文档视界 最新最全的文档下载
当前位置:文档视界 › 铑催化文献一篇

铑催化文献一篇

Spirocyclic Sultam and Heterobiaryl Synthesis through Rh-Catalyzed Cross-Dehydrogenative Coupling of N ?Sulfonyl Ketimines and Thiophenes or Furans

Shu-Tao Mei,?Hong-Wen Liang,?Bin Teng,Nan-Jin Wang,Li Shuai,Yi Yuan,Ying-Chun Chen,and Ye Wei *

College of Pharmacy,Third Military Medical University,Chongqing 400038,China

*

Supporting Information

assist C ?H activation.A number of the coupled products were transformations.dehydrogenative coupling (CDC)represents a highly important synthetic strategy for the construction of a valuable biaryl sca ?old 1that is ubiquitous in a large number of molecules,such as pharmaceuticals,agrochemicals,and functional materi-als.2Despite the signi ?cance of CDC toward biaryls,one of the great challenges posed by this synthetic method is controlling reaction chemoselectivity to avoid the undesired homocoupling byproducts.To this end,a few protocols have been developed,including the utilization of an excess of arenes 3and two electronically distinctly di ?erent substrates.4,5Another useful and commonly used strategy is the use of coordinating functionalities as directing groups,which not only can improve both the chemoselectivity and regioselectivity of the CDC but also may provide a platform for the construction of structurally interesting compounds by means of further synthetic trans-formations.6In this respect,pyridine,amide,and carbamate groups have shown good reactivity.In spite of these advances,the scope remains relatively narrow.Therefore,it is highly desirable to exploit a wide range of arenes to the CDC for the rapid construction of biaryls and related compounds.

Rhodium(III)complexes,[Cp *RhCl 2]2in particular,have received increasing attention in C ?H functionalization because of their high catalytic e ?ciency and good functional group compatibility.7Many reports have demonstrated their potential in oxidative Heck reactions 8and C ?H additions to unsaturated bonds.9In sharp contrast,the Rh(III)-catalyzed cross-dehydro-genative arylation remains underdeveloped.10Glorius recently reported an elegant CDC protocol which revealed that arenes bearing an amide functionality can be coupled with halogen-substituted benzenes in the presence of [Cp *RhCl 2]2.10a Since then,pyridine,10c carboxylic acid,10f ?h and thioether 10e were also explored for the Rh(III)-catalyzed cross-dehydrogenative arylation.However,the type of the directing groups remains rather narrow (Scheme 1a).

Imines are not only useful reagents in a wide variety of organic transformations but are also versatile ligands in organo-metallics.11As such,the imine-assisted C ?H functionalization is highly signi ?cant to synthetic and organometallic chemists.Although imines have been used in some C ?H functionaliza-tions,12there is no example,to the best of our knowledge,of the cross-dehydrogenative arylation directed by the imine group.As a consequence,we became interested in exploiting the imine functionality as a directing group in cross-dehydrogenative arylation for the biaryl synthesis.Herein,we disclose a Rh(III)-catalyzed approach for the rapid assembly of an array of spirocyclic sultams and heterobiaryls through cross-dehydrogen-ative heteroarylation of N -sulfonyl ketimines with thiophenes or furans (Scheme 1b).In the reactions,N -sulfonyl imine,a weak coordinating group,acts as an e ?cient directing group to assist C ?H cleavage.Note that such a C ?H/C ?H coupling method is an extremely rare example for the construction of structurally interesting yet synthetically challenging spirocyclic sultams that have potential synthetic usefulness and biological activities.13

Received:January 20,2016

Scheme 1.Rh(III)-Catalyzed Cross-Dehydrogenative Arylation with the Assistance of Directing Groups

We commenced our studies by investigating the reaction between N -sulfonylketimine 1a and 2-methylthiophene 2a with [Cp *RhCl 2]2as the catalyst.The coupling reaction did not a ?ord the expected biaryl product but instead resulted in an interesting spirocyclic sultam.After systematically examining the reaction parameters,we identi ?ed an e ?ective catalytic system containing [Cp *RhCl 2]2(2.5mol %),AgSbF 6(10mol %),and PhI(OAc)2(4equiv),which enable the coupling reaction to take place at 140°C in dioxane to furnish the spirocyclic sultam 3aa in 82%yield (entry 1,Table 1).Some key results are summarized in Table 1.The use of AgSbF 6is crucial to the transformation since only a trace amount of 3aa was observed without such additive (entry 2).The commonly used oxidants in the Rh(III)catalysis,Cu(OAc)2,and Ag 2CO 3were totally not e ?ective,and the ketimine 1a was recovered (entry 3).The reaction only gave rise to 3aa in 16%yield in the presence of 2equiv of K 2S 2O 8(entry 4).In addition,reducing the amount of PhI(OAc)2from 4to 2equiv and lowering the temperature from 140to 120°C led to 56and 66%yields,respectively (entries 5and 6).The addition of inorganic base or carboxylic acid,such as K 2CO 3,NaOAc,PhCOOH,and HOAc,all exhibited negative results (entries 7?10).A screening of other solvents indicated that the reaction occurred sluggishly in toluene and DME (entries 11and 12)and did not take place in DCE,t -AmylOH,MeCN,and DMSO (entry 13).

Under the optimized reaction conditions,we next explored the substrate scope of Rh(III)-catalyzed CDC for the synthesis of various spirocyclic sultams (Scheme 2).14The N -sulfonylketi-mines bearing electron-donating and -withdrawing groups on the ketimine aryl ring displayed good reactivity,providing the corresponding products in 56?82%yields (3ba ?ea ).In the case of a substrate bearing a methyl substituent at the meta -position of the ketimine aryl ring,C ?C bond formation took place exclusively at the less hindered site (3fa ).In addition,naphthalene-and 3,4-(methylenedioxy)benzene-derived keti-mines also reacted with 2a to produce the target products 3ga and 3ha in 69and 80%yields,respectively.Unfortunately,the sterically hindered o -methyl-substituted ketimine was unreactive.Furthermore,ketimines with methyl,chloro,and methoxy groups on the isothiazole ring were also examined.The reactions occurred smoothly to furnish the desired products in moderate to good yields (3ia ?ka ).The structure of 3ja was unambiguously con ?rmed by single-crystal X-ray di ?raction.15In addition,2-ethylthiophene and 2-butylthiophene were also suitable for the reactions,giving rise to 3ab and 3ac in 68and 73%yields,respectively.Note that this method is suitable for gram scale,which was demonstrated by a 10mmol scale reaction between 1a and 2a .

During the course of our investigation of the substrate scope with regard to thiophenes,we were surprised to ?nd that the thiophenes with an electron-withdrawing group,such as chloro,bromo,and iodo,reacted with 1a to generate the corresponding heterobiaryls instead of spirocyclic sultams (3ad ?af ,Scheme 3).Additionally,the heteroarylated products were also observed in the coupling reactions between thiophene-derived ketimines and 2a ,which delivered 3la and 3ma in 74and 77%yields,respectively.Besides ketimines derived from saccharins,cyclic Table 1.Optimization of Reaction Conditions

entry change from the standard conditions conv of 1a b

(%)

yield b (%)1no change

8583(82)c 2without AgSbF 6

5trace 32equiv of Cu(OAc)2or Ag 2CO 3instead of PhI(OAc)2

0042equiv of K 2S 2O 8instead of PhI(OAc)2181652equiv of PhI(OAc)2used 57566120°C instead of 140°C 67667addition of 1equiv of K 2CO 333318addition of 1equiv of NaOAc 2trace 9addition of 1equiv of PhCOOH 575610addition of 1equiv of HOAc 494811toluene instead of dioxane 181612DME instead of dioxane

363413

DCE,t -AmylOH,MeCN or DMSO instead of dioxane

a

Reactions were performed on a 0.2mmol scale.b Determined by 1H NMR using 1,1,2,2-tetrachloroethane as an internal standard.c Isolated yield.

Scheme 2.Rh-Catalyzed Spirocyclic Sultam Synthesis

a

a

Reactions were performed on a 0.2mmol scale.Isolated yields are indicated.

Scheme

3.Rh-Catalyzed Biaryl Synthesis a

Reactions were performed on a 0.2mmol scale.Isolated yields are indicated.

ketimine 1n was also a suitable substrate in the C ?H heteroarylation reaction,producing 3na in 55%yield.The reaction was also amenable to furan derivatives.Thus,the corresponding biaryls were formed in synthetically useful yields for 2-methylfuran and 2-ethylfuran (3ag and 3ah ).Unfortu-nately,thiophenes and furans with substituents on the C3position were unreactive.

The usefulness of the products obtained in the Rh(III)-catalyzed cross-dehydrogenative coupling was demonstrated by the following synthetic transformations (Scheme 4).The spirocyclic sultam 3aa was rapidly converted into sulfonamide 4in good yield with sodium naphthalide (Scheme 4a).In addition,a bis-substituted N -sulfonylketimine 5was generated in 61%yield using C ?H ole ?nation method developed by our group (Scheme 4b).8j Moreover,the tolerance of bromo functionality provides us an opportunity to construct C ?N bond.Thus,a morpholine-containing biaryl was obtained through Cu-catalyzed cross-coupling reaction (Scheme 4c).16To gain more insight into the reaction mechanism,several experiments were conducted (Scheme 5).First,an H/D

exchange experiment between 1a and 10equiv of D 2O suggested that a reversible C ?H cleavage was involved in the reaction because 18%D was introduced into the two ortho positions of the ketimine aryl ring (Scheme 5a).Second,an intramolecular competition reaction between 1a and 1a -d 5showed a KIE of 1.2,illustrating that the rate-limiting step does not involve the C ?H cleavage (Scheme 5b).17Third,a biaryl compound 7was converted into the spirocyclic sultam 3ac in the presence of Lewis acid,such as AgSbF 6and Zn(OTf)2(Scheme 5c).As such,Lewis acid-mediated Friedel ?Crafts type cyclization might be involved in the transformation of biaryl compounds into spirocyclic sultams.

On the basis of our preliminary mechanistic studies,we suggest a possible catalytic cycle to involve an initial formation a ?ve-membered rhodacycle species A by chelation-assisted C ?H activation (Scheme 6).18This complex then reacts with thiophene 2to deliver an intermediate B by C ?H activation once again.Subsequently,the species B occurs reductive elimination to produce biaryl product 3and a low-valent Rh(I)complex.The latter is ?nally oxidized into Rh(III)catalyst with the aid of PhI(OAc)2to ful ?ll the catalytic cycle.Depending on the structural and electronic property,3could be converted into spirocyclic sultam 3′through Friedel ?Crafts-type cyclization.In summary,we have realized a Rh(III)-catalyzed cross-dehydrogenative coupling method to prepare various structurally interesting and synthetically useful spirocyclic sultams and heterobiaryls from readily accessible N -sulfonylketimines and thiophenes or furans.In the reactions,the N -sulfonylimine functionality is employed as an e ?ective directing group for C ?H activation.Our ongoing studies focus on the use of the CDC strategy to construct additional heterocyclic compounds.

■ASSOCIATED CONTENT

*

Supporting Information The Supporting Information is available free of charge on the ACS Publications website at DOI:10.1021/https://www.docsj.com/doc/5b5612292.html,lett.6b00197.

Detailed experimental procedures,characterization of products,and NMR spectra (PDF )

AUTHOR INFORMATION

Corresponding Author

*E-mail:weiye712@https://www.docsj.com/doc/5b5612292.html, .

Author Contributions

?

S.-T.M.and H.-W.L.contributed equally.

Notes

The authors declare no competing ?nancial interest.

■ACKNOWLEDGMENTS

Financial support from the NSFC (No.21302220),the State Key Laboratory of Structural Chemistry (No.20150009),and the Third Military Medical University is greatly appreciated.

REFERENCES

(1)For recent reviews,see:(a)McGlacken,G.P.;Bateman,L.M.Chem.Soc.Rev.2009,38,2447.(b)Chen,X.;Engle,K.M.;Wang,D.-H.;Yu,J.-Q.Angew.Chem.,Int.Ed.2009,48,5094.(c)Ackermann,L.;Vicente,R.;Kapdi,A.R.Angew.Chem.,Int.Ed.2009,48,9792.

Scheme 4.Synthetic Transformations

Scheme 5.Mechanistic Studies

Scheme 6.Hypothesis for Rh-Catalyzed Spirocyclic Sultam and Biaryl Synthesis

(d)Daugulis,O.Top.Curr.Chem.2010,292,57.(e)Ashenhurst,J.A. Chem.Soc.Rev.2010,39,540.(f)Colby,D.A.;Bergman,R.G.;Ellman, J.A.Chem.Rev.2010,110,624.(g)Lyons,T.W.;Sanford,M.S.Chem. Rev.2010,110,1147.(h)Zhao,D.;You,J.;Hu,C.Chem.-Eur.J.2011, 17,5466.(i)Cho,S.H.;Kim,J.Y.;Kwak,J.;Chang,S.Chem.Soc.Rev. 2011,40,5068.(j)Liu,C.;Zhang,H.;Shi,W.;Lei,A.Chem.Rev.2011, 111,1780.(k)Yeung,C.S.;Dong,V.M.Chem.Rev.2011,111,1215. (l)Newhouse,T.;Baran,P.S.Angew.Chem.,Int.Ed.2011,50,3362. (m)Sun,C.-L.;Li,B.-J.;Shi,Z.-J.Chem.Rev.2011,111,1293. (n)Wencel-Delord,J.;Dro g e,T.;Liu,F.;Glorius,F.Chem.Soc.Rev. 2011,40,4740.(o)McMurray,L.;O’Hara,F.;Gaunt,M.J.Chem.Soc. Rev.2011,40,1885.(p)Zhang,C.;Tang,C.-H.;Jiao,N.Chem.Soc.Rev. 2012,41,3464.(q)Yamaguchi,J.;Yamaguchi,A.D.;Itami,K.Angew. Chem.,Int.Ed.2012,51,8960.(r)Zhang,M.;Zhang,Y.;Jie,X.;Zhao, H.;Li,G.;Su,https://www.docsj.com/doc/5b5612292.html,.Chem.Front.2014,1,843.(s)Wu,Y.;Wang,J.; Mao,F.;Kwong,F.Y.Chem.-Asian J.2014,9,26.

(2)Hassan,J.;Se v ignon,M.;Gozzi,C.;Schulz,E.;Lemaire,M.Chem. Rev.2002,102,1359.

(3)(a)Li,R.;Jiang,L.;Lu,https://www.docsj.com/doc/5b5612292.html,anometallics2006,25,5973.

(b)Stuart,D.R.;Fagnou,K.Science2007,316,1172.(c)Dwight,T.A.; Rue,N.R.;Charyk,D.;Josselyn,R.;DeBoef,https://www.docsj.com/doc/5b5612292.html,.Lett.2007,9,3137.

(d)Cho,S.H.;Hwang,S.J.;Chang,S.J.Am.Chem.Soc.2008,130, 9254.

(4)(a)Potavathri,S.;Dumas,A.S.;Dwight,T.A.;Naumiec,G.R.; Hammann,J.M.;DeBoef,B.Tetrahedron Lett.2008,49,4050.(b)He, C.-Y.;Fan,S.;Zhang,X.J.Am.Chem.Soc.2010,132,12850.(c)Wei,Y.; Su,W.J.Am.Chem.Soc.2010,132,16377.(d)Li,H.;Liu,J.;Sun,C.-L.; Li,B.-J.;Shi,https://www.docsj.com/doc/5b5612292.html,.Lett.2011,13,276.(e)Cambeiro,X.C.;Ahlsten, N.;Larrosa,I.J.Am.Chem.Soc.2015,137,15636.

(5)(a)Kita,Y.;Morimoto,K.;Ito,M.;Ogawa,C.;Goto,A.;Dohi,T.J. Am.Chem.Soc.2009,131,1668.(b)Xi,P.;Yang,F.;Qin,S.;Zhao,D.; Lan,J.;Gao,G.;Hu,C.;You,J.J.Am.Chem.Soc.2010,132,1822.

(c)Han,W.;Mayer,P.;Ofial,A.R.Angew.Chem.,Int.Ed.2011,50, 2178.(d)Wang,Z.;Li,K.;Zhao,D.;Lan,J.;You,J.Angew.Chem.,Int. Ed.2011,50,5365.(e)Do,H.-Q.;Daugulis,O.J.Am.Chem.Soc.2011, 133,13577.(f)Ito,M.;Kubo,H.;Itani,I.;Morimoto,K.;Dohi,T.;Kita, Y.J.Am.Chem.Soc.2013,135,14078.(g)Chen,X.;Huang,X.;He,Q.; Xie,Y.;Yang,https://www.docsj.com/doc/5b5612292.html,mun.2014,50,3996.(h)Liu,W.;Yu,X.;Li, Y.;Kuang,https://www.docsj.com/doc/5b5612292.html,mun.2014,50,9291.

(6)(a)Hull,K.L.;Sanford,M.S.J.Am.Chem.Soc.2007,129,11904.

(b)Li,B.-J.;Tian,S.-L.;Fang,Z.;Shi,Z.-J.Angew.Chem.,Int.Ed.2008, 47,1115.(c)Brasche,G.;Garcia-Fortanet,J.;Buchwald,https://www.docsj.com/doc/5b5612292.html,.Lett. 2008,10,2207.(d)Zhao,X.;Yeung,C.S.;Dong,V.M.J.Am.Chem.Soc. 2010,132,5837.(e)Wang,G.-W.;Yuan,T.-T.;Li,D.-D.Angew.Chem., Int.Ed.2011,50,1380.(f)Kitahara,M.;Umeda,N.;Hirano,K.;Satoh, T.;Miura,M.J.Am.Chem.Soc.2011,133,2160.(g)Wang,X.;Leow,D.; Yu,J.-Q.J.Am.Chem.Soc.2011,133,13864.(h)Karthikeyan,J.;Cheng, C.-H.Angew.Chem.,Int.Ed.2011,50,9880.(i)Nishino,M.;Hirano,K.; Satoh,T.;Miura,M.Angew.Chem.,Int.Ed.2013,52,4457.(j)Zhao,S.; Yuan,J.;Li,Y.-C.;Shi,https://www.docsj.com/doc/5b5612292.html,mun.2015,51,12823.

(7)(a)Satoh,T.;Miura,M.Chem.-Eur.J.2010,16,11212.

(b)Patureau,F.W.;Wencel-Delord,J.;Glorius,F.Aldrichimica Acta 2012,45,31.(c)Song,G.;Wang,F.;Li,X.Chem.Soc.Rev.2012,41, 3651.(d)Kuhl,N.;Schro d er,N.;Glorius,F.Adv.Synth.Catal.2014, 356,1443.(e)Song,G.;Li,X.Acc.Chem.Res.2015,48,1007.

(8)(a)Ueura,K.;Satoh,T.;Miura,https://www.docsj.com/doc/5b5612292.html,.Lett.2007,9,1407.

(b)Patureau,F.W.;Glorius,F.J.Am.Chem.Soc.2010,132,9982.

(c)Park,S.H.;Kim,J.Y.;Chang,https://www.docsj.com/doc/5b5612292.html,.Lett.2011,13,2372.(d)Gong, T.-J.;Xiao,B.;Liu,Z.-J.;Wan,J.;Xu,J.;Luo,D.-F.;Fu,Y.;Liu,https://www.docsj.com/doc/5b5612292.html,. Lett.2011,13,3235.(e)Patureau,F.W.;Nimphius,C.;Glorius,https://www.docsj.com/doc/5b5612292.html,. Lett.2011,13,6346.(f)Patureau,F.W.;Besset,T.;Glorius,F.Angew. Chem.,Int.Ed.2011,50,1064.(g)Li,H.;Li,Y.;Zhang,X.-S.;Chen,K.; Wang,X.;Shi,Z.-J.J.Am.Chem.Soc.2011,133,15244.(h)Wang,C.; Chen,H.;Wang,Z.;Chen,J.;Huang,Y.Angew.Chem.,Int.Ed.2012,51, 7242.(i)Zhang,T.;Wu,L.;Li,https://www.docsj.com/doc/5b5612292.html,.Lett.2013,15,6294.(j)Wang, N.-J.;Mei,S.-T.;Shuai,L.;Yuan,Y.;Wei,https://www.docsj.com/doc/5b5612292.html,.Lett.2014,16,3040. (k)Yang,X.-F.;Hu,X.-H.;Feng,C.;Loh,https://www.docsj.com/doc/5b5612292.html,mun.2015, 51,2532.(l)Yu,S.;Liu,S.;Lan,Y.;Wan,B.;Li,X.J.Am.Chem.Soc. 2015,137,1623.

(9)(a)Fukutani,T.;Umeda,N.;Hirano,K.;Satoh,T.;Miura,M. https://www.docsj.com/doc/5b5612292.html,mun.2009,5141.(b)Guimond,N.;Fagnou,K.J.Am.Chem. Soc.2009,131,12050.(c)Hyster,T.K.;Rovis,T.J.Am.Chem.Soc. 2010,132,10565.(d)Yang,L.;Correia,C.A.;Li,https://www.docsj.com/doc/5b5612292.html,.Biomol. Chem.2011,9,7176.(e)Tsai,A.S.;Tauchert,M.E.;Bergman,R.G.; Ellman,J.A.J.Am.Chem.Soc.2011,133,1248.(f)Li,Y.;Li,B.-J.;Wang, W.-H.;Huang,W.-P.;Zhang,X.-S.;Chen,K.;Shi,Z.-J.Angew.Chem., Int.Ed.2011,50,2115.(g)Huang,J.-R.;Dong,L.;Han,B.;Peng,C.; Chen,Y.-C.Chem.-Eur.J.2012,18,8896.(h)Tan,X.;Liu,B.;Li,X.;Li, B.;Xu,S.;Song,H.;Wang,B.J.Am.Chem.Soc.2012,134,16163.

(i)Chan,W.-W.;Lo,S.-F.;Zhou,Z.;Yu,W.-Y.J.Am.Chem.Soc.2012, 134,13565.(j)Yang,L.;Qian,B.;Huang,H.Chem.-Eur.J.2012,18, 9511.(k)Dong,L.;Qu,C.-H.;Huang,J.-R.;Zhang,W.;Zhang,Q.-R.; Deng,J.-G.Chem.-Eur.J.2013,19,16537.(l)Wang,C.;Sun,H.;Fang, Y.;Huang,Y.Angew.Chem.,Int.Ed.2013,52,5795.(m)Dong,W.; Wang,L.;Parthasarathy,K.;Pan,F.;Bolm,C.Angew.Chem.,Int.Ed. 2013,52,11573.(n)Qian,Z.-C.;Zhou,J.;Li,B.;Hu,F.;Shi,https://www.docsj.com/doc/5b5612292.html,. Biomol.Chem.2014,12,3594.(o)Fukui,Y.;Liu,P.;Liu,Q.;He,Z.-T.; Wu,N.-Y.;Tian,P.;Lin,G.-Q.J.Am.Chem.Soc.2014,136,15607. (p)Zhou,M.-B.;Pi,R.;Hu,M.;Yang,Y.;Song,R.-J.;Xia,Y.-Z.;Li,J.-H. Angew.Chem.,Int.Ed.2014,53,11338.(q)Pham,M.V.;Cramer,N. Angew.Chem.,Int.Ed.2014,53,14575.(r)Yang,Y.;Wang,X.;Li,Y.; Zhou,B.Angew.Chem.,Int.Ed.2015,54,15400.(s)Li,D.Y.;Chen,H. J.;Liu,P.N.Angew.Chem.,Int.Ed.2016,55,373.(t)Pham,M.V.;

Cramer,N.Chem.-Eur.J.2016,22,2270.

(10)(a)Wencel-Delord,J.;Nimphius,C.;Patureau,F.W.;Glorius,F. Angew.Chem.,Int.Ed.2012,51,2247.(b)Kuhl,N.;Hopkinson,M.N.; Glorius,F.Angew.Chem.,Int.Ed.2012,51,8230.(c)Dong,J.;Long,Z.; Song,F.;Wu,N.;Guo,Q.;Lan,J.;You,J.Angew.Chem.,Int.Ed.2013, 52,580.(d)Shang,Y.;Jie,X.;Zhao,H.;Hu,P.;Su,https://www.docsj.com/doc/5b5612292.html,.Lett.2014, 16,416.(e)Zhang,X.;Zhang,Y.-F.;Li,Z.-W.;Luo,F.-X.;Shi,Z.-J. Angew.Chem.,Int.Ed.2015,54,5478.(f)Zhang,Y.;Zhao,H.;Zhang, M.;Su,W.Angew.Chem.,Int.Ed.2015,54,3817.(g)Gong,F.;Zeng,H.; Zhou,F.;Li,C.-J.Angew.Chem.,Int.Ed.2015,54,5718.(h)Qin,X.;Li, X.;Huang,Q.;Liu,H.;Wu,D.;Guo,Q.;Lan,J.;Wang,R.;You,J.Angew. Chem.,Int.Ed.2015,54,7167.

(11)(a)Herna n dez-Molina,R.;Mederos,A.Acyclic and Macrocyclic Schi?Base Ligands.In Comprehensive Coordination Chemistry II; McCleverty,J.A.,Meyer,T.J.,Eds.;Elsevier Pergamon:Amsterdam, 2004;Vol.1,p411.(b)Belowich,M.E.;Stoddart,J.F.Chem.Soc.Rev. 2012,41,2003.

(12)For reviews,see:(a)Ritleng,V.;Sirlin,C.;Pfeffer,M.Chem.Rev. 2002,102,1731.(b)Park,Y.J.;Park,J.-W.;Jun,C.-H.Acc.Chem.Res. 2008,41,222.(c)Colby,D.A.;Tsai,A.S.;Bergman,R.G.;Ellman,J.A. Acc.Chem.Res.2012,45,814.(d)Gao,K.;Yoshikai,N.Acc.Chem.Res. 2014,47,1208.(e)Hartwig,J.F.J.Am.Chem.Soc.2016,138,2.

(13)(a)Davis,F.A.;Chen,B.C.Chem.Rev.1992,92,919.(b)Wells,

G.J.;Tao,M.;Josef,K.A.;Bihovsky,R.J.Med.Chem.2001,44,3488.

(c)Bihovsky,R.;Tao,M.;Mallamo,J.P.;Wells,G.J.Bioorg.Med.Chem. Lett.2004,14,1035.(d)Nishimura,T.;Ebe,Y.;Hayashi,T.J.Am.Chem. Soc.2013,135,2092.(e)Hung,C.-H.;Gandeepan,P.;Cheng,C.-H. ChemCatChem2014,6,2692.(f)Ebe,Y.;Hatano,M.;Nishimura,T. Adv.Synth.Catal.2015,357,1425.

(14)Unsuccessful imine substrates are shown in the Supporting Information(Scheme S1).

(15)CCDC1439383(3ja).

(16)Thijs,L.;Zhu,J.;Overeem,A.;Keltjens,R.PCT Int.Appl. 2011110219,Sep15,2011.

(17)Simmons,E.M.;Hartwig,J.F.Angew.Chem.,Int.Ed.2012,51, 3066.

(18)Li,L.;Brennessel,W.W.;Jones,https://www.docsj.com/doc/5b5612292.html,anometallics2009,28, 3492.

相关文档