容,但处理、分析问题的能力还有待提高。 三、设计思想: 本课为新授课,积极践行新课程“数学有用”理念,倡导积极主动、勇于探索的学习精神和合作探究式的学习方式;注重提高数学思维能力,在教与学的和谐统一中体现数学思想和文化价值;注重信息技术与数学课程的整合。

四、教学目标: 1、知识与技能: (1) 师生共同探究基本不等式; (2) 了解基本不等式的代数、几何背景及基本不等式的证明; (3) 会简单运用基本不等式。 2、过程与方法: 通过基本不等式的探索、发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力;遵循从特殊到一般的认知规律,让学生在实践中通过观察、尝试、分析、类比的方法导出基本不等式,培养学生数形结合的思维能力。 3、情感、态度与价值观: (1)培养学生举一反三的逻辑推理能力,并通过不等式的几何解释,丰富学生数形结合的想象力; (2) 通过具体的现实问题提出、分析与解决,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感,体验在学习中获得成功的快乐。 五、教学重点: (1)用数形结合的思想理解并探索基本不等式的证明; (2)运用基本不等式解决实际问题。 教学难点:基本不等式的运用。 重、难点解决的方法策略: 本课在设计上采用了由特殊到一般、从具体图形到抽象代数的教

北师大版高中数学必修五模块测试卷

高中数学学习材料 (灿若寒星 精心整理制作) 必修五模块测试卷 (150分,120分钟) 一、选择题(每题5分,共60分) 1.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且cos 2 2A =c c b 2+,则△ABC 是( ) A.直角三角形 B.等腰三角形或直角三角形 C.等边三角形 D.等腰直角三角形 2.在等比数列{a n }中,如果a 1+a 2=40,a 3+a 4=60,那么a 7+a 8等于( ) A.135 B.100 C.95 D.80 3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且(3b -c )cos A =a cos C ,则cos A 的值等于( ) A. 23 B. 33 C. 43 D. 6 3 4.〈日照模拟〉已知等比数列{a n }的前n 项和S n =t 2 5 -?n - 5 1 ,则实数t 的值为( ) A.4 B.5 C. 54 D. 5 1 5.某人向正东方向走x km 后,向右转150°,然后朝新方向走3 km ,结果他离出发点恰好是3 km ,那么x 的值为( ) A.3 B.23 C.3或23 D.3 6.设{a n }为各项均是正数的等比数列,S n 为{a n }的前n 项和,则( ) A. 44S a =66S a B. 44S a >66S a C. 44S a <66S a D. 44S a ≤6 6S a 7.已知数列{a n }的首项为1,并且对任意n ∈N +都有a n >0.设其前n 项和为S n ,若以(a n ,S n )(n ∈N +)为坐标的点在曲线y = 2 1 x (x +1)上运动,则数列{a n }的通项公式为( ) A.a n =n 2+1 B.a n =n 2 C.a n =n +1 D.a n =n

高中数学必修五教案-基本不等式

第一课时 3.4基本不等式 2a b +≤(一) 教学要求:通推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等; 教学重点: 2 a b +≤的证明过程; 教学难点:理解“当且仅当a=b 时取等号”的数学内涵 教学过程: 一、复习准备: 1. 回顾:二元一次不等式(组)与简单的线形规划问题。 2. 提问:如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。你能在这个图案中找出一些相等关系或不等关系吗? 二、讲授新课: 1. 教学:基本不等式 2a b +≤ ①探究:图形中的不等关系,将图中的“风车”抽象成如图,在 正方形ABCD 中右个全等的直角三角形。设直角三角形的两条直角边长为a,b 那么正方形的 4个直角三角形的面积的和是2ab ,正方形的面积为22a b +。由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式:222a b ab +≥。当直角三角形变为等腰直角三角形,即a=b 时,正方形EFGH 缩为一个点,这时有222a b ab +=。(教师提问→学生思考→师生总结) ②思考:证明一般的,如果)""(2R,,2 2号时取当且仅当那么==≥+∈b a ab b a b a ③基本不等式:如果a>0,b>0,我们用分别代替a 、b ,可得a b +≥, (a>0,b>0)2a b +≤ 2 a b +≤ : 用分析法证明:要证 2a b +≥, 只要证 a+b ≥ (2), 要证(2),只要证 a+b- ≥0(3)要证(3), 只要证( - )2(4), 显然,(4)是成立的。当且仅当a=b 时,(4)中的等号成立。 ⑤练习:已知x 、y 都是正数,求证:(1)y x x y +≥2;(2)(x +y )(x 2+y 2)(x 3+y 3)≥8 x 3y 3.

必修五不等式大复习-知识点加练习-适合整章复习

必修五不等式综合 一.不等式的性质: 1.同向不等式可以相加;异向不等式可以相减:若,a b c d >>,则a c b d +>+(若 ,a b c d ><,则a c b d ->-) ,但异向不等式不可以相加;同向不等式不可以相减; 2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除, 但不能相乘:若0,0a b c d >>>>,则ac bd >(若0,0a b c d >><<,则a b c >); 3.左右同正不等式:两边可以同时乘方或开方:若0a b >>,则n n a b >> 4.若0ab >,a b >,则11a b <;若0ab <,a b >,则11 a b >。如 练习一、: (1)对于实数c b a ,,中,给出下列命题: ①22,bc ac b a >>则若; ②b a bc ac >>则若,22; ③22,0b ab a b a >><<则若; ④b a b a 1 1,0<<<则若; ⑤b a a b b a ><<则若,0; ⑥b a b a ><<则若,0; ⑦b c b a c a b a c -> ->>>则若,0; ⑧11 ,a b a b >>若,则0,0a b ><。 其中正确的命题是______ (2)已知11x y -≤+≤,13x y ≤-≤,则3x y -的取值范围是______ (3)已知c b a >>,且,0=++c b a 则a c 的取值范围是______ 二.不等式大小比较的常用方法: 1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式); 3.分析法; 4.平方法; 5.分子(或分母)有理化; 6.利用函数的单调性; 7.寻找中间量或放缩法 ; 8.图象法。其中比较法(作差、作商)是最基本的方法。 练习二;(1)设0,10>≠>t a a 且,比较21 log log 21+t t a a 和的大小 (2)设2a >,1 2 p a a =+-,2422-+-=a a q ,试比较q p ,的大小 (3)比较1+3log x 与)10(2log 2≠>x x x 且的大小 三.利用重要不等式求函数最值时,你是否注意到:“一正二定三相等,和定积最大,积

必修五不等式知识点总结

不等式总结 一、不等式的主要性质: (1)对称性:a b b a (2)传递性:c a c b b a >?>>, (3)加法法则:c b c a b a +>+?>; d b c a d c b a +>+?>>, (4)乘法法则:bc ac c b a >?>>0,; bc ac c b a 0, bd ac d c b a >?>>>>0,0 (5)倒数法则:b a a b b a 110,> (6)乘方法则:)1*(0>∈>?>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>?>>n N n b a b a n n 且 二、一元二次不等式02>++c bx ax 和)0(02≠<++a c bx ax 及其解法 有两相异实根 有两相等实根注意:一般常用因式分解法、求根公式法求解一元二次不等式 顺口溜:在二次项系数为正的前提下:大于型取两边,小于型取中间

三、均值不等式 1.均值不等式:如果a,b 是正数,那么 ).""(2 号时取当且仅当==≥+b a ab b a 2、使用均值不等式的条件:一正、二定、三相等 3、平均不等式:平方平均≥算术平均≥几何平均≥调和平均(a 、b 为正数),即 2 112a b a b ++(当a = b 时取等) 四、含有绝对值的不等式 1.绝对值的几何意义:||x 是指数轴上点x 到原点的距离;12||x x -是指数轴上12,x x 两点间的距离 2、则不等式:如果,0>a a x a x a x -<><=>>或|| a x a x a x -≤≥<=>≥或|| a x a a x <<-<=><|| a x a a x ≤≤-<=>≤|| 3.当0c >时, ||ax b c ax b c +>?+>或ax b c +<-, ||ax b c c ax b c +?∈,||ax b c x φ+?-<<,|| (0)x a a x a >>?>或x a <-. (2)定义法:零点分段法;(3)平方法:不等式两边都是非负时,两边同时平方. 五、其他常见不等式形式总结:

必修5数学不等式典型例题解析(整理)

不等式 一.不等式的性质: 1.同向不等式可以相加;异向不等式可以相减:若,a bc d >>,则a c b d +>+(若,a b c d ><,则a c b d ->-), 但异向不等式不可以相加;同向不等式不可以相减; 2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若 0,0a b c d >>>>,则ac bd >(若0,0a b c d >><<,则 a b c d >); 3.左右同正不等式:两边可以同时乘方或开方:若0a b >>,则n n a b >> 4.若0ab >,a b >,则11a b <;若0ab <,a b >,则11 a b >。如 (1)对于实数c b a ,,中,给出下列命题: ①22,bc ac b a >>则若; ②b a bc ac >>则若,22; ③22,0b ab a b a >><<则若; ④b a b a 11,0<<<则若; ⑤b a a b b a ><<则 若,0; ⑥b a b a ><<则若,0; ⑦b c b a c a b a c ->->>>则若,0; ⑧11 ,a b a b >>若,则0,0a b ><。 其中正确的命题是______ (答:②③⑥⑦⑧); (2)已知11x y -≤+≤,13x y ≤-≤,则3x y -的取值范围是______ (答:137x y ≤-≤); (3)已知c b a >>,且,0=++c b a 则 a c 的取值范围是______ (答:12,2??-- ??? ) 二.不等式大小比较的常用方法: 1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式); 3.分析法; 4.平方法; 5.分子(或分母)有理化; 6.利用函数的单调性; 7.寻找中间量或放缩法 ; 8.图象法。其中比较法(作差、作商)是最基本的方法。如 (1)设0,10>≠>t a a 且,比较 2 1log log 21+t t a a 和的大小 (答:当1a >时,11log log 22a a t t +≤(1t =时取等号);当01a <<时,11 log log 22 a a t t +≥(1t =时取等号)); (2)设2a >,12 p a a =+-,2 422-+-=a a q ,试比较q p ,的大小 (答:p q >); (3)比较1+3log x 与)10(2log 2≠>x x x 且的大小 (答:当01x <<或43x >时,1+3log x >2log 2x ;当413x <<时,1+3log x <2log 2x ;当4 3 x =时,1+3 log x =2log 2x ) 三.利用重要不等式求函数最值时,你是否注意到:“一正二定三相等,和定积最大,积定和最小”这17字方针。如

必修五不等式单元测试题

人教版必修五《不等式》单元测试题 一、选择题(本大题共10小题,每小题5分,共50分) 1.不等式x 2≥2x の解集是( ) A .{x |x ≥2} B .{x |x ≤2} C .{x |0≤x ≤2} D .{x |x ≤0或x ≥2} 2.下列说法正确の是( ) A .a >b ?ac 2>bc 2 B .a >b ?a 2>b 2 C .a >b ?a 3>b 3 D .a 2>b 2?a >b 3.直线3x +2y +5=0把平面分成两个区域,下列各点与原点位于同一区域の是( ) A .(-3,4) B .(-3,-4) C .(0,-3) D .(-3,2) 4.不等式x -1 x +2 >1の解集是( ) A .{x |x <-2} B .{x |-2N B .M ≥N C .M 2 B .m <-2或m >2 C .-20时,f (x )>1,那么当x <0时,一定有( ) A .f (x )<-1 B .-11 D .0log 1 2(x +13)の解集是_________. 13.函数f (x )=x -2 x -3 +lg 4-x の定义域是__________. 14.x ≥0,y ≥0,x +y ≤4所围成の平面区域の周长是________. 15.某商家一月份至五月份累计销售额达3860万元.预测六月份销售额为500万元,七月份 销售额比六月份递增x %,八月份销售额比七月份递增x %,九、十月份销售总额与七、

相关文档 最新文档