文档视界 最新最全的文档下载
当前位置:文档视界 › 18-19 课时分层作业20 空间线面关系的判定

18-19 课时分层作业20 空间线面关系的判定

18-19 课时分层作业20 空间线面关系的判定
18-19 课时分层作业20 空间线面关系的判定

课时分层作业(二十) 空间线面关系的判定

(建议用时:40分钟)

[基础达标练]

一、填空题

1.若两平面±,2的法向量分别为u=(2,-3,4),?=,则±与2的位置关系是________.

[解析] ∵u=-3?,∴u∥?,∴±∥2.

[答案] 平行

2.若平面±,2的法向量分别为(-1,2,4),(x,-1,-2),并且±⊥2,则x的值为________.

[解析] ∵±⊥2,∴-x-2-8=0,∴x=-10.

[答案] -10

3.在正方体ABCD-A1B1C1D1中,O是B1D1的中点,则B1C与平面ODC1的关系是________.

[解析] ∵=+=+++=+,∴,,共面.又∵B1C不在平面ODC1内,∴B1C∥平面ODC1.

[答案] 平行

4.若=?+?(?,?∈R),则直线AB与平面CDE的位置关系是________.

【导学号:71392199】[解析] ∵=?+?(?,?∈R),∴与,共面,∴AB∥平面CDE或AB?平

面CDE.

[答案] AB∥平面CDE或AB?平面CDE

5.已知=(1,5,-2),=(3,1,z),若⊥,=(x-1,y,-3),且BP⊥平

面ABC,则(x,y,z)等于________.

[解析] ·=3+5-2z=0,故z=4.·=x-1+5y+6=0,且·=3(x-1)+y-12=0,得x=,y=-.

[答案] 

6.如图3-2-13,在正方体ABCD-A1B1C1D1中,P为A1B1上任意一点,则DP 与BC1始终________(填“垂直”或“平行”).

图3-2-13

[解析] 因为·=(+)·=(+)·=·+·=·=·(+)=·+·=0,

所以⊥,即DP与BC1始终垂直.

[答案] 垂直

7.已知点A(1,-2,11),B(4,2,3),C(6,-1,4),则△ABC的形状

是________三角形.

[解析] 求得=(5,1,-7),=(2,-3,1),因为·=0,所以⊥,所以△ABC 是直角三角形.

[答案] 直角

8.如图3-2-14所示,在长方体ABCD-A1B1C1D1中,AB=2,AA1=,AD

=2,P为C1D1的中点,M为BC的中点,则AM与PM的位置关系为________.

图3-2-14

[解析] 以D点为原点,分别以DA,DC,DD1所在直线为x轴,y轴,z轴,建立如图所示的空间直角坐标系D-xyz,依题意,可

得D(0,0,0),P(0,1,),C(0,2,0),A(2,0,0),M(,2,0).

∴=(,2,0)-(0,1,)=(,1,-),=(,2,0)-(2,0,0)=(-,2,0),∴·

=(,1,-)·(-,2,0)=0,即⊥,∴AM⊥PM.

[答案] 垂直

二、解答题

9.已知四棱锥P-ABCD的底面是直角梯形,AB∥DC,∠DAB=90°,PD⊥底面ABCD,且PD=DA=CD=2AB=2,M点为PC的中点.

图3-2-15

(1)求证:BM∥平面PAD;

(2)在平面PAD内找一点N,使MN⊥平面PBD.

[解] (1)证明:因为PD⊥底面ABCD,CD∥AB,CD⊥AD.

所以以D为坐标原点,建立空间直角坐标系D-xyz(如图所示).

由于PD=CD=DA=2AB=2,所

以D(0,0,0),A(2,0,0),B(2,1,0),C(0,2,0),P(0,0,2),M(0,1,1),所以=(-

2,0,1),=(0,2,0),因为DC⊥平面PAD,所以是平面PAD的法向量,又因为·=0,且BM?平面PAD,所以BM∥平面PAD.

(2)设N(x,0,z)是平面PAD内一点,则=(x,-1,z-1),=(0,0,2),

=(2,1,0),若MN⊥平面PBD,则即所以在平面PAD内存在点N,使MN⊥平

面PBD.

10.如图3-2-16所示,在四棱锥P-ABCD中,PC⊥平面ABCD,PC=2,在四边形ABCD中,∠B=∠C=90°,AB=4,CD=1,点M在PB上,PB

=4PM,PB与平面ABCD成30°的角.求证:

图3-2-16

(1)CM∥平面PAD;

(2)平面PAB⊥平面PAD.

【导学号:71392200】[证明] 以C为坐标原点,CB所在直线为x轴,CD所在直线为y轴,CP所在直线为z轴,建立如图所示的空间直角坐标系C-xyz.

∵PC⊥平面ABCD,

∴∠PBC为PB与平面ABCD所成的角,

∴∠PBC=30°.

∵PC=2,∴BC=2,PB=4,

∴D(0,1,0),B(2,0,0),A(2,4,0),P(0,0,2),M,

∴=(0,-1,2),=(2,3,0),=,

(1)法一:令n=(x,y,z)为平面PAD的一个法向量,

令y=2,得n=(-,2,1).

∵n·=-×+2×0+1×=0,

∴n⊥,又CM?平面PAD,∴CM∥平面PAD.

法二:∵=(0,1,-2),=(2,4,-2),

令=x+y,

则方程组有解为

∴=-+,由共面向量定理知与,共面.又∵CM?平面PAD,∴CM∥平

面PAD.

(2)取AP的中点E,连接BE,则E(,2,1),

=(-,2,1),

∵PB=AB,∴BE⊥PA.

又∵·=(-,2,1)·(2,3,0)=0,

∴⊥,∴BE⊥DA,又PA∩DA=A,

∴BE⊥平面PAD.又∵BE?平面PAB,

∴平面PAB⊥平面PAD.

[能力提升练]

1.空间直角坐标系中,A(1,2,3),B(-2,-1,6),C(3,2,1),D(4,3,0),则直线AB与CD的位置关系是_______________.

[解析] 由题意得,=(-3,-3,3),=(1,1,-1),∴=-3,∴与共线.又与没有公共点.∴AB∥CD.

[答案] 平行

2.如图3-2-17,四棱锥P-ABCD的底面ABCD是边长为1的正方形,PD⊥底

面ABCD,且PD=1,若E,F分别为PB,AD中点,则直线EF与平面PBC的位置关系________.

图3-2-17

[解析] 以D为原点,DA,DC,DP所在直线为x轴,y轴,z轴建立空间直角坐标系(图略),则E,F,∴=,平面PBC的一个法向量n=(0,1,1).∵=-n,∴∥n,

∴EF⊥平面PBC.

[答案] 垂直

3.已知空间两点A(-1,1,2),B(-3,0,4),直线l的方向向量为a,若|a|=3,且直线l与直线AB平行,则a=________.

【导学号:71392201】[解析] 设a=(x,y,z),∵=(-2,-1,2),且l与AB平行,∴a∥,

∴==,∴x=2y,z=-2y.

又∵|a|=3,∴|a|2=x2+y2+z2=4y2+y2+4y2=9,

∴y=±1,∴a=(2,1,-2)或(-2,-1,2).

[答案] (2,1,-2)或(-2,-1,2)

4.如图3-2-18所示,在梯形ABCD中,AB∥CD,AD=DC=CB=a,∠ABC =60°,平面ACFE⊥平面ABCD,四边形ACFE是矩形,AE=a,点M在线段EF 上.当EM为何值时,AM∥平面BDF?证明你的结论.

图3-2-18

[解] 法一:当EM=a时,AM∥平面BDF,以点C为原点,CA,CB,CF所在直线为坐标轴,建立空间直角坐标系(图略),

则C(0,0,0),B(0,a,0),A(a,0,0),D,F(0,0,a),E(a,0,a),因为AM?平

面BDF,所以AM∥平面BDF?与,共面,所以存在实数m,n,使=m+n,设=t.因为=(-a,0,0),=(-at,0,0),所以=+=(-at,0,a),

又=,=(0,a,-a),从而(-at,0,a)=m(0,a,-a)+n

成立,

解得t=,

所以当EM=a时,AM∥平面BDF.

法二:当EM=a时,AM∥平面BDF,在梯形ABCD中,

设AC∩BD=N,连接FN,

则CN∶NA=1∶2,

因为EM=a,

而EF=AC=a,

所以EM∶MF=1∶2,

所以MFAN,所以四边形ANFM是平行四边形,所以AM∥NF,又因为NF?平面BDF,AM?平面BDF,所以AM∥平面BDF.

2.3.2平面与平面垂直的判定导学案

2.3.2平面与平面垂直的判定导学案 1、教学目标 依据教学大纲的教学要求,渗透新课标理念,并结合以上学情分析,我制定了如下教学目标: ●知识与技能 使学生经历面面垂直定义及判定定理相关概念的产生过程,掌握并会初步应用两个平面垂直的判定定理.掌握平面与平面垂直的判定定理及其变 式,能利用它们解决相关的问题。 ●方法与过程 通过对面面垂直相关概念及判定定理的探究,培养学生观察、分析、抽象、概括的思维水平,进一步感受转化、类比等思维方法;通过对面面垂直判定定理的应用,进一步培养学生的空间想象、推理论证等水平. ●情感态度与价值观 通过教师引导学生经历直观感知、操作确认等交流探索活动,激发学生的学习兴趣,使学生经历数学思维的过程,获得成功的体验. 2、教学重点、难点 ●重点 两个平面互相垂直的判定定理及其应用. ●难点 两个平面垂直的判定定理的归纳概括及应用。 ●重、难点解决的方法策略 本课通过自制模具的演示,为学生提供直观感性的材料,让学生从中自主探索,经历直观感知,操作确认,思辨论证的过程,并借助多媒体的直观演示,有 ________平面内的任何直线;⑵直线与平面垂直的判定定理为_________________________________________ 复习2:①什么是二面角?什么是二面角的平面角?②当两个平面所成的二面角____________时,这两个平面互相垂直.。 二、新课导学 ※探索新知(一)、平面与平面垂直定义 问题1:(见课件例1)在正方体ABCD-A’B’C’D’中,二面角A’-AB-D的平面角是多少?问题2:请同学们把自己的数学书打开直立在桌面上,观察书本与桌面的位置有什么关系? ※新知1:面面垂直的定义: 两个平面所成二面角是直二面角,则这两个平面互相垂直.如图,α垂直β,记作αβ ⊥.

知识讲解_空间点线面的位置关系(基础)

空间点线面的位置关系 【考纲要求】 (1)理解空间直线、平面位置关系的定义; (2)了解可以作为推理依据的公理和定理; (3)能运用公理、定理和已经获得的结论证明一些空间图形的位置关系的简单命题。 【知识网络】 【考点梳理】 考点一、平面的基本性质 1、平面的基本性质的应用 (1)公理1:可用来证明点在平面内或直线在平面内; (2)公理2:可用来确定一个平面,为平面化作准备或用来证明点线共面; (3)公理3:可用来确定两个平面的交线,或证明三点共线,三线共点。 2、平行公理主要用来证明空间中线线平行。 3、公理2的推论: (1)经过一条直线和直线外一点,有且只有一个平面; (2)经过两条相交直线,有且只有一个平面; (3)经过两条平行直线,有且只有一个平面。 4、点共线、线共点、点线共面 空间点线面位置关系 三个公理、三个推论 平面 平行直 异面直相交直公理4及等角定理 异面直线所成的角 异面直线间的距离 直线在平面内 直线与平面平行 直线与平面相交 空间两条直 概念 垂斜 空间直线 与平面 空间两个平面 两个平面平行 两个平面相交 三垂线定理 直线与平面所成的角

(1)点共线问题 证明空间点共线问题,一般转化为证明这些点是某两个平面的公共点,再根据公理3证明这些点都在这两个平面的交线上。 (2)线共点问题 证明空间三线共点问题,先证两条直线交于一点,再证明第三条直线经过这点,把问题转化为证明点在直线上。 要点诠释:证明点线共面的常用方法 ①纳入平面法:先确定一个平面,再证明有关点、线在此平面内; ②辅助平面法:先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α、β重合。 考点二、直线与直线的位置关系 (1)位置关系的分类 ???? ??? ?相交直线共面直线平行直线 异面直线:不同在任何一个平面内,没有公共点 (2)异面直线所成的角 ①定义:设a,b 是两条异面直线,经过空间中任一点O 作直线a ’ ∥a,b ’ ∥b,把a ’ 与b ’ 所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角). ②范围:02 π?? ??? , 要点诠释:证明两直线为异面直线的方法: 1、定义法(不易操作) 2、反证法:先假设两条直线不是异面直线,即两直线平行或相交,由假设的条件出发,经过严密的推理,导出矛盾,从而否定假设肯定两条直线异面。此法在异面直线的判定中经常用到。 3、客观题中,也可用下述结论: 过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线,如图:

空间点、线、面位置关系

空间点、线、面的位置关系 【基础回顾】 1.平面的基本性质 公理1:如果一条直线上的________在一个平面内,那么这条直线上所有的点都在这个平面内. 公理2:如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是经过____________的一条直线. 公理3:经过____________________的三点,有且只有一个平面. 推论1:经过____________________,有且只有一个平面. 推论2:经过________________,有且只有一个平面. 推论3:经过________________,有且只有一个平面. 2.直线与直线的位置关系 (1)位置关系的分类 ??? 共面直线? ?? ?? 异面直线:不同在任何一个平面内 (2)异面直线判定定理 过平面内一点与平面外一点的直线,和这个平面内______________的直线是异面直线. (3)异面直线所成的角 ①定义:设a ,b 是两条异面直线,经过空间任意一点O ,作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的____________叫做异面直线a ,b 所成的角. ②范围:____________. 3.公理4 平行于____________的两条直线互相平行. 4.定理 如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角________.

自我检测 1.若直线a与b是异面直线,直线b与c是异面直线,则直线a与c的位置关系是____________. 2.如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线________对. 3.三个不重合的平面可以把空间分成n部分,则n的可能取值为________. 4.直三棱柱ABC—A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成角的大小为________. 5.下列命题: ①空间不同三点确定一个平面; ②有三个公共点的两个平面必重合; ③空间两两相交的三条直线确定一个平面; ④三角形是平面图形; ⑤平行四边形、梯形、四边形都是平面图形; ⑥垂直于同一直线的两直线平行; ⑦一条直线和两平行线中的一条相交,也必和另一条相交; ⑧两组对边相等的四边形是平行四边形. 其中正确的命题是________(填序号). 【例题讲解】 1、平面的基本性质 例1 如图所示,空间四边形ABCD中,E、F、G分别在AB、BC、CD上,且满足AE∶EB=CF∶FB=2∶1,CG∶GD=3∶1,AH∶HD=3∶1,过E、F、G的平面交AD于H,连结EH. 求证:EH、FG、BD三线共点.

高中数学空间点线面之间的位置关系讲义

2.1空间点、直线、平面之间的位置关系 一、平面 1 平面含义: 2 平面的画法及表示 (1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450 ,且横边画成邻边的2倍长(如图) (2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。 二、三个公理: 三、空间直线、平面之间的位置关系 D C B A α

四、等角定理: 五、异面直线所成的角 1.定义: 2.范围: 3.图形表示 4.垂直: 六、典型例题

1.下面推理过程,错误的是( ) (A ) αα??∈A l A l ,// (B ) ααα??∈∈∈l B A l A ,, (C ) AB B B A A =??∈∈∈∈βαβαβα,,, (D ) βαβα=?∈∈不共线并且C B A C B A C B A ,,,,,,,, 2.一条直线和这条直线之外不共线的三点所能确定的平面的个数是( ) (A )1个或3个 (B )1个或4个 (C )3个或4个 (D )1个、3个或4个 3.以下命题正确的有( ) (1)若a ∥b ,b ∥c ,则直线a ,b ,c 共面; (2)若a ∥α,则a 平行于平面α内的所有直线; (3)若平面α内的无数条直线都与β平行,则α∥β; (4)分别和两条异面直线都相交的两条直线必定异面。 (A ) 1个 (B ) 2个 (C ) 3个 (D )4个 4.正方体的一条体对角线与正方体的棱可以组成异面直线的对数是( ) (A ) 2 (B ) 3 (C ) 6 (D ) 12 5.以下命题中为真命题的个数是( ) (1)若直线l 平行于平面α内的无数条直线,则直线l ∥α; (2)若直线a 在平面α外,则a ∥α; (3)若直线a ∥b ,α?b ,则a ∥α; (4)若直线a ∥b ,α?b ,则a 平行于平面α内的无数条直线。 (A ) 1个 (B ) 2个 (C ) 3个 (D )4个 6.若三个平面两两相交,则它们的交线条数是( ) (A ) 1条 (B ) 2条 (C ) 3条 (D )1条或3条 7.若直线l 与平面α相交于点O ,l B A ∈,,α∈D C ,,且BD AC //,则O,C,D 三点的位置关系是 。 8.在空间中, ① 若四点不共面,则这四点中任何三点都不共线。② 若两条直线没有公共点,则这两条直线是异面直线。 以上两个命题中为真命题的是 (把符合要求的命题序号填上) 9.已知长方体1111D C B A ABCD -中,M 、N 分别是1BB 和BC 的中点,AB=4,AD=2,1521=BB ,求异面直线D B 1与MN 所成角的余弦值。 10.正方体1111ABCD A B C D -中,E 、F 分别为11D C 和11B C 的中点,P 、Q 分别为AC 与BD 、11A C 与EF 的交点. (1)求证:D 、B 、F 、E 四点共面;(2)若1A C 与面DBFE 交于点R ,求证:P 、Q 、R 三点共线.

【步步高】2014届高考数学一轮复习 3.2.2 空间线面关系的判定(一)备考练习 苏教版

3.2.2 空间线面关系的判定(一) ——平行关系的判定 一、基础过关 1. 空间直角坐标系中A (1,2,3),B (-1,0,5),C (3,0,4),D (4,1,3),则直线AB 与CD 的位 置关系为________(平行、垂直或无法确定). 2. 已知平面α的一个法向量是n =(1,1,1),A (2,3,1),B (1,3,2),则直线AB 与平面α的 关系是______________. 3. 已知直线l 与平面α垂直,直线的一个方向向量为u =(1,3,z ),向量v =(3,-2,1) 与平面α平行,则z =________. 4. 已知A (0,0,0),B (1,0,0),C (0,1,0),D (1,1,x ),若AD ?平面ABC ,则实数x 的值是_____. 5. 若平面α的一个法向量为u 1=(-3,y,2),平面β的一个法向量为u 2=(6,-2,z ), 且α∥β,则y +z =________. 6. 如图,在平行六面体ABCD —A 1B 1C 1D 1中,M 、P 、Q 分别为棱AB 、CD 、BC 的中点,若平行六面体的各棱长均相等,则 ①A 1M ∥D 1P ; ②A 1M ∥B 1Q ; ③A 1M ∥平面DCC 1D 1; ④A 1M ∥平面D 1PQB 1. 以上结论中正确的是__________(填序号). 二、能力提升 7. 在正方体ABCD —A 1B 1C 1D 1中,棱长为a ,M 、N 分别为A 1B 、AC 上的点,A 1M =AN = 2 3 a ,则MN 与平面BB 1C 1C 的位置关系是________. 8. 如图所示,正四棱柱ABCD —A 1B 1C 1D 1中,E 、F 、G 、H 分别是CC 1、C 1D 1、D 1D 、DC 的中点,N 是BC 中点,点M 的四边形EFGH 及其内部运动,则M 只须满足条件________时,MN ∥平

空间点、线、面之间的位置关系

空间点、线、面之间的位置关系 【知识梳理】 1.平面的基本性质 公理1:如果一条直线上的___两点_____在一个平面内,那么这条直线上所有的点都在这个平面内. 公理2:如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是经过__这个公共点___的一条直线. 公理3:经过______不在同一条直线上______________的三点,有且只有一个平面. 推论1:经过_____一条直线和这条直线外的一点_______________,有且只有一个平面. 推论2:经过___两条相交直线_____________,有且只有一个平面. 推论3:经过____两条平行直线____________,有且只有一个平面. 2.直线与直线的位置关系 (1)位置关系的分类 ?? ? 共面直线??? ?? 异面直线:不同在任何一个平面内 (2)异面直线判定定理 过平面内一点与平面外一点的直线,和这个平面内______________的直线是异面直线. (3)异面直线所成的角 ①定义:设a ,b 是两条异面直线,经过空间任意一点O ,作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的____________叫做异面直线a ,b 所成的角. ②范围:____________. 答案:(1)平行 相交 (2)不经过该点 (3)①锐角或直角 ②????0,π 2 3.同一条直线 4.相等 3.公理4 平行于______同一条直线______的两条直线互相平行. 4.定理 如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角___相等_____. 【自我检测】 1.若直线a 与b 是异面直线,直线b 与c 是异面直线,则直线a 与c 的位置关系是 平行、相交或异面. 2.如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线____24____对. 3.三个不重合的平面可以把空间分成n 部分,则n 的可能取值为___4,6,7,8_____. 4.(2010·全国Ⅰ)直三棱柱ABC —A 1B 1C 1中,若∠BAC =90°,AB =AC =AA 1,则异面直线BA 1与AC 1 所成角的大小为__60°______. 将直三棱柱ABC —A 1B 1C 1补成如图所示的几何体. 由已知易知:该几何体为正方体. 连结C 1D ,则C 1D ∥BA 1. ∴异面直线BA 1与AC 1所成的角为∠AC 1D (或补角), 在等边△AC 1D 中,∠AC 1D =60°. 5.下列命题:

【练习】高中数学空间中点线面的位置关系练习题

空间中点线面的位置关系练习题 1、下列有关平面的说法正确的是( ) A 一个平面长是10cm ,宽是5cm B 一个平面厚为1厘米 C 平面是无限延展的 D 一个平面一定是平行四边形 2、已知点A 和直线a 及平面α,则: ①αα???∈A a a A , ② αα∈??∈A a a A , ③αα????A a a A , ④αα???∈A a a A , 其中说法正确的个数是( ) A.0 B.1 C.2 D.3 3、下列图形不一定是平面图形的是( ) A 三角形 B 四边形 C 圆 D 梯形 4、三个平面将空间可分为互不相通的几部分( ) A.4、6、7 B.3、4、6、7 C.4、6、7、8 D.4、6、8 5、共点的三条直线可确定几个平面 ( ) A.1 B.2 C.3 D.1或3 6、正方体ABCD-A 1B 1C 1D 1中,P 、Q 、R 分别是AB 、 AD 、1B 1C 1的中点,则,正方体的过P 、Q 、R 的截面图形是 ( ) A 三角形 B 四边形 C 五边形 D 六边形 7、三个平面两两相交,交线的条数可能有———————————————— 8、不共线的四点可以确定——————————————————个平面。 9、下列说法①若一条直线和一个平面有公共点,则这条直线在这个平面内②过两条相交直线A Q B 1 R C B D P A 1 C 1 D 1 ? ? ?

的平面有且只有一个③若两个平面有三个公共点,则两个平面重合④两个平面相交有且只有一条交线⑤过不共线三点有且只有一个平面,其中正确的有——————————— 10、空间两条互相平行的直线指的是( ) A.在空间没有公共点的两条直线 B.分别在两个平面内的两条直线 C.分别在两个不同的平面内且没有公共点的两条直线 D.在同一平面内且没有公共点的两条直线 11、分别和两条异面直线都相交的两条直线一定是( ) A 异面直线 B 相交直线 C 不平行直线 D 不相交直线 12、正方体ABCD-A 1B 1C 1D 1中,与直线BD 异面且成600角的面对角线有( )条。 A 4 B 3 C 2 D 1 13、设A 、B 、C 、D 是空间四个不同的点,下列说法中不正确的是( ) A.若AC 和BD 共面,则AD 与BC 共面 B.若AC 和BD 是异面直线,则AD 与BC 是异面直线 C.若AB =AC ,DB =DC ,则AD =BC D.若AB =BC =CD =DA ,则四边形ABCD 不一定是菱形 14、空间四边形SABC 中,各边及对角线长都相等,若E 、 F 分别为SC 、AB 的中点,那么异面直线EF 与SA 所成的角 为( ) A 300 B 450 C 600 D 900 15、和两条平行直线中的一条是异面直线的直线,与另一条直线的位置关系是———————————————————— 16、设c b a 、、表示直线,给出四个论断:①b a ⊥②c c ⊥③c a ⊥④c a //,以其中任意两个为条件,另外的某一个为结论,写出你认为正确的一个命题—————————————————— S C A B E F

空间中点线面位置关系

高一升高二暑假衔接立体几何 第一讲:空间中的点线面 一,生活中的问题? 生活中课桌面、黑板面、教室墙壁、门的表面都给我们以“平面”形象.如果想把一个木棍钉在墙上,至少需要几个钉子?教室的门为什么可以随意开关?插上插销后为什么不能开启?房顶和墙壁有多少公共点?通过本节课学习,我们将从数学的角度解释以上现象. 二,概念明确 1,点构成线,线构成面,所以点线面是立体几何研究的主要对象。 所以:点与线的关系是_____________________,用符号______________。 线与面的关系是_____________________,用符号______________。 点与面的关系是_____________________,用符号______________。 2,高中立体几何主要研究内容:点,线,面的位置关系和几何量(距离,角) 3,直线是笔直,长度无限的;平面是光滑平整,向四周无限延伸,没有尽头的。点,线,面都是抽象的几何概念。不必计较于一个点的大小,直线的长度与粗细。 4,平面的画法与表示 描述几何里所说的“平面”是从生活中的一些物体抽象出来的,是无限的 画法通常把水平的平面画成一个,并且其锐角画成45°,且横边长等于其邻边长的倍,如图a所示,如果一个平面被另一个平面遮挡住,为了增强立体感,被遮挡部分用 画出来,如图b所示

记法 (1)用一个α,β,γ等来表示,如图a中的平面记为平面α (2) 用两个大字的(表示平面的平行四边形的对角线的顶 点)来表示,如图a中的平面记为平面AC或平面BD (3) 用三个大写的英文字母(表示平面的平行四边形的不共线的顶点)来表示,如图a 中的平面记为平面ABC或平面等 (4) 用四个大写的英文字母(表示平面的平行四边形的)来表示,如图a中的平面可记作平面ABCD 检验检验: 下列命题:(1)书桌面是平面;(2)8个平面重叠起来要比6个平面重叠起来厚;(3)有一 个平面的长是50m,度是20m;(4)平面是绝对的平、无厚度、可以无限延展的抽象的数学概念.其中正确命题的个数为() A.1B.2C.3D.4 三,点,线,面的位置关系和表示 A是点,l,m是直线,α,β是平面. 文字语言符号语言图形语言 A在l上 A在l外 A在α内 A在α外 文字语言符号语言图形语言 l在α内 l与α平行

空间中点线面位置关系(经典)

第一讲:空间中的点线面 一,生活中的问题? 生活中课桌面、黑板面、教室墙壁、门的表面都给我们以“平面”形象.如果想把一个木棍钉在墙上,至少需要几个钉子?教室的门为什么可以随意开关?插上插销后为什么不能开启?房顶和墙壁有多少公共点?通过本节课学习,我们将从数学的角度解释以上现象. 二,概念明确 1,点构成线,线构成面,所以点线面是立体几何研究的主要对象。 所以:点与线的关系是_____________________,用符号______________。 线与面的关系是_____________________,用符号______________。 点与面的关系是_____________________,用符号______________。 2,高中立体几何主要研究内容:点,线,面的位置关系和几何量(距离,角) 3,直线是笔直,长度无限的;平面是光滑平整,向四周无限延伸,没有尽头的。点,线,面都是抽象的几何概念。不必计较于一个点的大小,直线的长度与粗细。 4,平面的画法与表示 描述几何里所说的“平面”是从生活中的一些物体抽象出来的,是无限的 画法通常把水平的平面画成一个,并且其锐角画成45°,且横边长等于其邻边长的倍,如图a所示,如果一个平面被另一个平面遮挡住,为了增强立体感,被遮挡部分用 画出来,如图b所示

记法 (1)用一个α,β,γ等来表示,如图a中的平面记为平面α (2) 用两个大字的(表示平面的平行四边形的对角线的顶 点)来表示,如图a中的平面记为平面AC或平面BD (3) 用三个大写的英文字母(表示平面的平行四边形的不共线的顶点)来表示,如图a 中的平面记为平面ABC或平面等 (4) 用四个大写的英文字母(表示平面的平行四边形的)来表示,如图a中的平面可记作平面ABCD 检验检验: 下列命题:(1)书桌面是平面;(2)8个平面重叠起来要比6个平面重叠起来厚;(3)有一 个平面的长是50m,度是20m;(4)平面是绝对的平、无厚度、可以无限延展的抽象的数学概念.其中正确命题的个数为() A.1B.2C.3D.4 三,点,线,面的位置关系和表示 A是点,l,m是直线,α,β是平面. 文字语言符号语言图形语言 A在l上 A在l外 A在α内 A在α外 文字语言符号语言图形语言 l在α内 l与α平行

线面垂直的判定

D C B A 图2 班级___________姓名___________ 直线与平面垂直的判定 学案 一、学习目标 1、借助对实例、图片的观察,抽象概括出直线与平面垂直的定义,并能正确理解直线与平面垂直的定义; 2、通过直观感知、操作确认,归纳出直线与平面垂直的判定定理,并能运用判定定理证明和直线与平面垂直有关的简单命题; 3、了解直线与平面所成的角的求法. 二、重点难点 重点:直观感知、操作确认,概括出直线与平面垂直的定义和判定定理。 难点:操作确认并概括出直线与平面垂直的判定定理及其初步运用。 三、教学过程 (一)直观感知直线与平面垂直的形象 问题1:在日常生活中你见到最多的直线与平面相交的情形是什么?请举例说明。 (二)直线与平面垂直的定义 问题2:结合对下列问题的思考,试着说明直线和平面垂直的意义。 (1)如图1,阳光下直立于地面的旗杆AB 与它在地面上的影子BC 的位置关系是什么?随着太阳的移动,旗杆AB 与影子BC 所成的角度会发生改变吗? (2)旗杆AB 与地面上任意一条不过旗杆底部B 的直线B ′C ′的位置关系又是什么?依据是什么?由此得到什么结论? 问题3:通过上述分析,你认为应该如何定义一条直线与一个 平面 垂直? 定义: 记作: 画法: 辨析1:下列命题是否正确?为什么? (1)如果一条直线垂直于一个平面内的一条直线,那么这条直线与这个平面垂直。 (2)如果一条直线垂直于一个平面内的两条平行直线,那么这条直线与这个平面垂直。 (3)对于问题(2)中的两条直线如果是相交直线呢? (三)直线与平面垂直的判定定理 问题4:通常定义可以作为判定的依据,那么用上述定义判定直线与平面垂直是否方便?为什么? 实验:如图2,请同学们拿出准备好的一块(任意)三角形的纸片,我们一起来做一个试验:过△ABC 的顶点A 翻折纸片,得到折痕AD ,将翻折后的纸片竖起放置在桌面上,(BD 、DC 与桌面接触)。 问题5:(1)折痕AD 与桌面垂直吗? (2)如何翻折才能使折痕AD 与桌面所在的平面垂直? 问题6:当折痕AD ⊥BC 时,上述沿AD 的各种折法中,能使AD 始终与桌面所在的平面垂直的共同的特征是什么?由此你能得到什么结论? 问题7:(1)如图3,把AD 、BD 、CD 抽象为直线l 、m 、n ,把桌面抽象为平面α,直线l 与平面α垂直的条件是什么? (2)如图4,若α内两条相交直线m 、n 与l 无公共点且l ⊥m 、l ⊥n ,直线l 还垂直平面α 吗?由此你能给出判定直线与平面垂直的方法吗?

点线面之间的位置关系的知识点总结

高中空间点线面之间位置关系知识点总结 第二章 直线与平面的位置关系 2.1空间点、直线、平面之间的位置关系 2.1.1 1 平面含义:平面是无限延展的 2 平面的画法及表示 (1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450 ,且横边画成邻边的2倍长(如图) (2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。 3 三个公理: (1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为 A ∈L B ∈L => L α A ∈α B ∈α 公理1作用:判断直线是否在平面内 (2)公理2:过不在一条直线上的三点,有且只有一个平面。 符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。 公理2作用:确定一个平面的依据。 (3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。 符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L 公理3作用:判定两个平面是否相交的依据 2.1.2 空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系: 相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点; 异面直线: 不同在任何一个平面内,没有公共点同一条直线的两条直线互相平行。 符号表示为:设a 、b 、c 是三条直线 a ∥b 。 2 公理4:平行于 c ∥b 强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。 公理4作用:判断空间两条直线平行的依据。 3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补 4 注意点: ① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, ); ③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ; ④ 两条直线互相垂直,有共面垂直与异面垂直两种情形; D C B A α L A · α C · B · A · α P · α L β 共面直线 =>a ∥c 2

线面垂直的判定学案(高二数学)MMlAww

河津市第二中学高二数学学案:2.3.1 线面垂直的判定 阅读课本64--67页的内容,回答下列问题: 问题1:直线与平面垂直的判定定理是什么?写出符号语言。 问题2:什么是线面所成角?线面角的范围是? 问题3:想一想证明线线垂直的方法有哪些? 【达标检测】: A 级 1. 课本P67 练习1,2,3题 2. 课本P74 B 组2,4题 B 级 1.1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是( ) (A )1223,l l l l ⊥⊥?1l //2l (B )12l l ⊥,1l //3l ?13l l ⊥ (C )1l //2l //3l ? 1l ,2l ,3l 共面 (D )1l ,2l ,3l 共点?1l ,2l ,3l 共面 2. 用a 、b 、c 表示三条不同的直线,y 表示平面,给出下列命题:( ) ①若a ∥b ,b ∥c ,则a ∥c ;②若a ⊥b ,b ⊥c ,则a ⊥c ; ③若a ∥y ,b ∥y ,则a ∥b ;④若a ⊥y ,b ⊥y ,则a ∥b . A. ①② B. ②③ C. ①④ D.③④ 3.已知空间四边形ABCD 的各边及对角线相等,求AC 与平面BCD 所成角的余弦值。 4如图,在直四棱柱1111ABCD A B C D -中,已知 122DC DD AD AB ===,AD DC AB DC ⊥,∥. (1)求证:11D C AC ⊥; (2)设E 是DC 上一点,试确定E 的位置, 使1D E ∥平面1A BD ,并说明理由. B C D A 1A 1D 1 C 1B

A B C D E F O 5. 如图,A B C D ,,,为空间四点.在ABC △中,等边三角形ADB 以AB 为轴运动. 当ADB △转动时,是否总有AB CD ⊥?证明你的结论。 6.在直三棱柱111ABC A B C -中,o 13,1,2,60A A AB BC ABC ==∠=,D 是BC 的中点。 1)求证:AB ⊥平面11A ACC ;2)求证:1//A B 平面1AC D ; 3)求三棱锥11A AC D -的体积。 7.如图,在五面体ABCDEF 中,点O 是矩形ABCD 的对角线的交点,面CDE 是等边三角形,棱12 EF BC ∥. (1)证明FO ∥平面;CDE (2)设3,BC CD =证明EO ⊥平面.CDF D B A C

空间点线面的位置关系及公理

1.四个公理 公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内(即直线在平面内). 公理2:经过不在同一条直线上的三点,有且只有一个平面(即可以确定一个平面). 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条通过这个点的公共直线. 公理4:平行于同一条直线的两条直线平行. 2.直线与直线的位置关系 (1)位置关系的分类 ????? 共面直线??? 平行直线相交直线异面直线:不同在任何一个平面内,没有公共点 (2)异面直线所成的角 ①定义:过空间任意一点P 分别引两条异面直线a ,b 的平行线l 1,l 2(a ∥l 1,b ∥l 2),这两条相交直线所成的锐角(或直角)叫作异面直线a ,b 所成的角(或夹角). ②范围:(] 0,π2. 3.直线与平面的位置关系有直线在平面内、直线与平面相交、直线与平面平行三种情况. 4.平面与平面的位置关系有平行、相交两种情况. 5.等角定理 空间中,如果两个角的两边分别对应平行,那么这两个角相等或互补. 【知识拓展】 1.唯一性定理

(2)过直线外一点有且只有一个平面与已知直线垂直. (3)过平面外一点有且只有一个平面与已知平面平行. (4)过平面外一点有且只有一条直线与已知平面垂直. 2.异面直线的判定定理 经过平面内一点的直线与平面内不经过该点的直线互为异面直线. 【思考辨析】 判断下列结论是否正确(请在括号中打“√”或“×”) (1)如果两个不重合的平面α,β有一条公共直线a,就说平面α,β相交,并记作α∩β=a.() (2)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线.() (3)两个平面ABC与DBC相交于线段BC.() (4)经过两条相交直线,有且只有一个平面.() (5)没有公共点的两条直线是异面直线.() 1.下列命题正确的个数为() ①梯形可以确定一个平面; ②若两条直线和第三条直线所成的角相等,则这两条直线平行; ③两两相交的三条直线最多可以确定三个平面; ④如果两个平面有三个公共点,则这两个平面重合. A.0 B.1 C.2 D.3 2.(2016·浙江)已知互相垂直的平面α,β交于直线l.若直线m,n满足m∥α,n⊥β,则() A.m∥l B.m∥n C.n⊥l D.m⊥n 3.(2016·合肥质检)已知l,m,n为不同的直线,α,β,γ为不同的平面,则下列判断正确的是() A.若m∥α,n∥α,则m∥n B.若m⊥α,n∥β,α⊥β,则m⊥n C.若α∩β=l,m∥α,m∥β,则m∥l D.若α∩β=m,α∩γ=n,l⊥m,l⊥n,则l⊥α 4.(教材改编)如图所示,已知在长方体ABCD-EFGH中,AB=23,AD=23,AE=2,则BC和EG所成角的大小是______,AE和BG所成角的大小是________.

线面垂直的判定学案

§2.3.1 直线与平面垂直的判定(学案) 探索新知 实例1、实例2 新知归纳 直线与平面垂直的定义: 线、面垂直的定义的性质: 简记:线面垂直,则线线垂直。 思考: 如果直线l与平面α内的一条直线垂直, 能保证l⊥α吗? 如果直线l与平面α内的两条直线垂直, 能保证l⊥α吗? 如果直线l与平面α内的无数条直线垂直, 能保证l⊥α吗? 如果直线l与平面α内的两条相交直线垂 直,能保证l⊥α吗? 探究活动 请同学们拿出一块三角形的纸片,做试验。 应用新知 例一下列命题中,正确的序号是________. ⊥若直线l与平面α内的无数条直线垂直,则 l⊥α; ⊥若直线l与平面α内的一条直线垂直,则l⊥α; ⊥若直线l不垂直于平面α,则α内没有与l垂 直的直线; ⊥若直线l不垂直于平面α,则α内也可以有无 数条直线与l垂直; ⊥过一点和已知平面垂直的直线有且只有一条; ⊥如果一条直线与一个平面垂直,那么它与平 面内所有的直线都垂直; ⊥如果一条直线与平面内无数条直线都垂直, 那么它与平面垂直. 例二已知b a//,α ⊥ a,求证:α ⊥ b

例三 如图,在长方体ABCD -A 1B 1C 1D 1中,请举出与平面ABCD 垂直的直线。并说明这些直线有怎样的位置关系? 例四 如图,在三棱锥 V -ABC 中,VA =VC , AB =BC ,求证:VB ⊥AC. 例五 已知P A ⊥平面ABC ,BC 为三角形ABC 外接圆的直径,问:图中有几个直角三角形,并说明理由。 思考练习 在正方体ABCD - A 1B 1C 1D 1中: (1)求证:A 1C ⊥平面DBC ; (2)在四面体中能否存在四个直角三角形? 课堂小结 1 1

空间点线面位置关系及平行判定及性质

空间点线面位置关系及平行判定及性质 【知识点梳理】 1.平面的基本性质公理1 如果一条直线上的两个点都在一个平面内,那么这条直线上的所有点都在这个平面内 ,,A B l A B α∈? ?∈? l α?? 2.平面的基本性质公理2(确定平面的依据) 经过不在一条直线上的三个点,有且只有一个平面 3.平面的基本性质公理2的推论 (1)经过一条直线和直线外的一点,有且只有一个平面 (2)经过两条相交直线,有且只有一个平面 (3)经过两条平行直线,有且只有一个平面 4.平面的基本性质公理3 如果两个不重合的平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是一条直线 A A αβ∈??∈?? l A l αβ=∈ 5.异面直线的定义与判定 (1)定义:不同在任何一个平面内的两条直线,既不相交也不平行 (2)判定:过平面外一点与平面内一点的直线,与平面内不经过该点的直线是异面直线 6.直线与直线平行 (1)平行四边形ABCD (矩形,菱形,正方形) 对边平行且相等,//AB CD ,//BC AD (2)三角形的中位线 ,E F 分别是,AB AC 的中点 中位线平行且等于底边的一半,//EF BC (3)线面平行的性质定理 如果一条直线和一个平面平行,经过这条直线的一个平面和这个平面相交,那么这条直线和交线平行 //l α,l β?,//m l m α β=? (4)面面平行的性质定理 如果两个平行的平面同时与第三个平面相交,则它们的交线平行 //αβ,a α γ=,//b a b βγ=? (5)线面垂直的性质定理

如果两条直线同垂直于一个平面,则这两条直线平行 a α⊥,// b a b α⊥? 7.直线与平面平行 (1)线面平行的判定定理 如果不在平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行 a α?,b α?,////a b a α? (2)面面平行的性质定理 如果两个平面互相平行,那么一个平面内的任一直线都平行于另一个平面 //αβ,//a a αβ?? 8.平面与平面平行 (1)面面平行的判定定理 如果一个平面内有两条相交直线,分别平行于另一个平面,那么这两个平面平行 a α?, b α?,a b A =,//a β,////b βαβ? (2)垂直于同一直线的两个平面互相平行 a α⊥,//a βαβ⊥? 【典型例题】 题型一:点线面的关系用符号表示、判断异面直线 例1.给定下列四个命题 ①,,//,////a b a b ααββαβ??? ②,a a αβαβ⊥??⊥ ③,//l m l n m n ⊥⊥? ④,,,l a a l a αβα βαβ⊥=?⊥?⊥ 其中,为真命题的是 A. ①和② B. ②和③?? C. ③和④?? D. ②和④ 变式1. 给出下列关于互不相同的直线,,l m n 和平面,,αβγ的三个命题: ①若,l m 为异面直线,,l m αβ??,则//αβ; ②若//,,l m αβαβ??,则//l m ; ③若,,,//l m n l α ββγγαγ===,则//m n 其中真命题的个数为 A .3 B.2 C.1 D.0

空间点线面之间位置关系知识点总结

高中空间点线面之间位置关系知识点总结 第一章 空间几何体 (一)空间几何体的结构特征 (1)多面体——由若干个平面多边形围成的几何体. 旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。其中,这条定直线 称为旋转体的轴。 (2)柱,锥,台,球的结构特征 1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这 些面所围成的几何体叫做棱柱。 1.2圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱. 2.1棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。 2.2圆锥——以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆锥。 3.1棱台——用一个平行于底面的平面去截棱锥,我们把截面与底面之间的部分称为棱台. 3.2圆台——用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台. 4.1球——以半圆的直径所在直线为旋转轴,半圆旋转一周形成的旋转体叫做球体,简称球. (二)空间几何体的三视图与直观图 1.投影:区分中心投影与平行投影。平行投影分为正投影和斜投影。 2.三视图——正视图;侧视图;俯视图;是观察者从三个不同位置观察同一个空间几何体而画出的图形;画三视图的原则: 长对齐、高对齐、宽相等 3.直观图:直观图通常是在平行投影下画出的空间图形。 4.斜二测法:在坐标系'''x o y 中画直观图时,已知图形中平行于坐标轴的线段保持平行性不变,平行于x 轴(或在x 轴上)的线段保持长度不变,平行于y 轴(或在y 轴上)的线段长度减半。 重点记忆:直观图面积=原图形面积 (三)空间几何体的表面积与体积 1、空间几何体的表面积 ①棱柱、棱锥的表面积: 各个面面积之和 ②圆柱的表面积 ③圆锥的表面积2S rl r ππ=+ ④圆台的表面积22S rl r Rl R ππππ=+++ ⑤球的表面积24S R π= ⑥扇形的面积公式213602 n R S lr π==扇形(其中l 表示弧长,r 表示半径) 2、空间几何体的体积 ①柱体的体积 V S h =?底 ②锥体的体积 1 3 V S h =?底 ③台体的体积 1 )3 V S S h =+ ?下上( ④球体的体积 343 V R π= 第二章 直线与平面的位置关系 2.1空间点、直线、平面之间的位置关系 2.1.1 1 平面含义:平面是无限延展的 2 平面的画法及表示 (1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图) (2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。 3 三个公理: (1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为 A ∈L B ∈L => L α A ∈α B ∈α 公理1作用:判断直线是否在平面内 (2)公理2:过不在一条直线上的三点,有且只有一个平面。 符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。 公理 2作用:确定一个平面的依据。 (3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。 符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L 公理3作用:判定两个平面是否相交的依据 2.1.2 空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系: 相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点; 异面直线: 不同在任何一个平面内,没有公共点。 2 公理4:平行于同一条直线的两条直线互相平行。 符号表示为:设a 、b 、c 是三条直线 a ∥b c ∥b 强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。 公理4作用:判断空间两条直线平行的依据。 3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补 4 注意点: ① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, ); ③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ; ④ 两条直线互相垂直,有共面垂直与异面垂直两种情形; ⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。 2.1.3 — 2.1.4 空间中直线与平面、平面与平面之间的位置关系 1、直线与平面有三种位置关系: D C B A α L A · α C · B · A · α P · α L β 共面直线 =>a ∥c 2π2π2π2r rl S +=

直线与平面垂直的判定导学案

数学必修2 导学案 ……………………… ..装…………………… 订…………………… 线………………………. 直线与平面垂直的判定导学案导学案(B) 日期______编写______审定_______ 一、学习目标: 1.掌握直线与平面垂直的判定定理及应用 2. 求直线与平面所成的角 二、重点、难点 1.直线与平面垂直的判定 2.灵活应用直线与平面垂直判定定理解决问题 三、知识链接 1、三角形的外心、垂心的性质 四、学法指导: 空间中直线与平面之间的位置关系中,垂直是一种非常重要的位置关 系,它是空间问题平面化的典范。线面垂直是立体几何的核心。本节课要灵 活应用直线与平面垂直判定定理解决问题 五、学习内容 一、新知探究 阅读教材p64-p67页,并独立思考下列问题: ①根据课本的实验探究直线与平面垂直的定义和画法;如果一条直线垂直于 一个平面的无数条直线,那么这条直线是否与这个平面垂直?举例说明. ②探究直线与平面垂直的判定定理. ③用三种语言描述直线与平面垂直的判定定理. ④探究斜线在平面内的射影,讨论直线与平面所成的角. 二、探究结果 1、直线与平面垂直的定义和画法: 2、直线和平面垂直的判定定理(用三种语言表示) 3、斜线在平面内的射影:直线和平面所成的角: 4动手做课本例一、例二并解答p67页练习 三、应用示例思路1 例一变式训练:如图,已知点P为平面ABC外一点,PA⊥BC,PC⊥AB,求 证:PB⊥AC. 点评:欲证线面垂直需要转化为证明线线垂直,欲证线线垂直往往转化为线 面垂直.用符号语言证明问题显得清晰、简洁 例二变式训练:如图10,四面体A—BCD的棱长都相等,Q是AD的中点, 求CQ与平面DBC所成的角的正弦值

相关文档
相关文档 最新文档