文档视界 最新最全的文档下载
当前位置:文档视界 › 基于小波分析的轴承故障诊断和分析

基于小波分析的轴承故障诊断和分析

基于小波分析的轴承故障诊断和分析
基于小波分析的轴承故障诊断和分析

基于小波分析的轴承故障诊断和分析

基于小波分析的轴承故障诊断和分析

Fault Feature of Bearing Based on Wavelet Analysis and Diagnosis

杨丹明王富东(苏州大学机电工程学院电气工程与自动化系,江苏苏州215006)

摘要

故障特征提取与表示关系到故障诊断的可靠性和准确性,是机械设备故障诊断中的关键问题,而且是机械设备故障

诊断的瓶颈所在。应用小波分析理论,针对旋转机械体轴承这种典型部件,对于他们的故障特征进行提取、表示以及判断。

关键词:MATLAB,轴承,故障诊断,小波变换

Abstract

Fault feature representation and extraction is the most crucial and difficult problem for the reliability and accuracy in mechanical fault diagnosis.This paper applies the wavelet analysis theory,in view of revolving mechanical body bearing this

kind of typical part,regarding theirs Fault feature extraction and representation,as well as judgment.

Keywords:MATLAB,bearing,fault diagnosis,wavelet transformation,time-frequency distribution

轴承的故障,过去主要是靠有经验的操作者用耳朵直接倾听运转中轴承的声响的变化来判断,该方法的成功与否完全取决于操作者的实际经验。近年来,由于测试手段的不断发展和完善,对轴承的故障进行精确的诊断己成为可能——

—特别是随着PC机性能的提高,MATLAB小波分析技术应用于故障监测和诊断领域成为发展趋势。本文使用小波分析中的多分辨分析理论来研究轴承的故障。

1轴承故障信号检测

试验对象为安装在减速机轴端的圆锥滚子轴承,减速机外形如图1所示。轴承型号为33207,其结构如图2所示,结构参数如表1所示。

图1减速机外形图图2圆锥滚子轴承的结构

试验系统分为电动机、减速机和加载设备。试验是在设置故障的状态下进行的。为了分析轴承的多种故障,设置轴承的多种典型的故障:外圈故障、内圈故障。为了故障下的试验数据,在进行设置故障前对正常状态下轴承进行了试验。故障的设置参数如表2所示。

表1滚动轴承32207的结构参数表2故障的设置情况

试验过程中采集加速度信号,用加速度传感器、电荷放大器、NI公司的信号采集卡获得加速度信号。传感器分别安放在轴承座的正上方,侧方和轴承盖上。采样频率设定为10kHz。

轴承振动中的故障特征主要是由于轴承的局部故障引起的瞬态冲击,在振动信号中表现为瞬态成分。提取这些瞬态成分的大小与发生时间间隔是对轴承进行精确故障诊断的依据。对轴承振动瞬态特征的提取研究不仅得到瞬态成分的时间间隔,由此判断故障的发生部位,而且得到反映故障严重程度的瞬态成分大小的变化,说明根据瞬态成分提取的轴承故障诊断方法是可靠的,可以实现轴承故障的精确诊断。

2小波分析的理论基础

将任意L2(R)空间中的函数z(t)在小波基下进行展开,称作函z(t)的连续小波变换(简称CWT),其表达式为

WT

z

(a,b)=-z(t),φ

a,b

≥1

a

姨R

乙z(t)φ(t-b

a

)dt(1)由连续小波变换的定义可知,小波变换同傅立叶变换一样,都是一种积分变换,我们称WT z(a,b)为小波变换系数。由于小波基不同于傅立叶基,因此小波变换与傅立叶变换有很大的不同,其中最重要的是,小波基具有尺度a和平移b两个参数。

根据连续小波变换的定义可知,在连续变化的尺度a和时间b值下,小波基函数具有很大的相关性,因此信号的连续小波变换系数的信息量是冗余的。减小小波变换系数冗余度的方法是将小波基函数φa,b(t)的a,b限定在一些离散点上取值,常用的离散

化方法是将尺度按幂级数进行离散化,即取a

m

=a

m

(m为整数,a0≠1,一般取a0=2),对b进行均匀离散取值,以覆盖整个时间轴(为了不丢失信息,要求满足采样定理),这样小波基函数变为:

φ

m,n

(t)=2-m/2φ(2-m t-n)

因此任意函数z(t)的离散小波变换为:

WT

z

(m,n)=<z(t),φ

m,n

>=2-m/2

R

乙z(t)φ(2-m t-n)dt

3轴承故障信号诊断

3.1振动信号的时域波形及相应的功率谱

轴承在正常、外圈严重故障、内圈严重故障状态下的振动信号的时域波形及相应的功率谱分别如图3至图5所示。

从以上各种状态下的轴承振动信号的分析可以说明,不同轴承故障状态的振动中都会产生起局部的短促的冲击,但是这种局部的冲击往往夹杂在严重的噪声中,表现不十分明显,难于区别。而在信号的功率谱表示中,由于信号中的冲击成分在时域中持续时间短、夹杂在噪声中,在频域上的平均会导致这些冲击的特征不能表示出来,所以,轴承的故障特征不能在频域内表示出来。必须采用包含时域特征的表示方法表示轴承的局部故障特征,这种方法可以是时频表示,也可以是提取的时域特征。3.2轴承振动信号的连续小波分解

对于正常的信号与故障的信号的比较来讲,

他们之间的差42

《工业控制计算机》2010年第23卷第11期别是可见但不明显的。对他们做傅立叶转化时,得到的频域图,也不能清楚地发现他们之间有什么明显的特征,只能看出同种故障的不同程度的差别。但选用小波函数db2对信号分别进行连续小波变换,画出等高线,可以得到图形6到图形8。

图形6到图形8为信号的小波变换等高线图,横坐标为时间,纵坐标为尺度。从图中可以看出,当存在噪声故障时,噪声信号在低频段上幅值会突然增大,可以非常直观地判断是否存在故障,并且故障信号是周期性的。从图形6到图形8的比较来看,图6的黑线分布均匀,无明显的特别重的黑线和无呈规律分布的黑线组,而图形7和图形8均有呈规律分布的黑线组和特别重的黑线,可以确定他们的确是有故障的信号的时频图。

4结束语

基于小波分析的基础上,采用连续小波变换和自相关处理

理论对七种不同情况的轴承信号进行变换分析,从而更好地判

断各种具体的故障。

参考文献

[1]周伟,桂林,周林,等.MATLAB 小波分析高级技术[M ].西安:西安电

子科技大学出版社,2006

[2]葛哲学,陈仲生,等.MATLAB 时频分析技术及其应用[M ].北京:人

民邮电出版社,2006

[3]胡广书,等.数字信号处理导论[M ].北京:清华大学出版社,2005

[收稿日期:2010.9.13]

图3轴承正常状态,(a )时域信号,(b )

功率谱

图4外圈严重故障状态,(a )时域信号,(b )

功率谱

图5内圈严重故障状态,(a )时域信号,(b )

功率谱

图6

轴承正常状态

图7

外圈严重故障状态

图8

内圈严重故障状态

43

简析滚动轴承故障诊断方法及要点

简析滚动轴承故障诊断方法及要点 滚动轴承是应用最为广泛的机械零件质疑,同时,它也是机器中最容易损坏的元件之一。许多旋转机械的故障都与滚动轴承的状态有关。据统计,在使用滚动轴承的旋转机械中,大约有30%的机械故障都是由于轴承而引起的。可见,轴承的好坏对机器工作状态影响极大。 通常,由于轴承的缺陷会导致机器产生振动和噪声,甚至会引起机器的损坏。而在精密机械中(如精密机床主轴、陀螺等),对轴承的要求就更高,哪怕是在轴承上有微米级的缺陷,都会导致整个机器系统的精度遭到破坏。 最早使用的轴承诊断方法是将听音棒接触轴承部位,依靠听觉来判断轴承有无故障。这种方法至今仍在使用,不过已经逐步使用电子听诊器来替代听棒以提高灵敏度。后来逐步采用各式测振仪器、仪表并利用位移、速度或加速度的均方根值或峰峰值来判断轴承有无故障。这可以减少对设备检修人员的经验的依赖,但仍然很难发现早期故障。 滚动轴承在设备中的应用非常广泛,滚动轴承状态好坏直接关系到旋转设备的运行状态,尤其在连续性大生产企业,大量应用于大型旋转设备重要部位,因此,实际生产中作好滚动轴承状态监测与故障诊断是搞好设备维修与管理的重要环节。我们经过长期实践与摸索,积累了一些滚动轴承实际故障诊断的实用技巧。 一、滚动轴承故障诊断的方式及要点: 对滚动轴承进行状态监测和故障诊断的实用方法是振动分析。 实用中需注意选择测点的位置和采集方法。要想真实准确反映滚动轴承振动状态,必须注意采集的信号准确真实,因此要在离轴承最近的地方安排测点,在电机自由端一般有后风扇罩,其测点选择在风扇罩固定螺丝有较好监测效果。另外必须注意对振动信号进行多次采集和分析,综合进行比较。才能得到准确结论。 二、滚动轴承正常运行的特点与实用诊断技巧: 我们在长期生产状态监测中发现,滚动轴承在其使用过程中表现出很强的规律性,并且重复性非常好。正常优质轴承在开始使用时,振动和噪声均比较小,但频谱有些散乱,幅值都较小,可能是由于制造过程中的一些缺陷,如表面毛刺等所致。 运动一段时间后,振动和噪声维持一定水平,频谱非常单一,仅出现一、二倍频。极少出现三倍工频以上频谱,轴承状态非常稳定,进入稳定工作期。 继续运行后进入使用后期,轴承振动和噪声开始增大,有时出现异音,但振动增大的变化较缓慢,此时,轴承峭度值开始突然达到一定数值。我们认为,此时轴承即表现为初期故障。

设备轴承故障高温原因分析及处理方法

设备轴承温度的原因分析及处理方法轴承是生产线设备上常用的支撑轴零件,它可以引导轴的旋转,也可以承受轴上空转的零件,由于其使用量大,生产过程中经常出现故障,给车间生产的连续性和产品质量的保障带来严重影响。因此,迅速判断故障产生的原因,采取得当的解决措施,保证设备的连续运行是确保产品质量的重要基础和保证。 一、轴承故障原因分析: 导致轴承故障率升高的常见原因: 1、润滑不良,如润滑不足或过分润滑,润滑油质量不符合要求,变质或有杂物。 2、轴承异常,如轴承损坏,轴承装配工艺差,轴承各部位间隙调整不符合要求。 3、振动大,如联轴器找正工艺差不符合要求,转子存在动、静不平衡,基础刚性差、地脚空虚以及旋转失衡,喘振。 二、轴承发生故障时的处理方法: 轴承出现故障时,应从以下几个方面解决问题 1、加油不恰当,润滑油加的过多或过少。应当按工作的的要求定期给轴承加油。轴承加油后有时也会出现温度高的情况,这主要是加油过多。 2、轴承所加油脂不符号要求或被污染。润滑油脂选用不合适,不易形成均匀的润滑油膜。无法减少轴承内部的摩擦和磨损,润滑不足,轴承温度升高。当不同型号的油脂混合时可能发生化学反应,造

成油脂变质,结块,降低润滑效果。加注油脂的过程中落入灰尘,造成油脂污染,会导致油脂劣化破坏轴承润滑,进而使轴承损坏。因此应选用合适的油脂,检修中对轴承清洗,对加油油嘴进行检查疏通,不同型号的油脂不能混合使用,若更换其他型号的油脂时,应先将原来的油脂清理干净;运行维护中定期加油,油脂应妥善保管做好防潮防尘措施。 3、确认不存在上面的问题后再检查联轴器找正情况和轴承质量。联轴器的找正要符合工艺标准。在设备维修检查时看轴承有无咬坏和磨损;检查轴承的内外圈,滚动体,保持架其表面光洁度以及有无裂痕和锈蚀,凹坑,过热变色等现象。检查轴承的游隙是否超标,若有以上情况要立即更换新的轴承。轴承的配合,轴承在安装时内径与轴,外径与外壳的配合非常重要,配合过松时,配合面会产生相对滑动称做蠕变。蠕变一但产生会磨损破坏面,损伤轴或外壳,而且磨损粉末会侵入轴承内部,造成发热,振动或损坏轴承。过盈过大时,会导致外圈外径变小或内圈内径变大,减少轴承内部的游隙。轴承各部配合间隙的调整,间隙过小时由于油脂在间隙内摩擦损失过大也会引起轴承发热。同时,间隙过小时,油量减小,来不及带走摩擦产生的热量,会进一步提高轴承的温度。但是间隙过大会改变轴承的动力特性,引起转子运动不稳定,因此要选择合适的轴承间隙。为选择合适用途的配合,要考虑轴承负荷的性质,大小,温度条件等各种情况来选用合适的轴承。减少轴承的更换频率,节省维护费用,保证设备的正常运行。 煤磨工段 2012.11.6

轴承常见故障分析

轴承常见故障分析 1 轴承的种类: 表1-1滚动轴承类型与适用精度等级。 轴承形式适用标 准 适用精度等级 深沟球轴 承 GB307 0 级 6 级 5 级 4 级 2级 角接触球轴承0 级 6 级 5 级 4 级 2级 调心球轴 承0级 圆柱滚子轴承0 级 6 级 5 级 4 级 2级 圆锥滚子轴承公制系 列 (单 列) GB307 级 6 级 6 级 5 级 4 级 公制系 列(双 列、四 列) SB/T534 1994 级

英制系列SB/CO/ T1089 Cla ss4 Cla ss2 Cla ss3 Cla ss0 Cla ss0 调心滚子 轴承 GB307 0级 推力球轴 承0 级 6 级 5 级 4 级 推力调心滚子轴承0级 2 轴承使用中常见问题及对策 2.1 强金属音 1、异常载荷:选择合适的装配游隙和预紧力 2、组装不良:提高轴的加工精度,改善安装方法 3、润滑剂不足:补充或使用合适润滑剂 2.2 规则音 1、异物引起沟道锈蚀、压痕、伤痕:清洗相关零件,使用干净润滑脂 2、沟道剥落:疲劳磨损,更换轴承 2.3 不规则异音 1、异物侵入:清洗相关零件,使用干净润滑脂 2、游隙过大:注意配合及选择合适游隙 3、钢球伤痕:钢球疲劳剥落或异物卡伤,更换轴承

2.4 异常温升 1、润滑剂过多:减少润滑剂。 2、润滑剂不足,或不适合:增加润滑剂或选择合适润滑剂。 3、配合面蠕变或密封装置过大:轴承外径或内径配合面修正,密封形式进行变更。 2.5 轴的回转振动大 1、剥落:疲劳剥落,更换轴承 2、组装不良:提高轴的加工精度,改善安装方法 3、异物侵入:清洗相关零件,使用干净润滑脂 2.6 润滑剂泄漏大变色 1、润滑剂过多:减少润滑剂 2、异物入侵:清洗相关零

滚动轴承故障诊断分析

滚动轴承故障诊断分析 学院名称:机械与汽车工程学院专业班级: 学生姓名: 学生学号: 指导教师姓名:

摘要 滚动轴承故障诊断 本文对滚动轴承的故障形式、故障原因、常用诊断方法等诊断基础和滚动轴承故障的振动机理作了研究,并建立了相应的滚动轴承典型故障(外圈损伤、内圈损伤、滚动体损伤)的理论模型,给出了一些滚动轴承故障诊断常见实例。通过对滚动轴承故障振动机理的研究可以帮助我们了解滚动轴承故障的本质和特征。本文对特征参数的提取,理论推导,和过程都进行了详细的阐述, 关键词:滚动轴承;故障诊断;特征参数;特征; ABSTRACT : The Rolling fault diagnosis In the thesis ,the fault types,diagnostic methods an d vibration principle of rolling bearing are discussed.the thesis sets up a series of academic m odels of faulty rolling bearings and lists some sym ptom parameters which often used in fault diagnosis of rolling bearings . the study of vibration prin ciple of rolling bearings can help us to know the essence and feature of rolling bearings.In this pa

基于连续小波变换的信号检测技术与故障诊断

机械工程学报 CHINESE JOURNAL OF MECHANICAL ENGINEERING 2000 Vol.36 No.12 P.95-100 基于连续小波变换的信号检测技术与故障诊断 林京 屈梁生 摘 要:通过分析指出,连续小波变换具有很强的弱信号检测能力,非常适合故障诊断领域。从参数离散到参数优化系统研究了连续小波变换的工程应用方法,建立 了“小波熵”的概念,并以此作为基小波参数的择优标准。论文最后把连续小波技术应用在滚动轴承滚道缺陷和齿轮裂纹的识别中,诊断效果十分理想。 关键词:小波故障诊断滚动轴承齿轮 分类号:TH133.33 TH132.41 FEATURE DETECTION AND FAULT DIAGNOSIS BASED ON CONTINUOUS WAVELET TRANSFORM Lin Jing(State Key Laboratory of Acoustics, Institute ofAcou stics, Chinese Academy of Science)  Qu Liangsheng(Xi’an Jiaotong University) Abstract:It is pointed out that continuous wavelet transform(CWT) has powerful ability for weak signal detection which help itself to be used for fault diagnosis. The method for parameter discretization and optimi zation of CWT is estabished. The concept of wavelet entropy is introduced and it is used as a rule for parameter optimization. In the end, CWT is used fo r fault diagnosis of rolling bearing and gear-box. Very good results are obtain ed using this method. Keywords:Wavelet Fault diagnosis Rolling bearing Gear

滚动轴承常见故障及原因分析

滚动轴承常见故障及原因分析 1.故障形式 (1)轴承转动困难、发热; (2)轴承运转有异声; (3)轴承产生振动; (4)内座圈剥落、开裂; (5)外座圈剥落、开裂; (6)轴承滚道和滚动体产生压痕。 2.故障原因分析 (1)装配前检查不仔细,轴承在装配前要先清洗并认真检查轴承的内外座圈、滚动体和保持架,是否有生锈、毛刺、碰伤和裂纹;检查轴承间隙是否合适,转动是否轻快自如,有无突然卡止的现象;同时检查轴径和轴承座孔的尺寸、圆度和圆柱度及其表面是否有毛刺或凹凸不平等。对于对开式轴承座,要求轴承盖和轴承底座接合面处与外座圈的外圆面之间,应留出0.1mm~0.25mm间隙,以防止外座两侧“瓦口”处出现“夹帮”现象导致的间隙减小,磨损加快,使轴承过早损坏。 (2)装配不当。装配不当会导致轴承出现上述的各种故障形式,以及以下的几种情况: A.配合不当 轴承内孔与轴的配合采用基孔制,轴承外圆与轴承座孔的配合采用基轴制。一般在正常负荷情况下工作的离心泵、离心机、减速机、电动机和离心式压缩机的轴与轴承内座圈,采用j5,js5,js6,k5,k6,m6配合,

轴承座孔与轴承外座圈采用j6,j7配合。旋转的座圈(大多数轴承的内座圈为旋转座圈,外座圈不为旋转座圈,少部分轴承则相反),通常采用过盈配合,能在负荷作用下避免座圈在轴径和轴承座孔的配合表面上发生滚动和滑动。 滚动轴承常见故障原因分析 但有时由于轴径和轴承座孔的尺寸测量不精确或配合面粗糙度未达到标准要求,造成过大的过盈配合,使轴承座圈受到很大挤压,从而导致轴承本身的径向间隙减少,使轴承转动困难、发热,磨损加剧或卡死,严重时会造成轴承内外座圈在按装时开裂。不旋转座圈常采用间隙或过盈不大的配合,这样不旋转座圈就有可能产生微小的爬动,而使座圈与滚动体的接触面不断更换,座圈滚道磨损均匀。同时也可以消除轴因热伸长而使轴承中滚动体发生轴向卡住的现象。但过大的间隙配合,会使不旋转座圈随滚动体一同转动,致使轴(或轴承座孔)与内座圈(或外座圈)发生严重磨损,而出现摩擦使轴承发热、振动。 B.装配方法不当 轴承和轴径或轴承座孔的过盈较小时,多采用压入法装配。最简单的方法是利用铜棒和手锤,按一定的顺序对称地敲打轴承带过盈配合的座圈,使轴承顺利压入。另外,也可用软金属制的套管借手锤打入或压力机压入。若操作不当,则会使座圈变形开裂,或者手锤打在非过盈配合的座圈上,则会使滚道和滚动体产生压痕或轴承间接被破坏。 C.装配时温度控制不当 滚动轴承在装配时,若其与轴径的过盈较大,一般采用热装法装配。

滚动轴承故障诊断频谱分析讲解学习

滚动轴承故障诊断1(之国外专家版) 滚动轴承故障 现代工业通用机械都配备了相当数量的滚动轴承。一般说来,滚动轴承都是机器中最精密的部件。通常情况下,它们的公差都保持在机器的其余部件的公差的十分之一。但是,多年的实践经验表明,只有10%以下的轴承能够运行到设计寿命年限。而大约40%的轴承失效是由于润滑引起的故障,30%失效是由于不对中或“卡住”等装配失误,还有20%的失效是由过载使用或制造上缺陷 等其它原因所致。 如果机器都进行了精确对中和精确平衡,不在共振频率附近运转,并且轴承润滑良好,那么机器运行就会非常可*。机器的实际寿命也会接近其设计寿命。然而遗憾的是,大多数工业现场都没有做到这些。因此有很多轴承都因为磨损而永久失效。你的工作是要检测出早期症状并估计故障的严重程度。振动分析和磨损颗粒分析都是很好的诊断方法。 1、频谱特征 故障轴承会产生与1X基频倍数不完全相同的振动分量——换言之,它们不是同步的分量。对振动分析人员而言,如果在振动频谱中发现不同步分量那么极有可能是轴承出现故障的警告信号。 振动分析人员应该马上诊断并排除是否是其它故障引起的这些不同步分量。 如果看到不同步的波峰,那极有可能与轴承磨损相关。如果同时还有谐波和边频带出现,那么轴承磨损的可能性就非常大——这时候你甚至不需要再去了解轴承准确的扰动频率。 2、扰动频率计算 有四个与轴承相关的扰动频率:球过内圈频率(BPI)、球过外圈频率(BPO)、保持架频率(FT)和球的自旋频率(BS)。轴承的四个物理参数:球的数量、球的直径、节径和接触角。其中,BPI 和BPO的和等于滚珠/滚柱的数量。例如,如果BPO等于3.2 X,BPI等于4.8 X,那么滚珠/滚柱 的数量必定是8。

轴承故障原因分析及处理方法

轴承故障原因分析及处理方法 [摘要]: 本文介绍了轴承常见故障和处理办法,总结了避免故障发生的几种办法,保证生产的连续性。 [关键字]:轴承;故障率高;处理措施; 一、前言: 轴承是生产线设备上常用的支撑轴零件,它可以引导轴的旋转,也可以承受轴上空转的零件,由于其使用量大,生产过程中经常出现故障,给车间生产的连续性和产品质量的保障带来严重影响。因此,迅速判断故障产生的原因,采取得当的解决措施,保证设备的连续运行是确保产品质量的重要基础和保证。 二、轴承故障原因分析: 导致轴承故障率升高的常见原因: 1、润滑不良,如润滑不足或过分润滑,润滑油质量不符合要求,变质或有杂物。 2、轴承异常,如轴承损坏,轴承装配工艺差,轴承各部位间隙调整不符合要求。 3、振动大,如联轴器找正工艺差不符合要求,转子存在动、静不平衡,基础刚性差、地脚空虚以及旋转失衡,喘振。 三、轴承发生故障时的处理方法: 轴承出现故障时,应从以下几个方面解决问题

1、加油不恰当,润滑油加的过多或过少。应当按工作的的要求定期给轴承加油。轴承加油后有时也会出现温度高的情况,这主要是加油过多。 2、轴承所加油脂不符号要求或被污染。润滑油脂选用不合适,不易形成均匀的润滑油膜。无法减少轴承内部的摩擦和磨损,润滑不足,轴承温度升高。当不同型号的油脂混合时可能发生化学反应,造成油脂变质,结块,降低润滑效果。加注油脂的过程中落入灰尘,造成油脂污染,会导致油脂劣化破坏轴承润滑,进而使轴承损坏。因此应选用合适的油脂,检修中对轴承清洗,对加油油嘴进行检查疏通,不同型号的油脂不能混合使用,若更换其他型号的油脂时,应先将原来的油脂清理干净;运行维护中定期加油,油脂应妥善保管做好防潮防尘措施。 3、确认不存在上面的问题后再检查联轴器找正情况和轴承质量。联轴器的找正要符合工艺标准。在设备维修检查时看轴承有无咬坏和磨损;检查轴承的内外圈,滚动体,保持架其表面光洁度以及有无裂痕和锈蚀,凹坑,过热变色等现象。检查轴承的游隙是否超标,若有以上情况要立即更换新的轴承。轴承的配合,轴承在安装时内径与轴,外径与外壳的配合非常重要,配合过松时,配合面会产生相对滑动称做蠕变。蠕变一但产生会磨损破坏面,损伤轴或外壳,而且磨损粉末会侵入轴承内部,造成发热,振动或损坏轴承。过盈过大时,会导致外圈外径变小或内圈内径变大,减少轴承内部的游隙。轴承各部配合间隙的调整,间隙过小时由于油脂在间隙内摩擦损失过大也会引起轴承发热。同时,间隙过小时,油量减小,来不及带走摩擦产生的热

基于小波分析的机械故障诊断

绪 论 机械故障诊断技术作为一门新兴的科学,自从二十世纪六七十年代以来已经取得了突飞猛进的发展,尤其是计算机技术的应用,使其达到了智能化阶段。现在,机械故障诊断技术在工业生产中起着越来越重要的作用,生产实践已经证明开展故障诊断与状态预测技术研究具有重要的现实意义。 我国的故障诊断技术在理论研究方面,紧跟国外发展的脚步,在实践应用上还是基本落后于国外的发展。在我国,故障诊断的研究与生产实际联系不是很紧密,研究人员往往缺乏现场故障诊断的经验,研制的系统与实际情况相差甚远,往往是从高等院校和科研部门开始,再进行到个别行业,而国外的发展则是从现场发现问题进而反映到高等院校或科研部门,使得研究有的放矢[1]。 要求机械设备不出故障是不现实的,因为不存在绝对安全可靠的机械设备。因此,为了预防故障和减少损失,必须对设备的运行状态进行监测,及时发现设备的异常状况,并对其发展趋势进行跟踪:对己经形成的或正在形成的故障进行分析诊断,判断故障的部位和产生的原因,并及早采取有效的措施,这样才能做到防患于未然。因此,设各状态监测与故障诊断先进技术的研究对于保证复杂机械设备的安全运行具有重要意义。 关键词:小波分析,故障诊断,小波基选取,奇异性 基于小波分析的机械故障检测 小波奇异性理论用于机械故障检测的基本原理 信号的奇异性与小波变换的模极大值之间有如下的关系: 设)(x g 为一光滑函数,且满足条件0g(x) lim ,1x)dx ( g x ==∞→+∞ ∞-?,不妨设)(x g 为高斯函数,即σσπ2221)(x e x g -= ,令 d x,/x)( dg x)(=ψ由于?+∞ ∞-=0x)dx (ψ,因此,可取函数x)(ψ

滚动轴承故障诊断与分析..

滚动轴承故障诊断与分析Examination and analysis of serious break fault down in rolling bearing 学院:机械与汽车工程学院 专业:机械设计制造及其自动化 班级:2010020101 姓名: 学号: 指导老师:王林鸿

摘要:滚动轴承是旋转机械中应用最广的机器零件,也是最易损坏的元件之一, 旋转机械的许多故障都与滚动轴承有关,轴承的工作好坏对机器的工作状态有很大的影响,其缺陷会产生设备的振动或噪声,甚至造成设备损坏。因此, 对滚动轴承故障的诊断分析, 在生产实际中尤为重要。 关键词:滚动轴承故障诊断振动 Abstract: Rolling bearing is the most widely used in rotating machinery of the machine parts, is also one of the most easily damaged components. Many of the rotating machinery fault associated with rolling bearings, bearing the work of good or bad has great influence to the working state of the machine, its defect can produce equipment of vibration or noise, and even cause equipment damage. Therefore, the diagnosis of rolling bearing fault analysis, is especially important in the practical production. Key words: rolling bearing fault diagnosis vibration 引言:滚动轴承是机器的易损件之一,据不完全统计,旋转机械的故障约有30% 是因滚动轴承引起的,由此可见滚动轴承故障诊断工作的重要性。如何准确判断出它的末期故障是非常重要的,可减少不必要的停机修理,延长设备的使用寿命,避免事故停机。滚动轴承在运转过程中可能会由于各种原因引起损坏,如装配不当、润滑不良、水分和异物侵入、腐蚀和过载等。即使在安装、润滑和使用维护都正常的情况下,经过一段时间运转,轴承也会出现疲劳剥落和磨损。总之,滚动轴承的故障原因是十分复杂的,因而对作为运转机械最重要件之一的轴承,进行状态检测和故障诊断具有重要的实际意义,这也是机械故障诊断领域的重点。 一滚动轴承故障诊断分析方法 1滚动轴承故障诊断传统的分析方法 1.1振动信号分析诊断 振动信号分析方法包括简易诊断法、冲击脉冲法(SPM法)、共振解调法(IFD 法)。振动诊断是检测诊断的重要工具之一。 (1)常用的简易诊断法有:振幅值诊断法,反应的是某时刻振幅的最大值,适用于表面点蚀损伤之类的具有瞬时冲击的故障诊断;波峰因素诊断法,表示的

基于小波分析的故障诊断算法

基于小波分析的故障诊断算法 前言: 小波变换是一种新的变换分析方法,它继承和发展了短时傅立叶变换局部化的思想,同时又克服了窗口大小不随频率变化等缺点,能够提供一个随频率改变的“时间- 频率”窗口,是进行信号时频分析和处理的理想工具。它的主要特点是通过变换能够充分突出问题某些方面的特征,因此,小波变换在许多领域都得到了成功的应用,特别是小波变换的离散数字算法已被广泛用于许多问题的变换研究中。从此,小波变换越来越引起人们的重视,其应用领域来越来越广泛。 在实际的信号处理过程中,尤其是对非平稳信号的处理中,信号在任一时刻附近的频域特征都很重要。如在故障诊断中,故障点(机械故障、控制系统故障、电力系统故障等)一般都对应于测试信号的突变点。对于这些时变信号进行分析,通常需要提取某一时间段(或瞬间)的频率信息或某一频率段所对应的时间信息。 因此,需要寻求一种具有一定的时间和频率分辨率的基函数来分析时变信号。小波变换继承和发展了短时傅里叶变换的局部化思想,并且克服了其窗口大小和形状固定不变的缺点。它不但可以同时从时域和频域观测信号的局部特征,而且时间分辨率和频率分辨率都是可以变化的,是一种比较理想的信号处理方法。 小波分析被广泛应用于信号处理、图像处理、语音识别、模式识别、数据压缩、故障诊断、量子物理等应用领域中。 小波分析在故障诊断中应用进展 1)基于小波信号分析的故障诊断方法 基于小波分析直接进行故障诊断是属于故障诊断方法中的信号处理法。这一方法的优点是可以回避被诊断对象的数学模型, 这对于那些难以建立解析数学模型的诊断对象是非常有用的。 具体可分为以下4种方法: ①利用小波变换检测信号突变的故障方法连续小波变换能够通过多尺度分析提取信号的奇异点。基本原理是当信号在奇异点附近的Lipschitz指数a >0时,其连续小波变换的模极大值随尺度的增大而增大;当a <0时,则随尺度的增大而减小。噪声对应的Lipschitz指数远小于0, 而信号边沿对应的Lipschitz 指数大于或等于0。因此, 利用小波变换可以区分噪声和信号边沿, 有效地检测出强噪声背景下的信号边沿(奇变)。动态系统的故障通常会导致系统的观测信号发生奇异变化, 可以直接利用小波变换检测观测信号的奇异点, 从而实现对系统故障的检测。比如根据输油管泄漏造成的压力信号突变的特点, 用小波变换检测这些突变点, 实现输油管道的泄漏点诊断。 ②观测信号频率结构变化的故障诊断方法小波多分辨率分析能够描述信号的频谱随 时间变化情况或信号在某时刻

滚动轴承故障诊断与分析

滚动轴承故障诊断与分析 Examination and analysis of serious break fault down in rolling bearing

学院:机械与汽车工程学院 专业:机械设计制造及其自动化 班级:2010020101 姓名: 学号: 指导老师:王林鸿 :摘要,滚动轴承是旋转机械中应用最广的机器零件,也是最易损坏的元件之一 轴承的工作好坏对机器的工作状态有很旋转机械的许多故障都与滚动轴承有关,对滚动甚至造成设备损坏。因此, 大的影响,其缺陷会产生设备的振动或噪声, 轴承故障的诊断分析, 在生产实际中尤为重要。关键词:振动滚动轴承故 障诊断 Rolling bearing is the most widely used in rotating Abstract:easily machinery of the machine parts, is also one of the most damaged components. Many of the rotating machinery fault associated with rolling bearings, bearing the work of good or bad has great influence to the working state of the machine, even and of vibration or noise, produce its defect can equipment cause equipment damage. Therefore, the diagnosis of rolling bearing fault analysis, is especially important in the practical production. Key words: rolling bearing fault diagnosis vibration 引言:%30滚动轴承是机器的易损件之一,据不完全统计,旋转机械的故障约

小波分析在故障诊断中的实际应用

测 控 系统 课 程 设 计 题目:基于小波分析的故障诊断 院 (系) 机电及自动化学院 专 业 测控技术与仪器1班 学 号 0911211014 姓 名 李志文 级 别 2 0 0 9 指导老师 王启志 2012年6月 Huaqiao university

摘要 基于小波变换的故障诊断是当前比较热门的一项研究之一,如何快速、准确地提取故障信号,如何准确定位故障的发生点及进行故障的预测是故障分析与检测的关键性问题。本文就此问题展开如下研究。 本文详细分析了小波变换的基本理论、小波变换用于故障检测的基本原理。介绍了几种常用的小波及其应用特点。通过实例分析比较不同小波类型的应用特点,通过对他们的优缺点的了解,能够在不同的环境下选取合适的小波类型进行故障检测,同时针对不同的着重点选取恰当的小波。 关键词:小波分析,故障检测,小波基选取,奇异性 ABSTRACT Fault diagnosis based on wavelet transform is one of the popular a study, how quickly and accurately extract the fault signal, and how to accurately locate the fault occurred and the failure of the forecasts are the key issues of fault analysis and detection. On this issue, the following research. In this paper a detailed analysis of the basic theory of wavelet transform, the basic principles of wavelet transform for fault detection. Several commonly used wavelet and its application characteristics. By case analysis comparing different wavelet characteristics, by understanding their strengths and weaknesses in different environments to select the appropriate wavelet for fault detection, and select the appropriate wavelet for a different focus. KEY WORDS:wavelet analysis,defect detection,wavelet basis selection, singularity

滚动轴承故障诊断技术

目录 摘要 (3) 第1章绪论 (4) 1.1滚动轴承故障诊断技术的发展现状 (4) 1.2滚动轴承故障诊断技术的发展趋势 (6) 1.3滚动轴承诊断基础 (7) 1.3.1滚动轴承的常见故障形式 (7) 1.3.2滚动轴承的诊断方法 (8) 1.4本课题的研究意义和内容 (9) 第2章滚动轴承振动机理 (11) 2.1滚动轴承的基本参数 (11) 2.1.1滚动轴承的典型结构 (7) 2.1.2滚动轴承的特征频率 (11) 2.1.3滚动轴承的固有频率 (13) 2.2滚动轴承故障诊断常用参数 (14) 2.2.1时间领域有量纲特征参数 (14) 2.2.2时间领域的无量纲特征参数 (15) 2.2.3频率领域的无量纲特征参数 (16) 第3章滚动轴承故障诊断实验系统及实验方案 (17) 3.1滚动轴承故障诊断实验系统 (17) 3.1.1滚动轴承故障实验机械平台 (18) 3.1.2设备的组成: (19) 3.1.3设备的主要参数: (19) 3.1.4实验平台信号采集及故障诊断系统 (21) 3.2实验方案 (23) 3.2.1轴承的故障状态 (23) 3.2.2实验步骤 (23) 第4章实验的操作过程及数据的提取 (25) 4.1装拆轴承 (25)

4.1.1实验前期准备 (25) 4.1.2试机 (25) 4.1.3拆卸并安装轴承 (25) 4.2信号的采集过程 (27) 4.2.1前期准备 (27) 4.2.2数据采集过程 (28) 4.3数据信号的处理过程 (30) 第5章结论 (35) 致谢 (36) 参考文献 (37)

旋转机械故障诊断特征参数的提取 摘要:本文对滚动轴承的故障形式、故障原因、常用诊断方法等诊断基础和滚动轴承故障的振动机理作了研究,并建立了相应的滚动轴承典型故障(外圈损伤、内圈损伤、滚动体损伤)的理论模型,给出了一些滚动轴承故障诊断常用的特征参数。通过对滚动轴承故障振动机理的研究可以帮助我们了解滚动轴承故障的本质和特征。本文对特征参数的提取,理论推导,和过程都进行了详细的阐述,本文所提出的方法不仅仅适用滚动轴承故障的诊断,还可推广适用旋转机械其它故障的诊断。 关键词:滚动轴承;故障诊断;特征参数;分辨指数;识别率 The Extraction on Fault Diagnosis Symptom Parameters of Rotating Machinery ABSTRACT:In the thesis ,the fault types,diagnostic methods and vibration principle of rolling bearing are discussed.the thesis sets up a series of academic models of faulty rolling bearings and lists some symptom parameters which often used in fault diagnosis of rolling bearings . the study of vibration principle of rolling bearings can help us to know the essence and feature of rolling bearings.In this paper, the parameters of the extraction, theoretical analysis, and process are described in detail, the paper by the way not only to the Rolling fault diagnosis, but also promote the application of other rotating machinery fault diagnosis. Keywords:Rolling Bearing; Fault Diagnosis; Symptom Parameter; Distinction Index; Distinction Rate

电机轴承故障处理及分析

电机轴承故障处理及分析 一、保持器声“唏利唏利……” 原因分析:由保持器与滚动体振动、冲撞产生,不管润滑脂种类如何都可能产生,承受力矩、负荷或径向游隙大的时候更容易产生。 解决方法: 1、提高保持器精; 2、选用游隙小的轴承或对轴承施加预负荷; 3、降低力矩负荷,减少安装误差; 4、选用好的油脂。 二、连续蜂鸣声“嗡嗡……” 原因分析:马达无负荷运转是发出类似蜂鸣一样的声音,且马达发生轴向异常振动,开或关机时有“嗡”声音。 具体特点:多发润滑状态不好,冬天且两端用球轴承的马达多发,主要是轴调心性能不好时,轴向振动影响下产生的一种不稳定的振动。 解决方法: 1、用润滑性能好的油脂; 2、加预负荷,减少安装误差; 4、提高马达轴承座刚性; 5、加强轴承的调心性。 注:第五点起到根本改善的作用,采用02小沟曲率,01大沟曲率。 三、漆锈 原因分析:由于电机轴承机壳漆油后干,挥发出来的化学成分腐蚀轴承的端面、外沟及沟道,使沟道被腐蚀后发生的异常音。 具体特点:被腐蚀后轴承表面生锈比第一面更严重。 解决方法: 1、把转子、机壳、晾干或烘干后装配; 3、选用适应漆的型号; 4、改善电机轴承放置的环境温度; 5、用适应的油脂,脂油引起锈蚀少,硅油、矿油最易引起; 6、采用真空浸漆工艺。 四、杂质音 原因分析:由轴承或油脂的清洁度引起,发出一种不规则的异常音。 具体特点:声音偶有偶无,时大时小?有规则,在高速电机上多发。 解决方法: 1、选用好的油脂; 2、提高注脂前清洁度; 3、加强轴承的密封性能; 4、提高安装环境的清洁度。 五、高频、振动声“哒哒......” 具体特点:声音频率随轴承转速而变化,零件表面波纹度是引起噪音的主要原因。 解决方法: 1、改善轴承滚道表面加工质量,降低波纹度幅值; 2、减少碰伤;

滚动轴承故障诊断的频谱分析

滚动轴承故障诊断的频谱分析 滚动轴承在机电设备中的应用非常广泛,滚动轴承状态的好坏直接关系到旋转设备的运行状态,因此在实际生产过程中作好滚动轴承的状态监测与故障诊断是搞好设备维修与管理的重要环节。 滚动轴承在其使用过程中表现出很强的规律性,并且重复性强。正常优质轴承在开始使用时振动和噪声均比较小,但频谱有些散乱,幅值比较小。运动一段时间后,振动和噪声保持在一定水平,频谱比较单一,仅出现一,二倍频,极少出现三倍工频以上频谱,轴承状态非常平稳,进入稳定工作期。持续运行后进入使用后期,轴承振动和噪声开始增大,有时出现异音,但振动增大的变化比较缓慢,此时,轴承峭度值开始突然到达一定值。可以认为此时轴承出现了初期故障。这时就要对轴承进行严密监测,密切注意其变化。此后轴承峭度值又开始快速下降,并接近正常值,而振动和噪声开始显著增大,其增大幅度开始加快,其振动超过标准时(ISO2372),其轴承峭度值也开始快速增大,当轴承超过振动标准,峭度值也超过正常值时,可认为轴承已进入晚期故障,需要及时检修设备,更换滚动轴承。 1、滚动轴承故障诊断方式 振动分析是对滚动轴承进行状态监测和故障诊断的常用方法。一般方式为:利用数据采集器在设备现场采集滚动轴承振动信号并储存,传送到计算机,利用振动分析软件进行深入分析,从而得到滚动轴承各种振动参数的准确数值,进而判断这些滚动轴承是否存在故障。采用恩递替公司的Indus3振动测量分析系统进行大中型电机滚动轴承的状态监测和故障诊断,经过近几年实际使用,其效果令人非常满意。要想真实准确反映滚动轴承振动状态,必须注意采集信号的准确真实,因此要在离轴承最近的地方安排测点。 2、滚动轴承正常运行特点与诊断技巧 滚动轴承的运转状态在其使用过程中有一定的规律性,并且重复性非常好。例如,正常优质轴承在开始使用时,振动幅值和噪声均比较小,但频谱有些散乱(图1)这可能是由于制造过程中的一些缺陷,如表面毛刺等所致。运行一段时间后,振动幅值和噪声维持一定水平,频谱非常单一,仅出现一、二倍频。极少出现三倍工频以上频谱(图2),轴承状态非常稳定,进入稳定工作期。继续运行一段时

滚动轴承常见故障及其原因分析参考文本

滚动轴承常见故障及其原因分析参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

滚动轴承常见故障及其原因分析参考文 本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 1.故障形式 (1)轴承转动困难、发热; (2)轴承运转有异声; (3)轴承产生振动; (4)内座圈剥落、开裂; (5)外座圈剥落、开裂; (6)轴承滚道和滚动体产生压痕。 2.故障原因分析 (1)装配前检查不仔细,轴承在装配前要先清洗并认 真检查轴承的内外座圈、滚动体和保持架,是否有生锈、 毛刺、碰伤和裂纹;检查轴承间隙是否合适,转动是否轻

快自如,有无突然卡止的现象;同时检查轴径和轴承座孔的尺寸、圆度和圆柱度及其表面是否有毛刺或凹凸不平等。对于对开式轴承座,要求轴承盖和轴承底座接合面处与外座圈的外圆面之间,应留出0.1mm~0.25mm间隙,以防止外座两侧“瓦口”处出现“夹帮”现象导致的间隙减小,磨损加快,使轴承过早损坏。 (2)装配不当。装配不当会导致轴承出现上述的各种故障形式,以及以下的几种情况: A.配合不当 轴承内孔与轴的配合采用基孔制,轴承外圆与轴承座孔的配合采用基轴制。一般在正常负荷情况下工作的离心泵、离心机、减速机、电动机和离心式压缩机的轴与轴承内座圈,采用j5,js5,js6,k5,k6,m6配合,轴承座孔与轴承外座圈采用j6,j7配合。旋转的座圈(大多数轴承的内座圈为旋转座圈,外座圈不为旋转座圈,少部分轴承

滚动轴承常见故障及其原因分析正式版

Through the reasonable organization of the production process, effective use of production resources to carry out production activities, to achieve the desired goal. 滚动轴承常见故障及其原 因分析正式版

滚动轴承常见故障及其原因分析正式 版 下载提示:此安全管理资料适用于生产计划、生产组织以及生产控制环境中,通过合理组织生产过程,有效利用生产资源,经济合理地进行生产活动,以达到预期的生产目标和实现管理工作结果的把控。文档可以直接使用,也可根据实际需要修订后使用。 1.故障形式 (1)轴承转动困难、发热; (2)轴承运转有异声; (3)轴承产生振动; (4)内座圈剥落、开裂; (5)外座圈剥落、开裂; (6)轴承滚道和滚动体产生压痕。 2.故障原因分析 (1)装配前检查不仔细,轴承在装配前要先清洗并认真检查轴承的内外座圈、滚动体和保持架,是否有生锈、毛刺、碰伤和裂纹;检查轴承间隙是否合适,转动

是否轻快自如,有无突然卡止的现象;同时检查轴径和轴承座孔的尺寸、圆度和圆柱度及其表面是否有毛刺或凹凸不平等。对于对开式轴承座,要求轴承盖和轴承底座接合面处与外座圈的外圆面之间,应留出0.1mm~0.25mm间隙,以防止外座两侧“瓦口”处出现“夹帮”现象导致的间隙减小,磨损加快,使轴承过早损坏。 (2)装配不当。装配不当会导致轴承出现上述的各种故障形式,以及以下的几种情况: A.配合不当 轴承内孔与轴的配合采用基孔制,轴承外圆与轴承座孔的配合采用基轴制。一般在正常负荷情况下工作的离心泵、离心

轴承故障诊断技术及发展现状和前景

轴承故障诊断技术及发展现状和前景 摘要 本文分析了轴承故障信号的基本特征,并将共振解调技术的原理和基于振动信号的信号处理方法用于滚动轴承的故障诊断. 在实践中运用该技术手段消减了背景噪声的干扰,提高了轴承的信噪比, 取得了与实际情况完全吻合的诊断结果。并概述了滚动轴承故障监测和诊断工程与试验应用技术的现状,并预测了滚动轴承故障监测和诊断技术应用新进展和发展方向。 关键词:滚动轴承;共振解调;小波 分析;信噪比(SN R );变速箱;故障监测;信号处理;故障诊断;应用技术。 1 轴承故障信号的基木 特征 机器在正常工作的条件下其转轴 总是匀速转动的. 由轴承的结构可知, 当轴承某元件的工作而产生缺陷时, 由加速度传感器所测取到的轴承信号 具有周期性冲击的特征,由信号理论 可知, 时域中短暂而尖锐的冲击信号 变换到频域中去时必具有宽频带的特 性, 而非冲击的干扰信号则不具有上 述特性,所以时域中的周期性冲击与 频域中的宽频带特性构成了轴承故障 信号区别于其它非冲击性干扰信号的 基木特征。 2 用共振解调技术提高 轴承信号的信噪比 我们来考察一下用共振解调技术提高轴承信号信噪比的过程。传感器拾取到的轴承信号包含两部分内容, 即轴承的故障信号和干扰噪声两部分。带通滤波器的中心频率与传感器的安装片振圆频率相一致, 它将保存被传感器的共振响应所加强了的冲击性故障信号, 滤除掉频率较低的干扰噪声信号, 这种保留下来的瞬态冲击信号经过包络检波器后就形成了一个与故障冲击重复频率相一致的包络脉冲串, 然后对该脉冲串进行普分析便在低频域内得到一个与冲击币复频率相一致的峰值。峰值的大小反映了冲击的强弱即故障的严重程度这样我们就借助共振解调技术实现了故障信号与干扰信号的分离, 并在低频域内重新得到了故障冲击的信息。而在常规的信号分析与处理过程中一开始就使用了抗混频滤波器(低通滤波器这种分析方法没有利用轴承故障信号的特点, 经抗混频滤波器后将被传感器的共振以加强放大了的故障特征信号无情地滤除了, 所剩下的只是强大的背景噪声信号及微弱的故障特征信号, 因此用常规的信号分析方法难以排除干扰信号的影响而采用共振解调技术就可以排除背景噪声的干扰, 提高轴承故障诊断的有效率。

相关文档
相关文档 最新文档