文档视界 最新最全的文档下载
当前位置:文档视界 › 等离子弧表面强化机器人实验研究

等离子弧表面强化机器人实验研究

等离子弧表面强化机器人实验研究
等离子弧表面强化机器人实验研究

等离子弧表面强化机器人实验研究

摘要:基于等离子弧表面淬火的工艺要求,设计出四自由度表面强化机器人。采用运动控制卡进行运动控制,在VC++环境下进行机器人的轨迹规划,通过改变不同的运动轨迹,等离子参数进行实验,将实验结果进行比较,找到最佳的方案,具备一定的研究意义。

关键词:机器人;等离子弧淬火;硬度

引言

等离子弧是一种仅次于激光的具有高能量高密度等特性能进行工件表面处理的热源。具有低成本,小体积,高热效率等特点[1] .

利用这些特点可实现对零件表面,增加零件表面硬度以及提高表面耐磨性。机器人在近年来也越来越多的应用在工业、农业等领域,机器人与等离子设备的结合能够解决以往淬火的不便之处。同时机器人可以利用其高灵活,对大型复杂零件表面进行整体局部淬火。因此本实验具有广阔的前景。

1.等离子弧表面强化技术

等离子弧表面淬火是一种新型的淬火方式,对于那些常用淬火方式不便于加工的地方,等离子弧表面淬火便能够体现出独有的优势。等离子弧表面淬火利用高能量热源对工件表面淬火,而且仅通过工件自身冷却达到淬火效果。对于几何形状简单的大型零件来说,等离子弧表面淬火具有其它淬火方式不具有的优势;同时对于大模数的齿轮齿面、凸轮轴、叶轮等复杂几何形状表面的零件淬火也具有一定的优势。目前等离子弧表面淬火的应用还不是很多,主要因为等离子淬火工艺参数较多,控制起来比较困难。随着控制技术的发展等离子淬火在逐渐正朝着自动化方向发展,特别在机械零件淬火应用也在与日俱增。

2.等离子机器人设计

2.1 等离子表面强化机器人的结构设计

等离子弧表面强化机器人结构采用笛卡尔坐标系与关节坐标系结合的方式。大臂关节采用电机带动蜗杆减速器;小臂关节由电机带动蜗杆减速器通过同步齿形带驱动小臂运动,蜗杆减速器可以实现大传动且能实现机械自锁功能,防止意外事故的发生。上面关节由电机带动滚珠丝杠实现运动;等离子等离子喷枪通过结构件连接在机器人上。机器人装有8个限位开关,以防止运动超程。本实验中的等离子设备选用美国飞马特等离子焊机。

2.2 等离子表面强化机器人的控制系统设计

材料的等离子弧焊接

材料的等离子弧焊接 索引:穿孔型等离子弧焊接最适于焊接厚度3~8mm不锈钢、厚度12mm 以下钛合金、板厚2~6mm低碳或低合金结构钢以及铜、黄铜、镍及镍合金的对接焊缝。这一厚度范围内可不开坡口,不加填充金属,不用衬垫的条件下实现单面焊双面成形。厚度大于上述范围时可采用V 形坡口多层焊。 关键词: 高温合金, 铝及铝合金, 钛及钛合金, 银与铂, 等离子弧焊接 穿孔型等离子弧焊接最适于焊接厚度3~8mm不锈钢、厚度12mm 以下钛合金、板厚 2~6mm低碳或低合金结构钢以及铜、黄铜、镍及镍合金的对接焊缝。这一厚度范围内可不开坡口,不加填充金属,不用衬垫的条件下实现单面焊双面成形。厚度大于上述范围时可采用V形坡口多层焊。

1.高温合金的等离子弧焊接 用等离子弧焊焊接固溶强化和Al、Ti含量较低的时效强化高温合金时,可以填充焊丝也可以不加焊丝,均可以获得良好质量的焊缝。一般厚板采用小孔型等离子弧焊,薄板采用熔透型等离子弧焊,箔材用微束等离子弧焊。焊接电源采用陡降外特性的直流正极性,高频引弧,焊枪的加工和装配要求精度较高,并有很高的同心度。等离子气流和焊接电流均要求能递增和衰减控制。 焊接时,采用氩和氩中加适量氢气作为保护气体和等离子气体,加入氢气可以使电弧功率增加,提高焊接速度。氢气加入量一般在5%左右,要求不大于15%。焊接时是否采用填充焊丝根据需要确定。选用填充焊丝的牌号与钨极惰性气体保护焊的选用原则相同。 高温合金等离子弧焊的工艺参数与焊接奥氏体不锈钢的基本相同,应注意控制焊接热输入。镍基高温合金小孔法自动等离子弧焊的工艺参数见表1-1。在焊接过程中应控制焊接速度,速度过快会产生气孔,还应注意电极与压缩喷嘴的同心度。高温合金等离子弧焊接接头力学性能较高,接头强度系数一般大于90%。

低温等离子体介绍

低温等离子体介绍 基本概念 等离子体是物质存在的第四种状态。它由电离的导电气体组成,其中包括六种典型的粒子,即电子、正离子、负离子、激发态的原子或分子、基态的原子或分子以及光子。 事实上等离子体就是由上述大量正负带电粒子和中性粒子组成的,并表现出集体行为的一种准中性气体,也就是高度电离的气体。无论是部分电离还是完全电离,其中的负电荷总数等于正电荷总数,所以叫等离子体。 等离子体的分类 1、按等离子体焰温度分: (1)高温等离子体:温度相当于108~109 K完全电离的等离子体,如太阳、受控热核聚变等离子体。 (2)低温等离子体: 热等离子体:稠密高压(1大气压以上),温度103~105K,如电弧、高频和燃烧等离子体。 冷等离子体:电子温度高(103~104K)、气体温度低,如稀薄低压辉光放电等离子体、电晕放电等离子体、DBD介质阻挡放电等离子体、索梯放电等离子体等。 2、按等离子体所处的状态: (1)平衡等离子体:气体压力较高,电子温度与气体温度大致相等的等离子体。如常压下的电弧放电等离子体和高频感应等离子体。 (2)非平衡等离子体:低气压下或常压下,电子温度远远大于气体温度的等离子体。如低气压下DC辉光放电和高频感应辉光放电,大气压下DBD介质阻挡放电等产生的冷等离子体。 什么是低温(冷)等离子体? 冰升温至0℃会变成水,如继续使温度升至100℃,那么水就会沸腾成为水蒸气。随着温度的上升,物质的存在状态一般会呈现出固态→液态→气态三种物态的转化过程,我们把这三种基本形态称为物质的三态。那么对于气态物质,温度升至几千度时,将会有什么新变化呢? 由于物质分子热运动加剧,相互间的碰撞就会使气体分子产生电离,这样物质就变成由自由运动并相互作用的正离子和电子组

低温等离子体表面处理技术

低温等离子体表面处 理技术

Plasma and first wall Introduction Today I will talk about something about my study on the first wall in the tokamak. Firstly, I will show you that what the plasma is in our life thought the following pictures such as: Fig.1 Lighning Fig.2 Aurora Fig.3 Astrospace Just as the pictures mentioned above , they are all consist of plasma. But, what does have in the plasma, now our scientist had given a definition that the plasma state is often referred to as the fourth state of matter and contains enough free charged particles(negative ions 、positive ions)and electronics. Like the photo below. Fig.4 Plasma production Plasma production In our research, we produce the plasma through an ICP (inductively coupled plasma)

穿孔等离子弧焊接技术

穿孔等离子弧焊接技术研究*    中航一集团625所 朱轶峰 张 慧 董春林 邵亦陈  文摘论述了等离子弧焊接的新进展,介绍一脉一孔的等离子弧焊接工艺、正面弧光传感器、焊接质量模糊控制系统以及采用该系统进行的焊接质量控制的初步试验结果。研究表明在不锈钢等离子弧焊接过程中,采用该系统可以提高等离子弧焊接焊缝的质量。 主题词等离子弧焊一脉一孔弧光传感模糊控制 1 引言 进入21世纪,航空航天制造业对焊接技术提出了更高要求,人们在追求低成本高强度的焊接结构时对穿孔等离子弧焊接产生了新的兴趣。 等离子弧能量密度高、射流速度大、等离子流力强 [1],穿孔等离子弧焊接(K-PAW)时等离子弧穿透工件形成小孔,随着小孔的弥合形成焊缝。对于国防工业中常用金属材料如高强钢、高温合金、钛合金、不锈钢等,在中厚度(3~10mm)范围与钨极氩弧焊相比,PAW具有更佳的工艺焊接性,接头内部缺陷率降低、焊件变形减小、焊接效率提高。“单面焊接双面成形”是K-PAW的典型特征,特别适合密闭容器、小直径管焊缝等背面难于施焊的结构件焊接。 但是穿孔等离子弧焊接过程的稳定性及焊接工艺参数的再现性始终是摆在焊接科研人员面前的难题,制约着等离子弧焊接技术的工程应用。本研究通过采用优化工艺参数、脉冲焊接工艺方式以及增加质量控制的手段提高等离子弧焊接的工艺裕度、提高离子弧焊接过程的稳定性。 2 试验系统 建立一个能够满足焊接试验、参数实时采集、实时控制的完整的试验系统,是本研究课题的基础。 2.1 焊接电源 目前国内使用的等离子弧焊接电源中,以晶体管、可控硅电源为主,新型的IGBT电源还处于研究阶段,电源输出的稳定性难以保证,成为影响焊接质量稳定性的因素之一。 同时考虑到逆变电源的控制响应时间较快等因素,选用进口的等离子焊接电源及焊枪,逆变频率可达 32kHz,能够提供较好的输出特性,便于实现自动焊。 2.2 焊接夹具 自动等离子弧焊接工艺对焊接夹具的压紧均匀性、焊缝对中有一定要求,为此我们自行设计研制了具有琴键式压紧纵缝、机械对中装置的LCAW-2型纵缝和环缝自动焊机。 2.3 焊接质量模糊控制单元 利用具有内置模糊控制模块的可编程控制器,开发了外围数字接口电路,结合奔腾133计算机,再加上我们开发的模糊控制规则表,形成了质量模糊控制单元。 模糊控制系统执行机构为焊接电流控制器与焊接速度控制器。尽管影响等离子焊接焊缝成型质量的参数有很多,考虑到焊接电流和焊接速度对等离子焊接熔池的体积、温度及弧柱压力均有 收稿日期:2001-12-04 *本课题被评为2000年度国防科技进步二等奖 22

等离子表面处理工艺大全【解析】

等离子表面处理工艺大全 内容来源网络,由深圳机械展收集整理! 随着高科技产业的快速发展,各种工艺对使用产品的技术要求越来越高,等离子表面处理技术的出现,不仅改进了产品性能、提高了生产效率,更实现了安全环保效应。等离子表面处理技术能够在材料科学、高分子科学、生物医药材料学、微流体研究、微电子机械系统研究、光学、显微术和牙科医疗等领域得到应用。正是这种广泛的应用领域和巨大的发展空间使等离子表面处理技术迅速在国外发达国家发展起来,根据调查数据显示:全球等离子表面处理设备总产值在2008年已达到3000亿人民币。然而我们不得不沉思是什么原因使等离子表面处理技术在短短的20几年中发展的如此迅速。 (一)等离子表面处理技术原理及应用 等离子,即物质的第四态,是由部分电子被剥夺后的原子以及原子被电离后产生的正负电子组成的离子化气状物质。这种电离气体是由原子,分子,原子团,离子,电子组成。其作用在物体表面可以实现物体的超洁净清洗、物体表面活化、蚀刻、精整以及等离子表面涂覆。根据等离子体中存在微粒的不同,其具体可以实现对物体处理的原理也各不相同,加之输入气体以及控制功率的不同,都实现了对物体处理的多样化。因低温等离子体对物体表面处理的强度小于高温

等离子体,能够实现对处理物体表面的保护作用,应用中我们使用的多为低温等离子体。并且各种粒子在对物体处理过程中所表现出来的作用也个不相同的,原子团(自由基) 主要是实现对物体表面化学反应过程中能量传递的“活化”作用;电子对物体表面作用主要 包括两方面: 一方面是对物体表面的撞击作用,另一方面是通过大量的电子撞击引起化学反应;离子通过溅射现象实现对物体表面的处理;紫外线通过光能使物体表面的分子键断裂分解,并且增强穿透能力。 (二)等离子表面处理技术的优势等离子表面处理技术是干式处理法,替代了传统的湿法处理技术具有以下优势:1. 环保技术:等离子体作用过程是气固相干式反应,不消耗水资源、无须添加化学药剂2. 效率高:整个工艺能在较短的时间内完成 3. 成本低:装置简单,容易操作维修,少量气体代替了昂贵的清洗液,同时也无处理废液成本 4. 处理更精细:能够深入微细孔眼和凹陷的内部并完成清洗任务 5. 适用性广:等离子表面处理技术能够实现对大多数固态物质的处理,因此应用的领域非常广泛 (三)等离子表面处理技术前景随着电子信息产业的发展,特别是通信产品、电脑及部件、半导体、液晶及光电子产品对超精密工业清洗设备和高附加值设备

等离子表面处理应用

等离子表面处理应用 在汽车汽车配件制造流程中,随着以塑代钢趋势的不断深入,为了确保产品外观和内在质量,各种材料的表面处理技术正引起汽车制造商的广泛关注和重视。来自国内外汽车制造商和配件厂家的信息表明,采用等离子体技术对汽车制造中的各种配件进行表面处理是最为理想的处理工艺。烟台金鹰科技有限公司推出的等离子表面处理器,处理效果好、可在线处理、成本低、节能环保以及可监控性强,已经受到了国内外汽车制造和配件厂家甚至研究机构的重视和欢迎。公司生产的低温常压等离子表面处理机设备目前已经广泛应用于各种橡胶封条(门框密封条、车门头道、车窗导槽、车窗侧条、前后风挡和前后盖密封条、发动机密封)、车灯、汽车内饰(空调出风装置、仪表盘、安全气囊、GPS、DVD、仪表、传感器,天线)刹车块、油封、保险杠。提高产品的粘接度。 烟台金鹰科技有限公司所生产等离子表面处理机在汽车密封胶条材料表面处理中的应用。 密封性作为衡量汽车质量的一个重要的指标,预示着密封胶条在汽车上具有非常重要的重用。它具有填补车体部件之间间隙和减振的作用,不但要防止外界的灰尘、潮气水份及烟雾的入侵,还要阻隔噪音的侵入或外泄,等离子表面处理在密封条植绒及喷漆之前处理,可大大提高植绒及喷涂的牢固度,可完全代替底涂工艺。 密封胶条的分类: 1.1. 密封胶条以安装部位来分类: 主要有前后档风玻璃密封条、车门框密封条、侧窗密封条、天窗密封条、发动机舱盖密封条、行李箱密封条等,其中与车主接触最多的是车门框密封条,上车下车都可能接触到它。 1.2.密封胶条以特点来分类: 有一般密封胶条和天侯密封胶条之分。一般密封胶条以实芯为主,常用于前后档风玻璃、侧窗等地方。天候密封胶条是带有空心的海绵胶管,富有弹性并有保持温湿度的功能,常用于车门框、行李箱等地方。1.3.密封胶条按截面形状来分类: 可分为实芯形(圆形、方形、扁平形及多边等截面形状)、中空形及金属橡胶复合形等类型。密封胶条的安装部位与截面形状有很大关系,形状各异,比较复杂。对于橡胶密封条来说,截面形状的设计至关重要,它关系到密封、缓冲、安装和部件使用等。例如车门窗密封胶条的两侧密封唇边应以相同的、大小适当的力与车窗玻璃的两侧接触,胶条唇边长度、厚度应适当,过厚、过长会使玻璃阻力偏大,升降困难;过薄、过短又会导致玻璃得不到良好的密封及贴面,产生振动和漏雨现象;还有密封胶条截面底部形状及尺寸设计,应与车窗钢槽形状配合,两者凹凸结合,使得密封胶条自身的弹性附着在车窗钢槽上,防止其脱出。 1.4.密封胶条按照结构不同来分类: 有用单一橡胶做成,有由橡胶和发泡海绵胶结合构成。用作密封胶条的橡胶材料有密实胶、海绵胶和硬质橡胶等三种。硬质橡胶比较硬。密封条的胶料大部分使用耐老化、耐低温、耐水气、耐化学腐蚀,特别是耐臭氧老化的三元乙丙橡胶(EPDM),这种 EPDM 还具有良好的加工性,可以与钢带、钢丝编织带、绒布、植绒、PU 涂层、有机硅涂层等复合,保证车厢与外界的防水、防尘、隔音、隔热、减振和装饰作用,一般情况下 EPDM 密封条使用寿命可达十几年。密封胶条是采用挤压成形方式加工出来的,过去的制作方式比较简陋,通过简单模具就可以加工。 密封胶条发展新趋势和出现的新问题: 随着车辆密封要求越来越高,对密封胶条的要求也越来越高。新工艺、新材料不断涌现,因此加工技术也将越来越复杂。例如近年来,随着热塑性弹性体技术的不断发展和成熟,新型的热塑性弹性体如 TPO 和 TPV 等材料在汽车密封条中应用也越来越普遍。这些材料既具有弹性体的优良性能,又具有塑料的优良特性,既方便加工,又可回收重复利用,这些材料正在逐步取代 EPDM 制品。常见的车门密封条由共挤出的实芯载体与海绵胶管密封条组成,海绵部分受到车体门框的压缩后提供密封功能。但当车速很高时,外部空气压力可能会超过海绵体提供的最大密封力,从而引起密封失效。为了解决这一问题,有的公司设计了一种新型密封型材,将磁性橡胶引入海绵体中,即在海绵体上有一层磁性涂层或加入磁性嵌条,与车身金属框

低温等离子体的产生方法

辉光放电电晕放电介质阻挡放电射频放电滑动电弧放电射流放电大气压辉光放电次大气压辉光放电 辉光放电(Glow Discharge) 辉光放电属于低气压放电(low pressure discharge),工作压力一般都低于 10mbar,其构造是在封闭的容器內放置两个平行的电极板,利用电子将中性原子和分子激发,当粒子由激发态(excited state)降回至基态(ground state)时会以光的形式释放出能量。电源可以为直流电源也可以是交流电源。每种气体都有其典型的辉光放电颜色(如下表所示),荧光灯的发光即为辉光放电。因此,实验时若发现等离子的颜色有误,通常代表气体的纯度有问题,一般为漏气所至。辉光放电是化学等离子体实验的重要工具,但因其受低气压的限制,工业应用难于连续化生产且应用成本高昂,而无法广泛应用于工业制造中。目前的应用范围仅局限于实验室、灯光照明产品和半导体工业等。 部分气体辉光放电的颜色 Gas He Ne(neon) Ar Kr Xe H2N2O2 Air Cathode Layer red yellow pink --

red-brown pink red pink Negative Glow pink orange dark-blue green orange-green thin-blue blue yellow-white blue Positive Column Red-pink red-brown dark-red blue-purple white-green pink red-yellow red-yellow red-yellow 次大气压下辉光放电(HAPGD)产生低温等离子体 由于大气压辉光放电技术目前虽有报道但技术还不成熟,没有见到可用于工业生产的设备。而次大气压辉光放电技术则已经成熟并被应用于工业化的生产中。次大气压辉光放电可以处理各种材料,成本低、处理的时间短、加入各种气体的气氛含量高、功率密度大、处理效率高。可应用于表面聚合、表面接枝、金属渗氮、冶金、表面催化、化学合成及各种粉、粒、片材料的表面改性和纺织品的表面处理。次大气压下辉光放电的视觉特征呈现均匀的雾状放电;放电时电极两端的电压低而功率密度大;处理纺织品和碳纤维等材料时不会出

等离子表面处理

项目提纲 一、项目背景 等离子体是由部分电子被剥夺后的原子及原子被电离后产生的正负电子组成的离子化气体状物质,主要包括:电子、离子、中性基团、分子、光子,它是除去固、液、气相之外物质存在的第四态。1879年英国物理学家William Crookes发现物质第四状态,1929年美国化学物理学家Langmuir发现等离子体。等离子体是一种很好的导电体,利用经过巧妙设计的磁场可以捕捉、移动和加速等离子体。等离子体物理的发展为材料、能源、信息、环境空间,空间物理,地球物理等科学的进一步发展提新的技术和工艺。 等离子体可分为两种:高温和低温等离子体。高温等离子体如焊工用高温等离子体焊接金属。现在低温等离子体广泛运用于多种生产领域。例如:材料的表面处理(塑料表面处理、金属表面处理、铝表面处理,印刷、涂装及粘接前的等离子表面处理),此技术主要作用为清洗材料表面,提高表面的附着能力及粘接能力。等离子技术具有极为广泛的应用领域,这使其成为行业中广受关注的核心表面处理工艺。通过使用这种创新的表面处理工艺,可以实现现代制造工艺所追求的高品质,高可靠性,高效率,低成本和环保等目标。 等离子表面处理技术能够应用的行业非常广泛,对物体的处理不单纯的是清洗,同时可以进行刻蚀、和灰化以及表面活化和涂镀。因此就决定了等离子表面处理技术必将有广泛的发展潜力。也会成为科研院所、医疗机构、生产加工企业越来越推崇的处理工艺。 二、等离子技术简介 射流型常压等离子处理系统由等离子发生器、气体管路及等离子喷枪组成。等离子发生器产生高压高频能量在喷嘴钢管中被激活和被控制的辉光放电中产生了低温等离子体,借助压缩空气将等离子体喷向工件表面,当等离子体与被处理表面相遇时,产生了化学作用和物理变化,表面得到了清洁。却除了碳化氢类污物,如油脂、辅助添加剂等。根据材料成分,其表面分子链结构得到了改变。建立了自由基团,这些自由基团对各种涂敷材料具有促进粘合的作用,在粘合和油漆应用时得到了优化。在同样效果下,应用等离子体处理表面可以得到非常薄的高张力涂层表面,不需要其他机械、化学处理等强烈作用成分来增加粘合性。 高分子领域中应用的等离子体表面处理技术,是指利用非聚合性气体(如Ar、N2、CO、NH3、O2、H2等)等离子体与高分子材料表面相互作用,使在表面上形成新的官能团和改变高分子链结构,以改善亲(疏)水性、粘接性、表面电学性能、光学性能以及生物相容性等,从而达到表面改性的目的。参与表面反应的活性种有激发态分子、离子、自由基及紫外辐射光子。对高分子材料表面的作用有刻蚀、断键(链)、形成自由基及活性种与自由基复合从而引入新的官能团或形成交联结构。在等离子体处理过程中,随不同的放电条件,往往以某种作用为主,几种作用并存。等离子体处理的优点是效果显著,工艺简单,无污染,可通过改变不同的处理条件获得不同的表面性能,应用范围广。更为重要的是,处理效果只局限于表面而不影响材料本体性能。其缺点是处理效果随时间衰退;影响处理效果因素的多样性使其重复性和可靠性较差。 等离子表面处理在高分子材料改性中的应用,主要表现在下述几方面。 1)改变材料表面亲((疏)水性。一般高分子材料经NH3、O2、CO、Ar、N2、H2等气体等离子体处理后接触空气,会在表面引入—COOH,CO,—NH2''—OH等基团,增加其亲水性。处理时间越长,与水接触角越低,而经含氟单体如CF4''CH2F2等气体等离子体处理则可氟化高分子材料表面,增加其憎水性。 2)增加材料的粘接性。等离子体处理能很容易在高分子材料表面引入极性基团或活性点,

等离子焊接工艺

等离子焊接工艺 (1)焊接电流 焊接电流是根据板厚或熔透要求来选定。焊接电流过小,难于形成小孔效应:焊接电流增大,等离子弧穿透能力增大,但电流过大会造成熔池金属因小孔直径过大而坠落,难以形成合格焊缝,甚至引起双弧,损伤喷嘴并破坏焊接过程的稳定性。因此,在喷嘴结构确定后,为了获得稳定的小孔焊接过程,焊接电流只能在某一个合适的范围内选择,而且这个范围与离子气的流量有关。 (2)焊接速度 焊接速度应根据等离子气流量及焊接电流来选择。其他条件一定时,如果焊接速度增大,焊接热输入减小,小孔直径随之减小,直至消失,失去小孔效应。如果焊接速度太低,母材过热,小孔扩大,熔池金属容易坠落,甚至造成焊缝凹陷、熔池泄漏现象。因此,焊接速度、离子气流量及焊接电流等这三个工艺参数应相互匹配。 (3)喷嘴离工件的距离 ·喷嘴离工件的距离过大,熔透能力降低:距离过小,易造成喷嘴被飞溅物堵塞,破坏喷嘴正常工作。喷嘴离工件的距离一般取3~8mm。与钨极氩弧焊相比,喷嘴距离变化对焊接质量的影响不太敏感。 (4)等离于气及流量 等离子气及保护气体通常根据被焊金属及电流大小来选择。大电流等离子弧焊接时,等离子气及保护气体通常采取相同的气体,否则电弧的稳定性将变差。小电流等离子弧焊接通常采用纯氩气作等离子气。这是因为氧气的电离电压较低,可保证电弧引燃容易。 离子气流量决定了等离子流力和熔透能力。等离子气的流量越大,熔透能力越大。但等离子气流量过大会使小孔直径过大而不能保证焊缝成形。因此,应根据喷嘴直径、等离子气的种类、焊接电流及焊接速度选择适当的离子气流量。利用熔人法焊接时,应适当降低等离子气流量,以减小等离子流力。 保护气体流量应根据焊接电流及等离子气流量来选择。在一定的离子气流量下,保护气体流量太大,会导致气流的紊乱,影响电弧稳定性和保护效果。而保护气体流量太小,保护效果也不好,因此,保护气体流量应与等离子气流量保持适当的比例。 小孔型焊接保护气体流量一般在15~30L/min范围内。采用较小的等离子气流量焊接时,电弧的等离子流力减小,电弧的穿透能力降低,只能熔化工件,形不成小孔,焊缝成形过程与TIG焊相似。这种方法称为熔入型等离子弧焊接,适用于薄板、多层焊的盖面焊及角焊缝的焊接。 (5)引弧及收弧

等离子表面处理应用

For personal use only in study and research; not for commercial use 等离子表面处理应用 在汽车汽车配件制造流程中,随着以塑代钢趋势的不断深入,为了确保产品外观和内在质量,各种材料的表面处理技术正引起汽车制造商的广泛关注和重视。来自国内外汽车制造商和配件厂家的信息表明,采用等离子体技术对汽车制造中的各种配件进行表面处理是最为理想的处理工艺。烟台金鹰科技有限公司推出的等离子表面处理器,处理效果好、可在线处理、成本低、节能环保以及可监控性强,已经受到了国内外汽车制造和配件厂家甚至研究机构的重视和欢迎。公司生产的低温常压等离子表面处理机设备目前已经广泛应用于各种橡胶封条(门框密封条、车门头道、车窗导槽、车窗侧条、前后风挡和前后盖密封条、发动机密封)、车灯、汽车内饰(空调出风装置、仪表盘、安全气囊、GPS、DVD、仪表、传感器,天线)刹车块、油封、保险杠。提高产品的粘接度。 烟台金鹰科技有限公司所生产等离子表面处理机在汽车密封胶条材料表面处理中的应用。 密封性作为衡量汽车质量的一个重要的指标,预示着密封胶条在汽车上具有非常重要的重用。它具有填补车体部件之间间隙和减振的作用,不但要防止外界的灰尘、潮气水份及烟雾的入侵,还要阻隔噪音的侵入或外泄,等离子表面处理在密封条植绒及喷漆之前处理,可大大提高植绒及喷涂的牢固度,可完全代替底涂工艺。 密封胶条的分类: 1.1. 密封胶条以安装部位来分类: 主要有前后档风玻璃密封条、车门框密封条、侧窗密封条、天窗密封条、发动机舱盖密封条、行李箱密封条等,其中与车主接触最多的是车门框密封条,上车下车都可能接触到它。 1.2.密封胶条以特点来分类: 有一般密封胶条和天侯密封胶条之分。一般密封胶条以实芯为主,常用于前后档风玻璃、侧窗等地方。天候密封胶条是带有空心的海绵胶管,富有弹性并有保持温湿度的功能,常用于车门框、行李箱等地方。1.3.密封胶条按截面形状来分类: 可分为实芯形(圆形、方形、扁平形及多边等截面形状)、中空形及金属橡胶复合形等类型。密封胶条的安装部位与截面形状有很大关系,形状各异,比较复杂。对于橡胶密封条来说,截面形状的设计至关重要,它关系到密封、缓冲、安装和部件使用等。例如车门窗密封胶条的两侧密封唇边应以相同的、大小适当的力与车窗玻璃的两侧接触,胶条唇边长度、厚度应适当,过厚、过长会使玻璃阻力偏大,升降困难;过薄、过短又会导致玻璃得不到良好的密封及贴面,产生振动和漏雨现象;还有密封胶条截面底部形状及尺寸设计,应与车窗钢槽形状配合,两者凹凸结合,使得密封胶条自身的弹性附着在车窗钢槽上,防止其脱出。 1.4.密封胶条按照结构不同来分类: 有用单一橡胶做成,有由橡胶和发泡海绵胶结合构成。用作密封胶条的橡胶材料有密实胶、海绵胶和硬质橡胶等三种。硬质橡胶比较硬。密封条的胶料大部分使用耐老化、耐低温、耐水气、耐化学腐蚀,特别是耐臭氧老化的三元乙丙橡胶(EPDM),这种 EPDM 还具有良好的加工性,可以与钢带、钢丝编织带、绒布、植绒、PU 涂层、有机硅涂层等复合,保证车厢与外界的防水、防尘、隔音、隔热、减振和装饰作用,一般情况下 EPDM 密封条使用寿命可达十几年。密封胶条是采用挤压成形方式加工出来的,过去的制作方式比较简陋,通过简单模具就可以加工。 密封胶条发展新趋势和出现的新问题: 随着车辆密封要求越来越高,对密封胶条的要求也越来越高。新工艺、新材料不断涌现,因此加工技术也将越来越复杂。例如近年来,随着热塑性弹性体技术的不断发展和成熟,新型的热塑性弹性体如 TPO 和 TPV 等材料在汽车密封条中应用也越来越普遍。这些材料既具有弹性体的优良性能,又具有塑料的优良特性,既方便加工,又可回收重复利用,这些材料正在逐步取代 EPDM 制品。常见的车门密封条由共挤出的实芯载体与海绵胶管密封条组成,海绵部分受到车体门框的压缩后提供密封功能。但当车速很高时,外部空气压力可能会超过海绵体提供的最大密封力,从而引起密封失效。为了解决这一问题,有的公司设计了一种

等离子弧焊接原理及设备

第4章等离子弧焊接等离子弧焊接设备

4.1 等离子弧的产生及其特性1. 等离子弧的产生 1 )等离子弧概念 等离子电弧的形成及电弧形态比较 等离子弧是通过外部拘束 使自由电弧的弧柱被强烈 压缩形成的电弧。 通常情况下的GTA和GMA 电弧,为自由电弧,除受到电弧 自身磁场拘束和周围环境的冷却拘束 外,不受其他条件束缚,电弧相同相对比较扩展,电弧能量密度和温度较低。若把自由电弧缩进到喷嘴里,喷嘴的孔径小,电弧通过时,弧柱截面积受到限制,不能自由扩展,产生了外部拘束作用,电弧在径向上被强烈压缩,形成等离子弧。

2)等离子弧的工作方式 ①转移型等离子弧。 (a)等离子弧方式 在喷嘴内电极与被加工工件间 产生等离子弧。由于电极到工件的 距离较长,引燃电弧时,首先在电极 和喷嘴内壁间引燃一个小电弧,称作“引燃弧”, 电极被加热,空间温度升高,高温气流从喷嘴孔道中流出,喷射到工件表面,在电极与工件间有了高温气层,随后在主电源较高的空载电压下,电弧能够自动的转移到电极与工件之间燃烧,称为“主弧”或“转移弧”。

②等离子焰流 在钨电极与喷嘴内壁之间引燃等离子弧。由于保护气通过电弧区被加热,流出喷嘴时带出高温等离子焰流,堆被加工工件进行加热,称作“等离子焰流”。电极与喷嘴内壁间的电弧,其电流值较小,电弧温度低,故等离子焰流的温度也明显低于电弧,指向性不如等离子弧。 等离子焰流方式 ③混合型等离子弧 当电弧引燃并形成转移电弧后仍然能保持引燃弧的存在,即形成两个电弧同时燃烧的局面,效果是转移弧的燃烧更为稳定。

2. 等离子弧特性及用途 1)电弧静特性 与TIG电弧相比,等离子弧的静特性的特点: ①受到水冷喷嘴孔道壁的拘束,弧柱截面积小,弧柱电场强度增大,电弧电压明显提高,从大范围电流变化看,静特性曲线中平特性区不明显,上升特性区斜率增加。 等离子弧静特性变化特点 (a)等离子弧与TIG电弧静特性(b)小弧电流对等离子弧静特性影响

等离子原理说明

低温等离子体技术简介 低温等离子体是继固态、液态、气态之后的物质第四态,当外加电压达到气体的放电电压时,气体被击穿,产生包括电子、各种离子、原子和自由基在内的混合体。放电过程中虽然电子温度很高,但重粒子温度很低,整个体系呈现低温状态,所以称为低温等离子体。低温等离子体降解污染物是利用这些高能电子、自由基等活性粒子和废气中的污染物作用,使污染物分子在极短的时间内发生分解,并发生后续的各种反应以达到降解污染物的目的。 低温等离子体的产生途径很多,低温等离子体工业废气处理技术采用的放电形式为双介质阻挡放电 (Dielectric Barrier Discharge ,简称DBD),该技术性能先进,运行稳定,获得广泛客户的认可。 装置示意图如图3-1所示。 介质阻挡放电是一种获得高气压下低温等离子体的放电方法,这种放电产生于两个电极之间。介质阻挡放电可以在0.1~10105Pa 的气压下进行,具有辉光放电的大空间均匀放电和电晕放电的高气压运行的特点。整个放电是由许多在空间和时间上随机分布的微放电构成,这些微放电的持续时间很短,一般在10ns 量级。介质层对此类放电有两个主要作用:一是限制微放电中带电粒子的运动,使微放电成为一个个短促的脉冲;二是让微放电均匀稳定地分布在整个面状电极之间,防止火花放电。介质阻 图3-1 介质阻挡放电示意图 交流高电压发生器高压电极 介质放电间隙 接地电极

挡放电由于电极不直接与放电气体发生接触,从而避免了电极的腐蚀问题。 介质阻挡放电等离子体技术具有以下优点: ①介质阻挡放电产生的低温等离子体中,电子能量高,几乎可以和所有的恶臭气 体分子作用。 ②反应快,不受气速限制。 ③采用防腐蚀材料,电极与废气不直接接触,根本上解决了设备腐蚀问题。 ④只需用电,操作极为简单,无需派专职人员看守,基本不占用人工费。 ⑤设备启动、停止十分迅速,随用随开,不受气温的影响。 ⑥气阻小,工艺成熟。 低温等离子体净化工业废气的工作原理: 等离子体中能量的传递大致如下: 图3-2 等离子体中能量传递图 介质阻挡放电过程中,电子从电场中获得能量,通过碰撞将能量转化为污染物分子的内能或动能,这些获得能量的分子被激发或发生电离形成活性基团,同时空气

等离子体表面处理技术

等离子体表面处理技术的原理及应用 前言:随着高科技产业的讯速发展,各种工艺对使用产品的技术要求越来越高。 等离子表面处理技术的出现,不仅改进了产品性能、提高了生产效率,更随着高科技产业的迅猛发展,各种工艺对使用产品的技术要求也越来越高。这种材料表面处理技术是目前材料科学的前沿领域,利用它在一些表面性能差和价格便宜的基材表面形成合金层,取代昂贵的整体合金,节约贵金属和战略材料,从而大幅度降低成本。正是这种广泛的应用领域和巨大的发展空间使等离子表面处理技术迅速在国外发达国家发展起来。 一、等离子体表面改性的原理 等离子,即物质的第四态,是由部分电子被剥夺后的原子以及原子被电离后产生的正负电子组成的离子化气状物质。它的能量范围比气态、液态、固态物质都高,存在具有一定能量分布的电子、离子和中性粒子,在与材料表面的撞击时会将自己的能量传递给材料表面的分子和原子,产生一系列物理和化学过程。其作用在物体表面可以实现物体的超洁净清洗、物体表面活化、蚀刻、精整以及等离子表面涂覆。 二、等离子体表面处理技术的应用 1、在工艺产业方面的应用 1)、在测量被处理材料的表面张力 表面张力测定是用来评估材料表面是否能够获得良好的油墨附着力或者粘接附着品质的重要手段。为了能够评估等离子处理是否有效的改善了表面状态,或者为了寻求最佳的等离子表面处理工艺参数,通常通过测量表面能的方式来测定表面,比如使用Plasmatreat 测试墨水。最主要的表面测定方式包括测试墨水,接触角测量以及动态测量 评价表面状态 低表面能, 低于28 mN/m良好的表面附着能力,高表面能 2)预处理–Openair? 等离子技术,对表面进行清洗、活化和涂层处理的高技术表面处理工艺 常压等离子处理是最有效的对表面进行清洗、活化和涂层的处理工艺之一,可以用于处理各种材料,包括塑料、金属或者玻璃等等。 使用Openair?等离子技术进行表面清洗,可以清除表面上的脱模剂和添加剂等,而其活化过程,则可以确保后续的粘接工艺和涂装工艺等的品质,对于涂层处理而言,则可以进一步改善复合物的表面特性。使用这种等离子技术,可以根据特定的工艺需求,高效地对材料进行表面预处理。

等离子表面处理

一、低温等离子体在糊盒、糊箱机中应用的原理 低温等离子体中的粒子能量一般约为几个至十几电子伏特,大于聚合物材料的结合键能(几个至十几电子伏特),完全可以破裂有机大分子的化学键而形成新键,但远低于高能放射性射线,只涉及材料表面,不影响基体的性能。处于非热力学平衡状态下的低温等离子体中,电子具有较高的能量,可以断裂材料表面分子的化学键,提高粒子的化学反应活性(大于热等离子体),而中性粒子的温度接近室温,这些优点为热敏性高分子聚合物表面改性提供了适宜的条件。通过低温等离子体表面处理,材料表面发生多种的物理、化学变化,或产生刻蚀而粗糙,或形成致密的交联层,或引入含氧极性基团,使亲水性、粘结性、可染色性、生物相容性及电性能分别得到改善。 射流型大气低温等离子处理机由低温等离子发生器、气体输送系统及低温等离子喷枪等部分组成。低温等离子发生器产生的高频高压能量在喷枪内产生低温等离子体,借助空气气流将等离子体输送到腔体外到达工件表面,当等离子体与被处理的物体表面相遇时,产生了上述的化学作用和物理变化,表面得到了改性、清洁,去除了碳化氢类污物,如油脂、辅助添加剂等。 在糊盒机中,采用射流低温等离子炬处理胶结面工艺可以极大的提高粘接强度,降低成本,粘接质量稳定,产品一致性好,不产生粉尘,环境洁净。是糊盒机提高产品品质的最佳解决方案。

由于射流型大气低温等离子体表面处理机喷射出的低温等离子体炬为中性粒子,不带电,因此,使用安全,可以处理下材料:★ 带有OPP, PP, PE覆膜的纸板 ★ 带有PET覆膜的纸板 ★ 带有金属镀层的纸板 ★ 带有UV涂层的纸板(UV油固化后本身不能脱层) ★ 浸渍纸板 ★ PET,PP等透明塑料片材 二.低温等离子技术在糊盒、糊箱机中具体应用 现在的印刷包装工艺中,为保证印刷品在流通中不被蹭花,为了提高防水功能,或提高产品档次等,在印刷品表面都会做一层保护,有的上一层光油,有的复一层膜等。上光工艺中UV上光相对较复杂一些,出现的问题可能更多一点,目前来说,因UV油与纸张的亲和力较差,而造成在糊盒或糊箱时经常会出现开胶的现象,而复膜后,因膜的表面张力及表面能会在不同的条件下有不同的值,大小忽异,再加上不同品牌的胶水所表现出的粘接性能不同,也经常会出现开胶现象,而一旦产品交到客户手上再开胶,就会有被罚款的可能,这些都令各厂家较烦恼,有的客户为了尽量减少出现以上情况,不惜加大成本尽量采购进口或国产高档糊盒胶水,但如果对化学品的保管不当,或其他原因,有时还是会出现开胶现象。传统工艺中,为了有效对付开胶现象,各糊盒机厂家在自己的各型糊盒机上均配备了磨边机,将糊口部分上了UV光的糊舌进行打磨,有效解决了开胶的问题。 而复膜的产品无法用磨轮进行打磨,则采用打刀齿线的方法,或在复膜时让开糊口位置(较大尺寸产品实用,小包装产品也无法使用此方法),再配合高品质的胶水,也较有效,但不是最佳方法。 在糊盒糊箱时打磨糊口虽然能较有效地解决粘接问题,但下面问题依然存在:1.打磨时被磨去的纸毛纸粉一部分会对机器周边的环境造成污染,加大机器设备的磨损;2.因磨轮运动的线速度方向与产品运行方向相反,势必对一些产品的运行速度产生影响,降低工作效率;3.虽然将涂层磨去,但磨去的只是UV涂层和少量的纸张表面涂层,对于高档的药盒和化妆品盒等产品,一般厂家也不敢轻易采用普通胶水来粘盒,这样,糊盒成本不会太低。 复膜开胶的情况相对UV产品来说要好一点,但复膜让糊口的方法对小盒产品无法使用,打刀齿线也会出现工艺问题,增加刀版成本等。 而低温等离子技术很好地解决了以上所出现的矛盾,既不用对产品表面做打磨或打齿线,有条件时还可以使用较低成本的胶水,能有效地解决传统糊盒工艺中的几大问题:一、纸粉纸毛对环境及设备的影响;二、打磨影响工作效率;三、产品会开胶;四、糊盒成本较高。 人们都知道,其实影响覆膜产品糊盒糊箱时最大的障碍,是因为粘接时膜的表面达因值很低,这是为什么呢?因塑料厂对薄膜出厂前表面所做的处理主要是电晕处理和静电处理,而电晕处理装置的电晕处理能力有限,所以薄膜在出厂前的最高达因值一般不超过42达因,且电晕处理只是使膜的表面发生物理变化,而这种变化是可以随着时间延长而变化的(达因值降低),因而实际薄膜到印刷厂真正使用时,薄膜表面的达因值有可能降低到40达因以下甚至还低,还有重要的一点,除非印刷厂告诉薄膜供应商,他需要的是双面电晕处理的薄膜,否则一般情况下印刷厂所拿到的都是单面处理的膜,这样在薄膜覆在纸张上后表面的达因值就更低了,而在线利用等离子喷涂薄膜表面后,根据处理速度的不同达因值可相应提高到45-60达因,这样加上等离子的清洁功能、化学破坏分子键功能以及除静电功能使得糊口容易粘牢。 所以射流低温等离子体流技术在糊盒工艺中的应用,直接产生的益处在于:一、产品品质更加稳定,不会再开胶;二、

等离子弧焊接技术

等离子弧焊接技术 摘要:焊接技术可以追溯到几千年前的青铜器时代,在人类早期工具制造中,无论是中国还是当时的埃及等文明地区都能见到焊接 技术的雏形。 关键词:等离子弧焊 焊接是指通过适当的物理化学过程使两个分离的固态物体产生原子(分子)间的结合力而连接成一体的连接方法。被连接的两个物体可以是各种同类或不同类的金属、非金属,也可以是一种金属与一种非金属。由于金属的连接在现代工业中具有很重要的实际意义,因此,狭义地说,焊接通常就是指金属的焊接。等离子弧焊是一种不熔化极电弧焊,是钨极氩弧焊的进一步发展。等离子弧是自由电弧压缩而成,其功率密度比自由电弧可提高100倍以上。其离子气为氩气、氮气、氦气或其中二者的混合气。等离子弧的能量集中,温度高,焰流速度大。这些特性使得等离子弧广泛应用于焊接、喷涂和堆焊。 等离子弧焊的起源 在第三次工业革命,这阶段在能源、微电子技术、航天技术等领域取得重大突破,推动了焊接技术的发展,1950年后成为又一次焊接方法迅速发展的时期,在这个阶段各个国家的焊接工作者开发了不少崭新的焊接方法。1957年美国的盖奇发明了等离子弧焊;20世纪40年代德国和法国科学家发明的电子束焊,也在

20世纪50年代得到了应用和进一步发展;20世纪60年代又出现了激光焊。等离子、电子束和激光焊接方法的出现,标志着高能量密度熔焊的新发展,大大改善了材料的焊接性,使得许多难以用其他方法焊接的材料和结构得以焊接。 等离子弧焊的原理 等离子弧焊(PAW,Plasma Arc Welding)是利用等离子弧作为热源的焊接方法。气体由电弧加热产生离解,在高速通过水冷喷嘴时受到压缩,增大能量密度和离解度,形成等离子弧。它的稳定性、发热量和温度都高于一般电弧,因而具有较大的熔透力和焊接速度。形成等离子弧的气体和它周围的保护气体一般用氩。根据各种工件的材料性质,也有使用氦、氮、氩或其中两者混合的混合气体的。 等离子弧焊的分类 按焊缝成型原理等离子弧焊分为: a.穿孔型等离子弧焊 b.熔透型等离子弧焊 c.微束等离子弧焊 脉冲等离子弧焊、交流等离子弧焊、熔化极等离子弧焊等 1.穿孔型等离子弧焊 原理:利用等离子弧能量密度大和等离子流吹力大的特点,将工件完全熔透,并在熔池上产生一个贯穿焊件的小孔。

低温等离子体(介质阻挡放电)

低温等离子体技术简介(介质阻挡放电) 所谓等离子体是继固体、气体、液体三态后,列为物质的第四态,由正离子、负离子、电子和中性离子组成,因体系中正负电荷总数相等,故称为“等离子体”。 等离子体按粒子温度可分为平衡态(电子温度=离子温度)与非平衡态(电子温度>>离子温度)两类。 非平衡态等离子体电子温度可上万度,离子及中性离子可低至室温,即体系表观温度仍很低,故称“低温等离子体”,一般由气体放电产生。 气体放电有多种形式,其中工业上使用的主要是电晕放电(在去除废气中的油尘上应用已相当成熟)和介质阻挡放电(用于废气中难降解物质的去除)两种。 低温等离子体技术是近年发展起来的废气处理新技术,低温等离子体处理废气的原理为: 当外加电压达到气体的放电电压时,气体被击穿,产生包括电子、各种离子、原子和自由基在内的混合体。低温等离子体降解污染物是利用这些高能电子、自由基等活性粒子和废气中的污染物作用,使污染物分子在极短的时间内发生分解,以达到降解污染物的目的。 低温等离子体的产生途径很多,我们使用的低温等离子体工业废气处理技术采用的放电形式为双介质阻挡放电(Dielectric Barrier Discharge,简称DBD)。装置示意图如图1所示。 图1 介质阻挡放电示意图 DBD放电净化设备优点: 介质阻挡放电是一种获得高气压下低温等离子体的放电方法,由于电极不直接与放电气体发生接触,从而避免了电极的腐蚀问题。介质阻挡放电等离子体技术具有以下优点: ①介质阻挡放电产生的低温等离子体中,电子能量高,几乎可以

和所有的气体分子作用。 ②反应快,不受气速限制。 ③电极与废气不直接接触,不存在设备腐蚀问题。 ④只需用电,操作极为简单,无需专人员看守,基本不占用人工费。 ⑤设备启动、停止十分迅速,随用随开,不受气温的影响。 ⑥气阻小,适用于高流速,大风量的废气处理。 ⑦工艺已相对成熟。 低温等离子体技术(介质阻挡放电)净化原理为: 在外加电场的作用下,介质放电产生的大量携能电子轰击污染物分子,使其电离、解离和激发,然后便引发了一系列复杂的物理、化学反应,使复杂大分子污染物转变为简单小分子安全物质,或使有毒有害物质转变为无毒无害或低毒低害物质,从而使污染物异味得以降解去除。因其电离后产生的电子平均能量在1eV~10eV,适当控制反应条件可以实现一般情况下难以实现或速度很慢的化学反应变得十分快速。其能量传递过程为: 电场+电子高能电子 受激电子 高能电子+活性基因 自由基 活性基因+生成物+热 活性基因+活性基因生成物+热 异味废气在介质阻挡放电(DBD)的低温等离子体发生器中,这些废气因子被高能电子轰击后首先被打开成碎片。 而尾气中氧气和水气在高能电子作用下发生下列反应 O2+e O·+O3 + O2- H2O + e HO·+H 废气因子解离的碎片粒子与氧气及O·+O3+ O2-发生较为复杂的化学反应,降解为CO2和H2O等。 采用双介质的阻挡放电技术,属于干法处理,不需要任何吸附剂、催化剂及其他任何助燃燃料,只需采用380V交流电,经振荡升压装置获得高频脉冲电场,产生高能量电子,轰击分解废气中的恶臭、有

相关文档