文档视界 最新最全的文档下载
当前位置:文档视界 › midas梁单元、板单元及实体单元悬臂梁模型的建立及结构分析

midas梁单元、板单元及实体单元悬臂梁模型的建立及结构分析

midas梁单元、板单元及实体单元悬臂梁模型的建立及结构分析
midas梁单元、板单元及实体单元悬臂梁模型的建立及结构分析

北京迈达斯技术有限公司

目录

简要 (1)

设定操作环境 (1)

输入材料和截面数据 (2)

定义材料 (2)

定义截面 (2)

定义厚度 (2)

建立悬臂梁模型 (3)

输入梁单元 (3)

输入板单元 (4)

输入实体单元 (5)

修改单元坐标系 (6)

分割单元 (7)

输入边界条件 (8)

输入荷载 (9)

运行结构分析 (12)

查看分析结果 (13)

查看反力 (13)

查看变形和位移 (14)

查看内力 (15)

查看应力 (19)

简要

本例题介绍使用梁单元、板单元、实体单元来建立悬臂梁,并查看各种单元分析结果的方法。

模型如图1所示,截面为长方形(0.4m x 1m),长20m。

图1. 悬臂梁模型

设定操作环境

打开新项目(新项目),保存(保存)为‘Cantilever. mcb’。

文件 / 新项目

文件 / 保存 (悬臂梁 )

单位体系做如下设置。

工具 / 单位体系

长度>m ; 力>tonf

材料: C30

固定端

实体单元

梁单元

板单元

长: 20m

1m

0.4m

输入材料和截面数据

定义材料

模型 / 材料和截面特性 / 材料

类型>混凝土 ; 规范>GB-Civil(RC) ; 数据库>30 ?

定义截面

使用User Type ,输入实腹长方形截面(0.4m × 1m)。

模型 /材料和截面特性 / 截面 数据库 / 用户

名称>SR ; 截面类型>实腹长方形截面 用户 ; H ( 0.4 ) ; B ( 1 ) ?

定义厚度

模型 / 材料和截面特性 / 厚度

数值

厚度号 (1) ; 面内和面外( 0.4 ) ?

图2. 定义材料 图3. 定义截面 图4. 定义厚度

对于面内厚度和面外厚度的说明请参考在线帮助手册。

建立悬臂梁模型

输入梁单元

使用扩展功能建立梁单元。

标准视图, 自动对齐(开), 单元号 (开)

模型 / 节点 / 建立

坐标 ( 0, 0, 0 )?

模型 / 单元 / 扩展单元

全选

扩展类型>节点 线单元

单元属性>单元类型>梁

材料>1:30 ; 截面>1 : SR ; Beta Angle ( 0 )

生成形式>复制和移动 ;

复制和移动>等间距

dx, dy, dz ( 20, 0, 0 ) ; 复制次数 ( 1 ) ?

图5. 输入梁单元

输入板单元

首先将梁单元复制到板单元的输入位置后,通过 扩展功能将梁单

元扩展成板单元。

模型 / 单元 / 复制和移动

选择最新建立的个体 形式>复制

移动和复制>等间距 ; dx, dy, dz ( 0, 0.5, -2 ) 复制次数 ( 1 ) ?

模型 / 单元 / 扩展单元

选择最新建立的个体 扩展类型>线单元 平面单元 目标>移动 (on)

单元属性>单元类型>板单元 材料>1:30 ; 厚度>1 : 0.4 生成形式>复制和移动 复制和移动> 等间距

dx, dy, dz ( 0, -1, 0 ) ; 复制次数 ( 1 ) ?

图6. 利用复制的梁单元建立板单元

选择删除的话,复

制的梁单元被扩展后会自动被删除。选择移动的话,该梁单元会移动到生成的板单元的末端。

输入实体单元

使用同样的方法,将板单元复制到实体单元的输入位置后,通过扩展功能将板单元扩展成实体单元。

模型 / 单元 / 复制和移动

选择最新建立的个体

模型>复制

复制和移动>等间距 ; dx, dy, dz ( 0, 0, -1.5 )

复制次数 ( 1 ) ?

模型 / 单元 / 扩展单元

选择最近建立的个体

扩展类型>平面单元 实体单元

目标>移动 (on)

单元属性>单元类型>实体

材料>1:30

生成类型>复制和移动

复制和移动>等间距

dx, dy, dz ( 0, 0, -0.4 ) ; 复制次数 ( 1 ) ?

图7. 输入实体单元模型

修改单元坐标系

单元的内力是以相应单元的单元坐标系为准输出的,因此适当地赋予单元坐标系,可使查看结果变得更为方便

本例题中使用 Change Element Parameters 功能将所有单元的坐标系修改为统一的单元坐标系。

显示

单元>局部坐标轴 (开)

模型 / 单元 / 修改单元参数

全选

参数类型>修改单元坐标轴

模型>参考单元>( 1 )

与参考单元对齐坐标轴优先顺序>1st (Loc-z);2nd (Loc-y)

图8. 修改板单元和实体单元的单元坐标系

修改前

修改后

分割单元

板单元和实体单元的大小会影响分析结果的精度。这里将板单元按单元坐标系的x方向分割成20份,将实体单元按单元坐标系的x,y方向分别分割成40份和2份。

模型 / 单元 / 分割单元

单选( 单元 : 3 )

分割>单元类型>平面 ; 等间距

x方向分割数量 ( 20 )

y方向分割数量 ( 1 ) ?

单选( 单元 : 5 )

分割>单元类型>实体 ; 等间距

x方向分割数量 ( 40 )

y方向分割数量 ( 2 )

z方向分割数量 ( 1 ) ?

显示

单元>局部坐标轴 (off)

图9. 被分割的板单元和实体单元

输入边界条件

输入各单元模型的边界条件(固定端)。

模型 / 边界条件/ 一般支撑

平面选择

平面>YZ 平面 ; X 坐标 (0)

? 选择>添加

支撑条件类型>D-All (开), R-All (开) ?

图10. 输入悬臂梁的边界条件

实体单元没有旋转自由度,因此不需约束。但由于是和其他单元一同定义边界条件,因此方便约束所有自由度。

输入荷载

对于梁单元使用Element Beam Loads功能,对于板单元和实体单元使用Pressure Loads功能按悬臂梁的重力方向(GCS–Z轴)输入1tonf/m的

均布荷载。

荷载工况1 : UL-Beam

荷载工况2 : UL-Plate

荷载工况3 : UL-Solid

荷载/ 静力荷载工况

名称( UL-Beam ) ; 类型>用户定义的荷载

名称( UL-Plate ) ; 类型>用户定义的荷载

名称( UL-Solid ) ; 类型>用户定义的荷载

图11. 定义荷载工况

使用Element Beam Loads功能输入梁单元的均布荷载。荷载 / 梁单元荷载

单选( 单元 : 1 )

荷载工况名称>UL-Beam

荷载类型>均布荷载

方向>整体坐标系 Z ; 投影>No ; 数值>相对值

x1 ( 0 ) ; x2 ( 1 ) ; w ( -1 )

图12. 梁单元均布荷载

使用Pressure Loads功能输入板单元的均布荷载。荷载 / 压力荷载

多边形选择 ( 单元 : 所有板单元) 荷载工况名称>UL-Plate ; 选择>添加

单元类型>板平面应力单元(面)

压力面>选择>单元

方向>整体坐标系 Z ; 投影>No 荷载>均布 ; P1 ( -1 )

图13. 输入板单元的均布荷载

使用Pressure Loads 功能输入实体单元的均布荷载。

实体单元输入压力荷载时对于加载面可选择以节点为准和以单元为准两种方式,这里选择以节点为准选择加载面。

荷载 / 压力荷载

平面选择

平面>X-Y 平面 ; Z 坐标 (-3.5)

荷载工况名称>UL-实体 ; 选择>添加 单元类型>实体单元(面)

选择>节点 ; 方向>整体坐标系 Z 荷载>均布 ; P1 ( -1 )

图14. 输入板单元的均布荷载

运行结构分析

分析 / 运行分析

用鼠标指定实体单元上端的任意节点,就会自动输入要选择的平面的Z 坐标-3.5。

选择加载方式时若选择单元的话,需指定单元的加载面。在图4左侧的树形菜单中,单元类型选择实体单元后选择要加载的单元的话,单元加载面就会按虚线显示,若加载面不符,可通过变换压力面#来调整。

Selection 的Element 方式 荷载加载面

查看分析结果

查看反力

利用表格查看由不同单元构成的悬臂梁在均布荷载作用下的反力。

结果 / 分析结果表格 / 反力

记录激活

荷载工况/荷载组合

UL-梁(ST) (开) ; UL-板(ST) (开)

UL-实体(ST) (开)

图15. 激活纪录对话框

图16. 反力结果表格

查看变形和位移

标准视图

结果 / 变形 / 变形形状

荷载工况/荷载组合>ST:UL-梁

位移>DXYZ ; 显示类型>变形前 (开) ?

荷载工况/荷载组合>ST:UL-板 ?

荷载工况/荷载组合>ST:UL-实体 ?

图17. 查看最大位移

各单元悬臂梁的最大位移(DZ)如表1所示。

表1. 各单元悬臂梁的最大位移

[单位 : m ]

查看内力

查看梁单元悬臂梁的弯矩。

结果 / 内力 / 梁单元内力图

内力>My

显示选项>5 点 (开) ; 线涂色 (开) ; 系数 (1)

显示类型>等值线图 (开) ; 数值 (开)

图例 (开)

输出>全部

图18. 梁单元中点的弯矩

板单元内力/弯矩提供板单元单位宽度内的内力。如果一个截面由几个单元组成,则对于整个截面的内力可利用局部方向内力的合力功能查看。

结果 / 内力 / 板单元内力/弯矩

荷载工况/荷载组合>ST:UL-板

坐标系>单元 ; 节点平均值

内力>Mxx

显示类型>等值线图 (开), 图例 (开)

图19. 查看板单元悬臂梁的弯矩

为查看实体单元悬臂梁中点(10m)的弯矩,现只激活该部分以便查看。

正面 ; 初始画面

图20.Model View的初始化

点击窗口选择选择图20的①,并将其激活。

查询 / 查询节点

节点号 ( 191 )

窗口选择( 单元 : 图20的①)

激活

查询节点, 查询单元是查询节点和单元相关情况时所使用的功能。点击节点或单元的输入栏(图20的○2)后,再点击模型中的节点或单元的话,相应节点或单元的情报就会在下面的信息窗口中显示。也可在输入栏直接输入节点或单元的编号再按回车键。使用查询节点的功能时,连续点击两个节点的话,还提供这两个节点间的相对距离。

节点191的相关数据

对于实体单元不另行输出内力,故需使用局部方向内力的合力 功能来查看整个截面的内力。

下面查看弯矩。

结果 / 局部方向内力的合力

形式>用多边形选择实体表面 ; 荷载工况>ST:UL-实体

输入坐标>位置 ( 271, 191, 72, 152 )

图21. 实体单元悬臂梁的弯矩

在局部方向内力的合力对话框查看弯矩(Mz)。

在局部方向内力的合力定义结果输出位置时,节点指定的顺序会决定计算内力时所参照的坐标系。详细内容请参考在线帮助手册。

用不同单元建立的悬臂梁弯矩的计算结果如表2所示。

表2. 各单元的弯矩 [单位 : tonf]

midas连续梁分析报告实例

1. 连续梁分析概述 比较连续梁和多跨静定梁受均布荷载和温度荷载(上下面的温差)下的反力、位移、 内力。 3跨连续两次超静定 3跨静定 3跨连续1次超静定 图 1.1 分析模型

?材料 钢材: Grade3 ?截面 数值 : 箱形截面 400×200×12 mm ?荷载 1. 均布荷载 : 1.0 tonf/m 2. 温度荷载 : ΔT = 5 ℃ (上下面的温度差) 设定基本环境 打开新文件,以‘连续梁分析.mgb’为名存档。单位体系设定为‘m’和‘tonf’。 文件/ 新文件 文件/ 存档(连续梁分析 ) 工具 / 单位体系 长度> m ; 力 > tonf 图 1.2 设定单位体系

设定结构类型为 X-Z 平面。 模型 / 结构类型 结构类型> X-Z 平面? 设定材料以及截面 材料选择钢材GB(S)(中国标准规格),定义截面。 模型 / 材料和截面特性 / 材料 名称( Grade3) 设计类型 > 钢材 规范> GB(S) ; 数据库> Grade3 ? 模型 / 材料和截面特性 / 截面 截面数据 截面号( 1 ) ; 截面形状 > 箱形截面; 用户:如图输入 ; 名称> 400×200×12 ? 选择“数据库”中的任 意材料,材料的基本特 性值(弹性模量、泊松 比、线膨胀系数、容 重)将自动输出。 图 1.3 定义材料图 1.4 定义截面建立节点和单元

为了生成连续梁单元,首先输入节点。 正面, 捕捉点 (关), 捕捉轴线 (关) 捕捉节点 (开), 捕捉单元 (开), 自动对齐 模型 / 节点 / 建立节点 坐标 ( x, y, z ) ( 0, 0, 0 ) 图 1.5 建立节点 参照用户手册的“输 入单元时主要考虑事项”

MIDAS梁格法学习小结及疑问

MIDAS梁格法学习小结及疑问 最近在做一个半径80米,曲线弧长90米,采取3跨30米布置的连续曲梁桥。经过计算我的圆心角为32度,必须得当作曲梁模拟。 首先我采用的是单箱梁模拟,但是经过师兄提醒,感觉到这样考虑十分不妥,因为曲梁桥弯扭藕合作用明显。横桥向扭矩的分析对桥梁最后结果有着很大的影响。即需要做横向分析。 因此特来论坛淘梁格法计算的资料,这一搜索不得了,让我有种醍醐灌顶的感觉。尤其是bridgedlut兄的见解,让我受益颇深。同时还有有很多前辈表述了自己做时曲梁碰到的问题及自己的见解。我老老实实的坐了一个多小时,十分耐心细致的看完了所有相关帖子。自己感觉到本来对梁格法停留在概念程度上的我已经对梁格法有了进一步的了解,并且对我现在正在做的工程有着很大的帮助,再次对各位表示谢谢了。谢谢各位斑竹辛苦的工作。谢谢kaisi论坛给我提供了一个很好的学习平台。 先谈谈自己看后的一些基本认识: 1.符拉索夫的三个方程经典的描述出了弯扭藕合作用对曲梁的重要影响,需进一步复习加深理解。 2.梁格体系涉及到纵向单元的划分:纵向单元划分当然是越细越好,但是原则上每跨分成8段以上比较理想,其中:截面变化处,关键部位等必须划分,并且连续弯梁桥的中间支座附近因内力变化剧烈,因此需加密网格。 3.横向虚梁的截面模拟。总体原则:每个等效划分梁格的纵向中性轴必须与远箱粱截面在同一高度。 4.通常都把箱梁腹板处化做梁肋。这样腹板处就被化做单元,可以直接查看其内力。 几点补充: 1.梁格法模拟的关键是横截面几何参数的等效化,我这方面的知识比较欠缺。请问能否提供一个比较详细的算例,我想bridgedlut 兄是一定有的,哈哈,或者介绍基本相关的书籍,以便查阅。 2.我这座连续曲梁桥,有两个桥墩,三跨布置,中跨布置两道横隔板,边跨设置边横隔板。请问梁格法在横隔梁处的处理是不是也只把这部分当做实心的截面来看就可以,是否横隔梁处也得沿着全跨分为几个梁格?也就是横隔梁处的计算通常是怎么处理的,针对梁格法? 特此对有关梁格法的相关好贴做了一个小小的总结,一来方便大家查阅,二来自己后续学习查看也更加方便些。 梁格法计算问题

悬臂梁挂篮施工安全控制要点及安全技术措施

悬臂梁挂篮施工安全控制要点及安全技术措施 一、挂篮施工安全控制要点 (一)挂篮制作与验收 1、挂篮制作 (1)挂篮制作前要有经过审核批准的加工图纸。 (2)挂篮制作时要有挂篮加工的相关技术及质量要求。 2、挂篮验收 (1)挂篮主要构件材质报告单。 (2)挂篮主要承重构件如主桁、上(下)横梁、内(外)滑梁、滑道、底模系、侧模系、走行及后锚系等各部位的结构尺寸、焊缝、螺栓孔位置。 (3)用于现场施工的挂篮需有主要部位的焊缝探伤检测报告或证明。 (4)挂篮预压方案及试验结果。 (5)挂篮施工方案专家评审意见。 (6)挂篮出厂前应对主要连接杆件进行试拼。 (二)挂篮施工过程中的安全监控要点 1、在挂篮施工过程中,必须遵守《桥涵施工技术安全规则》有关章节及设计文件有关要求。 2、施工前,应制定安全操作规程,并组织相关人员进行安全技术交底。 3、挂篮安装时应严格按照安装工艺流程进行,并严格执行高空吊装作业的相关规定。 4、挂篮滑道铺设要平直,应在一个水平面上。移动时须均匀平稳,左右同步、方向顺直。滑移挂篮时,滑道压紧器间距不少于2m,交替倒换。

5、挂篮前移到位后,应首先安装后锚系统,灌注混凝土时再次检查后锚固点。 6、挂篮前主吊杆当采用Ⅳ级钢时应为双根并有保护措施。 7、在预留挂篮施工孔洞时,位置尺寸要准确。 8、挂篮安装完成后应在挂篮前上横梁及前下横梁处分别设置工作平台,在侧模两侧设置走行过道平台,在后下横梁处设置吊篮,平台及吊篮均参用轻型型钢加工,铺设脚手板,挂安全防护网。设置的工作平台应坚固、稳妥,方便施工。 9、施工中所使用的机具设备如千斤顶、导链、滑车、钢丝绳等,应有足够的安全系数,并应经常进行检查及维护保养。 10、灌注梁段砼时,必须考虑挂篮的弹性变形及滑道垫块的压缩变形,以免由此引起梁体出现裂缝。 11、挂篮脱模时应逐渐下落以降低冲击荷载。 12、挂篮滑移时,左右两侧应同步对称进行,防止操作不当造成挂篮局部变形或挂篮偏位。 13、挂篮拆除时,应按自下而上,先内后外的顺序进行,并应派专人统一指挥。 14、严格执行高空作业的有关规定,当双层作业时,操作人员必须严格遵守各自岗位职责,防止疏漏。15、六级以上大风及雷电天气应停止施工。 16、挂篮的使用必须实行岗位责任制,应指定专人进行负责、检查、指挥工作。 二、挂篮施工安全技术措施 1、施工前做好施工准备工作,正确选用施工方法,并结合施工具体实际,编制安全技术措施,制定操作细则,并向施工人员进行技术交底。

[整理]MIDAS连续梁桥建模.

该过程是将三垮桥的运营状态进行有限元分析,下面介绍了本人在对模型模拟的主要步骤,若中间出现的错误,请读者朋友们指出修改。 注:“,”表示下一个过程 “()”该过程中需做的内容 一.结构 1.单元及节点建立的主桁:因为桥面具有一定纵坡,故将《桥跨布置》图的桥面线复制到《节段划分》图对应桥跨位置,然后进行单元划分,将该线段存入新的图层,以便下步导入,将文件保存为.dxf格式文件。 2.打开midas运行程序,将程序里的单位设置成《节段划分》图的单位,这里为cm。导入上步的.dxf文件。将节点表格中的z坐标与y坐标交换位置(midas中的z与cad中的y对应)。结构建立完成。模型如图: 二.特性值 1.材料的定义:在特性里面定义C50的混凝土及Strand1860(添加预应力钢筋使用) 2.截面的赋予: 1).在《截面尺寸》和《预应力束锚固》图里,做出截面轮廓文件,保存为.dxf 文件 2).运行midas,工具,截面特性计算器,统一单位cm。导入上步的.dxf文件 先后运行generate,calculate property,保存文件为.sec文件,截面文件完成 3)运行midas,特性,截面,添加,psc,导入.sec文件。根据图例,将各项特性值填入;验算扭转厚度为截面腹板之和;剪切验算,勾选自动;偏心,中上部4)变截面的添加:进入添加截面界面,变截面,对应单元导入i端和j端(i为左,j为右);偏心,中上部;命名(注:各个截面的截面号不能相同)

5)变截面赋予单元:进入模型窗口,将做好的变截面拖给对应的单元。 注:1.建模资料所给的《预应力束锚固图》的0-0和14-14截面与《节段划分》图有出入,这里采用《截面尺寸》做这两个截面,其余截面按照《预应力束锚固图》做 2.定义材料先定义混凝土,程序自动将C50赋予所建单元(C50是定义的第一个材料,程序将自动赋予给所建单元) 三.边界条件 1.打开《断面》图,根据I、II断面可知,支座设置位置。根据途中所给数据,在模型窗口中建立支座节点(12点) 2.点击节点,输入对应坐标,建立12个支座节点 3.建立弹性连接:模型,边界条件,弹性连接,连接类型(刚性),两点(分别点击支座点与桥面节点)共12个弹性连接 4.边界约束:中间桥墩,约束Dx,Dz;Dx,Dy,Dz;Dx,Dz, 两边桥墩,约束Rx,Dz;Rx,Dy,Dz;Rx,Dz 如表 四.添加预应力钢筋 1.定义钢束特性:打开《预应力筋布置及材料表》、《预应力束几何要素》。荷载,

迈达斯Midas-civil梁格法建模实例

北京迈达斯技术有限公司

目录 概要 (3) 设置操作环境........................................................................................................... 错误!未定义书签。定义材料和截面....................................................................................................... 错误!未定义书签。建立结构模型........................................................................................................... 错误!未定义书签。PSC截面钢筋输入 ................................................................................................... 错误!未定义书签。输入荷载 .................................................................................................................. 错误!未定义书签。定义施工阶段. (60) 输入移动荷载数据................................................................................................... 错误!未定义书签。输入支座沉降........................................................................................................... 错误!未定义书签。运行结构分析 .......................................................................................................... 错误!未定义书签。查看分析结果........................................................................................................... 错误!未定义书签。PSC设计................................................................................................................... 错误!未定义书签。

MIDAS例题---连续梁教学内容

4×30m连续梁结构分析 对4*30m结构进行分析的第一步工作是对结构进行分析,确定结构的有限元离散,确定各项参数和结构的情况,并在此基础上进行建模和结构计算。 建立斜连续梁结构模型的详细步骤如下。 1. 设定建模环境 2. 设置结构类型 3. 定义材料和截面特性值 4. 建立结构梁单元模型 5. 定义结构组 6. 定义边界组 7.定义荷载组 8.定义移动荷载 9. 定义施工阶段 10. 运行结构分析 11. 查看结果 12.psc设计 13. 取一个单元做横向分析

概要: 在城市桥梁建设由于受到地形、美观等诸多方面的限制,连续梁结构成为其中应用的最多的桥梁形式。同时,随着现代科技的发展,连续梁结构也变得越来越轻盈,更能满足城市对桥梁的景观要求。 本文中的例子采用一座4×30m的连续梁结构(如图1所示)。 1、桥梁基本数据 桥梁跨径布置:4×30m=120; 桥梁宽度:0.25m(栏杆)+2.5m(人行道)+15.0m(机动车道)+2.5m(人行道)+0.25(栏杆)=20.5m; 主梁高度:1.6m;支座处实体段为1.8m; 行车道数:双向四车道+2人行道 桥梁横坡:机动车道向外1.5%,人行道向内1.5%; 施工方法:满堂支架施工; 图1 1/2全桥立面图和1.6m标准断面

2、主要材料及其参数 2.1 混凝土各项力学指标见表1 表1 2.2低松弛钢绞线(主要用于钢筋混凝土预应力构件) 直径:15.24mm 弹性模量:195000 MPa 标准强度:1860 MPa 抗拉强度设计值:1260 MPa 抗压强度设计值: 390 MPa 张拉控制应力:1395 MPa 热膨胀系数:0.000012 2.3普通钢筋 采用R235、HRB335钢筋,直径:8~32mm 弹性模量:R235 210000 MPa / HRB335 200000 MPa 标准强度:R235 235 MPa / HRB335 335 MPa 热膨胀系数:0.000012 3、设计荷载取值: 3.1恒载: 一期恒载包括主梁材料重量,混凝土容重取25 KN/m 3。 二期恒载:人行道、护栏及桥面铺装等(该桥梁上不通过电信管道、水管等)。 其中: 桥面铺装:采用10cm的沥青混凝土铺装层;沥青混凝土安每立方24kN计算,则计算铺装宽度为15m,桥面每米铺装沥青混凝土重量为:0.16×24×15=57.6kN/m;

迈达斯Midas-civil梁格法建模实例

迈达斯技术

目录 概要 (3) 设置操作环境................................................................................................................ 错误!未定义书签。定义材料和截面............................................................................................................ 错误!未定义书签。建立结构模型................................................................................................................ 错误!未定义书签。PSC截面钢筋输入......................................................................................................... 错误!未定义书签。输入荷载 ........................................................................................................................ 错误!未定义书签。定义施工阶段. (62) 输入移动荷载数据........................................................................................................ 错误!未定义书签。输入支座沉降................................................................................................................ 错误!未定义书签。运行结构分析................................................................................................................ 错误!未定义书签。查看分析结果................................................................................................................ 错误!未定义书签。PSC设计 ......................................................................................................................... 错误!未定义书签。

悬臂梁工程施工设计方案

南通市干线公路2013年危桥改造工程 悬臂梁施工专项方案 第一章编制说明 1、主要编制依据 ①、施工招标文件及承包合同书; ②、公路桥涵施工技术规范; ③、《南通市干线公路2013年危桥改造工程施工图设计》; ④、《中华人民共和国安全生产法》、《建设工程安全生产管理条理》以及《公路养护安全作业规程》 2、编制说明 ①、本方案由项目总工编制、报公司技术负责人审核通过,并经组织专家审查通过后,方能予以实施; ②、本方案通过后由南通市干线公路2013年危桥改造工程NTGL-2013-QLSG1标项目经理部负责实施。 第二章工程概况 撑架桥位于S336线省道K41+741处,位于启东市新港镇。由于北幅V型撑架桥斜撑杆因严重压缩通航净空,经常受船只碰撞,撑杆撞损严重,砼破损、主筋外露,需进行北幅撑架桥拆除新建,新建下部结构形式为:桥墩 T构悬臂梁中、边孔侧悬臂梁长不等,中孔侧悬臂梁长4.23m,边孔侧悬臂梁长2.63m。桥墩T构悬臂梁由8片T梁组成,悬臂梁端部设置牛腿,放置板梁,悬臂根部与墩身固结。中悬臂梁宽0.3m,边悬臂梁宽0.4m,梁高变高度1.035-1.775m。桥墩

身采用矩形截面,墩身厚 1.5m,墩身底部为避让老桥墩身承台,作内缩切角处理。 第三章总体组织安排 1、组织机构设置: 见组织机构网络图; 2、施工现场人力资源配置: ①、管理人员 项目经理:朱卫兵 技术负责人:陆凤美 试验员:钱辉 技术员:蔡伟伟 安全员:侯江华 资料员:蔡伟伟 施工负责人:陶林冬 施工队长:张新华 ②、主要劳动力配置 3、原材料

①、混凝土:采用强制式机械拌合的C40混凝土,使用前已做好原材料检测、配合比设计及配合比验证。 ②、钢材:采用江苏沙钢集团生产的并经检验合格、监理抽检合格的钢筋。 4、主要检测仪器、施工机具准备:见附表 第四章、施工技术方案 1、准备工作 对施工完毕的承台进行校核,确定验收合格后可开始进行支架的搭设工作。由全站仪在承台上精确放出支架的边线,根据边线用钢尺标出各节段点,后用墨斗弹出横向纵向框线。 2、支架搭设、底模铺设 径向圆木支架,由立杆、横向木枋、对鞘木楔、竹胶板下纵向木枋、剪刀木、横撑木、扒钉等组成。 经现场实测两侧排架与承台顶面高差25cm,在承台基础上铺设20cm厚横向方木调至与两侧排架齐平, 20*20cm纵向方木间距20cm布设,立杆纵向布设6排,立杆的间距根据受力的不同做具体的分配(横向间距0.6m、纵向间距1.2m,步距0.6m),立杆高度根据悬臂梁的高度调整(具体见支架立面、侧面图),立杆顺水方向两侧各用3.5m的剪刀木做固定,剪刀木与立杆呈45°,立杆顺桥方向两侧各用4m长的横撑木做固定,立杆上边铺长8m的横向方木,每根立杆与横向方木的连接处用4根扒钉固定,横向方木上设置对鞘木楔,对鞘木楔与横向方木连接的一方固定在横向方木上,布置10*10cm纵向木枋与横向方木成90度角,用对鞘木楔上塞紧,再用扒钉固定。 在底模铺设前对支架进行检查验收,底模采用σ15竹胶板,模板表面应平整光滑,接缝处嵌入3mm厚的泡沫双面胶带防止漏浆,板与板之间错缝高差控制

必看最经典梁格——midas空心板梁桥梁桥法工程实例

空心板梁桥工程实例 1几何尺寸 空心板梁几何尺寸见图4.1.1至图4.1.3。 图4.1.2 边板截面(cm)图4.1.3 中板截面(cm) 2主要技术指标 (1) 结构形式:装配式先张法预应力混凝土简支空心板梁 (2) 计算跨径:16m (3) 斜交角度:0度 (4) 汽车荷载:公路-Ⅱ级 (5) 结构重要性系数:1.0 3 计算原则 (1) 执行《公路桥涵设计通用规范》(JTG D60-2004)和《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)。

(2) 6厘米厚现浇C50混凝土不参与结构受力,仅作为恒载施加。 (3) 温度效应,均匀温升降均按20摄氏度考虑;温度梯度按《公路桥涵设计通用规范》(JTG D60-2004)第4.3.10条的规定取值。 (4) 按A 类部分预应力混凝土构件设计。 (5) 边界条件:圆形板式橡胶支座约束用弹性支承进行模拟,弹簧系数SDx=SDy=1890 KN/m;SDz=9.212E+05KN/m;SRx=078E+09KN.m/rad; 4主要材料及配筋说明 (1) 空心板选用C50混凝土 (2) 预应力钢绞线公称直径mm s 2.15φ,1根钢绞线截面积2 139mm A p =,抗拉强度标准值Mpa f pk 1860=,锚具变形总变形值为12mm。横截面预应力筋和普通钢筋布置见图4.4.1和图4.4.2。预应力筋有效长度见表4.4.1 图4.4.1边板钢筋钢绞线布置图(cm) 图4.4.2 中板钢筋钢绞线布置图(cm) 图中N9筋(实心黑点)为普通钢筋,其余为钢绞线。 表4.4.1 16米空心板预应力筋有效长度表

midas_连续梁计算书

第1章89#~92#预应力砼连续梁桥 1.1结构设计简述 本桥为27+27+25.94现浇连续箱梁,断面型式为弧形边腹板大悬臂断面,根据道路总体布置要求,主梁上下行为整体断面,变宽度32.713m -35m,单箱5室结构变截面。箱梁顶板厚度为0.22m,底板厚度0.2m;支点范围腹板厚度0.7m,跨中范围腹板厚度0.4m。主梁单侧悬臂长度为 4.85m,箱梁悬臂端部厚度为0.2m,悬臂沿弧线一直延伸至主梁底板。主梁两侧悬臂设置0.1m后浇带,与防撞护栏同期进行浇筑。 本桥平、立面构造及断面形式如图11.1.1和图11.1.2所示。 图11.1.1 箱梁构造图

图11.1.2 箱梁断面图 纵向预应力采用φs15.2高强度低松弛钢绞线(Ⅱ级)(GB/T5224-1995),标准强f=1860MPa。中支点断面钢束布置如图11.1.3所示。 度 pk 图11.1.3 中支点断面钢束布置图 主要断面预应力钢束数量如下表 墩横梁预应力采用采用φs15-19,单向张拉,如下图。 1.2主要材料 1.2.1主要材料类型 (1) 混凝土:主梁采用C50砼;

(2) 普通钢筋:R235、HRB335钢筋; (3) 预应力体系:采用φs15.2高强度低松弛钢绞线(Ⅱ级)(GB/T5224-1995),标准强度 f=1860MPa;预应力锚具采用符合GB/T14370-2002《预应力筋锚具、 pk 夹具和连接器》中Ⅰ类要求的优质锚具;波纹管采用符合JT/T529-2004标准的塑料波纹管。 1.2.2主要材料用量指标 本桥上部结构主要材料用量指标如表11.2.2-1所示,表中材料指标均为每平米桥面的用量。 表11.2.2-1 上部结构主要材料指标 1.3结构计算分析 1.3.1计算模型 结构计算模型如下图所示。 图11.3.1-1 结构模型图

MIDAS梁格法建模

MIDAS梁格法建模 2021-4-2612:14MIDAS梁格法建模使用该软件,针对于一般的窄桥可以使用单梁进行模拟,遇到宽度较大的桥梁,尽量使用梁格法,有没有人用梁格法建立过模型\用MIDAS进行局部构件分析的,希望能发一些这样的实例上来,谢谢wentao8401全文结束》》-4-2614:29前段时间我集中时间精力学习了下梁格法,有点不太理解你所谓的局部构件分析指的是什么,因为据我所知,midas只有用它的FX+才能算局部分析,或者用ansys的子结构分析也可以。谈谈我对梁格的几点认识: 1、它是一种将空间分析近似为平面干系分析的方法,精确程度可以满足工程需求。适用范围:梁格法主要针对的是宽跨比较大的直线桥以及圆心角较大的曲线梁桥。我个人的理解,只所以需要用梁格子体系来分析结构,就是因为原本当作干系构件的梁因为承受了不能忽视的扭矩以及横向弯曲作用。如对于直线宽桥,活载的偏心布置所产生的扭矩不能简单的用偏载系数这一概念简化。而对于曲线梁桥更是如此,首先恒载的不对称就会产生一部分扭矩,这种效应更使结构不能再用一根杆来进行分析计算。要么在杆件上添加扭矩,要么就得使用梁格法以增加横向杆件数量了。 3、梁格原理:模拟梁格体系,使其受荷效应与原结构等效(不可能那么精确,只能说接近等效)

4、梁格需要注意的几个方面:第一、关于梁格的划分,为保证荷载的正确传递,横向杆件的间距不宜超过纵向梁肋的间距。也就是说纵向梁格的划分以横向梁格划分为标尺,而横向的梁格划分又得遵循划分后各个梁格的中性轴与原截面保持在同一水平高度处(这点很关键,主要是保证梁格纵向弯曲与原结构的等效性)。对于箱梁而言,一般来说,横向梁格划分一个腹板一个梁格。且假若能尽量满足划分梁格后的各个梁格质心与原箱梁腹板的中心重合将对预应力效应模拟的准确性很有帮助。而纵向梁格每跨8到10个梁格可以基本满足精度要求。第二、截面几何特性值的修正,(主要针对箱梁截面)因为划分梁格的截面几何特性相对原截面有较大偏差,需要对纵梁格的抗扭惯性矩,剪切面积以及横向梁格的抗弯惯性矩以及剪切面积进行修正,具体公式我参考的是《上部结构性能》一书上第五章的剪力-柔性梁格法的公式。梁格法的不足:由于梁格法依照平截面假定,因此它考虑不了剪力滞后效应。因此对于少横隔梁的结构假如需要计算其剪力滞效应的话可以使用空间有限元分析软件计算,midas是算不了的,ansys可以。而且梁格法最后所得结果的准确性在很大程度上是于人对梁格的理解掌握能力成正比的,建议假若不需要使用梁格的时候,尽量不用。比如圆心角大于30度的曲桥用midas的单梁模拟精度完全可以相信。以上主要是总结一下自己学习的一些体会,难免有不正确的地方,望高手进一步指点。附上自己认为比较好的一些资料跟模型供大家查阅。希望多多交流。lingboms

悬臂梁施工方案

武汉市和平至左岭高速公路武东特大桥主桥 悬臂梁施工方案 编制人: 审核人: 批准人: 武汉市和平至左岭高速公路武东特大桥主桥 中铁七局项目经理部 二00七年六月

目录 1.工程概况 (2) 1.1工程概况 (2) 1.2工程数量表 (3) 2施工组织 (4) 2.1施工准备 (4) 2.2项目部机构 (4) 2.3劳力组织 (5) 2.3.1协作队伍的选择 (5) 2.3.2劳动力管理和队伍培训措施 (5) 2.4机械设备组织 (6) 3.悬臂灌注施工方法 (6) 3.1 0号梁段灌注施工工艺 (7) 3.2对称悬浇的施工 (11) 3.3边跨边块现浇段施工 (24) 3.4合拢段施工及体系转换 (24) 3.5线形控制 (27) 4.保证施工质量技术措施 (28) 5.安全保证措施 (29) 6.跨既有线施工安全保证措施 (30) 7.施工现场文明施工保证措施 (35)

◆编制依据: [1]武汉市和平至左岭高速公路两阶段施工图设计第1标段第三册 [2]《公路工程质量检验评定标准》 [3]《公路桥涵施工技术规范》 [4] 《钢结构设计手册》 [5]挂篮设计图 1.工程概况 1.1工程概况 武东特大桥主桥位于武汉市青山区龚家岭与武汉重工锻炼公司(471厂)之间,跨越青化路、铁路编组站、武钢专用线、武汉重工锻炼公司、铁路专线武东中站和471厂铁路专线,属特大型桥梁。本项目部承建武东公跨铁特大桥10#(K2+763.970)~13#(K3+005.050)墩,桩基,承台,墩身,梁体及桥面系铺装。 武东特大桥主桥全长241m,主跨115m,边跨63m,为变高度预应力混凝土连续梁桥。桥面全宽33.5m,双向6车道,上下行分幅设置,全桥位于R=1000m的圆曲线上。设计时速度为100KM/h。桥下净高不小于8.5m。桥墩均采用钢筋混凝土实体墩,矩形截面。10#、13#墩承台厚2m。基础设4根直径为1.2m钻孔桩基础。11#和12#墩承台厚3m,基础设8根直径1.6m的钻孔桩,其中11#墩与箱梁固接。梁部为后张法预应力混凝土箱梁。梁高3.5-7m不等,梁底按抛物线变化,箱梁顶面设5%横向坡度。箱梁截面为单箱双室直腹板。每幅箱梁顶宽16.5m,底宽8.5m,顶板厚25cm。腹板厚分别为45cm,60cm,70cm。全梁采用悬

栈桥——迈达斯分析验算示例(清晰版)

栈桥分析 北京迈达斯技术有限公司

目 录 栈桥分析 (1) 1、工程概况 (1) 2、定义材料和截面 (2) 定义钢材的材料特性 (2) 定义截面 (2) 3、建模 (4) 建立第一片贝雷片 (4) 建立其余的贝雷片 (8) 建立支撑架 (9) 建立分配梁 (12) 4、添加边界 (17) 添加弹性连接 (17) 添加一般连接 (19) 释放梁端约束 (22) 5、输入荷载 (22)

添加荷载工况 (22) 6、输入移动荷载分析数据 (23) 定义横向联系梁组 (23) 定义移动荷载分析数据 (23) 输入车辆荷载 (24) 移动荷载分析控制 (26) 7、运行结构分析 (27) 8、查看结果 (27) 生成荷载组合 (27) 查看位移 (28) 查看轴力 (29) 利用结果表格查看应力 (30)

栈桥分析 1、工程概况 一座用贝雷片搭建的施工栈桥,跨径15m(5片贝雷片),支承条件为简支,桥面宽6米。设计荷载汽—20,验算荷载挂—50。贝雷片的横向布置为5×90cm,共6片主梁,在贝雷片主梁上布置I20a分配梁,位置作用于贝雷片上弦杆的每个节点处,间距约75cm。如下图所示: 贝雷片参数:材料16Mn;弦杆2I10a槽钢(C 100x48x5.3/8.5,间距8cm),腹杆I8(h=80mm,b=50mm, tf=4.5mm ,tw=6.5mm)。贝雷片的连接为销接。 图1 贝雷片计算图示(单位:mm) 支撑架参数:材料A3钢,截面L63X4。 分配横梁参数:材料A3钢,截面I20a,长度6m。

建模要点:贝雷片主梁用梁单元,销接释放绕梁端y-y轴的旋转自由度;支撑架用桁架单元;分配横梁用梁单元,与贝雷主梁的连接采用节点弹性连接(仅连接平动自由度,旋转自由度不连接);车道布置一个车道,居中布置。 2、定义材料和截面 定义钢材的材料特性 模型 / 材料和截面特性 / 材料/添加 材料号:1 类型>钢材;规范:JTJ(S) 数据库>16Mn (适用) 材料号:2 类型>钢材;规范:JTJ(S) 数据库>A3 确认 定义截面 注:midas/Civil的截面库中含有丰富的型钢截面,同时还拥有强大的截面自定义功能。 模型 / 材料和截面特性 / 截面/添加 数据库/用户 截面号1; 名称:(弦杆) 截面类型:(双槽钢截面) 选择用户定义,数据库名称(GB-YB); 截面名称:C 100x48x5.3/8.5 C:(80mm)点击适用

迈达斯Midascivil梁格法建模实例

迈达斯M i d a s c i v i l梁格法建模实例 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

目录 概要......................................................... 设置操作环境 ................................................. 定义材料和截面 ............................................... 建立结构模型 ................................................. PSC截面钢筋输入 .............................................. 输入荷载 ..................................................... 定义施工阶段 ................................................. 输入移动荷载数据 ............................................. 输入支座沉降 ................................................. 运行结构分析 ................................................. 查看分析结果 ................................................. PSC设计......................................................

迈达斯Midascivil梁格法建模实例

目录 概要......................................................... 设置操作环境 ................................................. 定义材料和截面 ............................................... 建立结构模型 ................................................. PSC截面钢筋输入 .............................................. 输入荷载 ..................................................... 定义施工阶段 ................................................. 输入移动荷载数据 ............................................. 输入支座沉降 ................................................. 运行结构分析 ................................................. 查看分析结果 ................................................. PSC设计......................................................

MIDAS连续梁有限元分析案例(二)

目录 第一部分逐跨施工模型 (1) 1.1预应力钢束布置 (1) 1.2施工阶段定义 (3) 1.3调整模型 (4) 第二部分应力分析 (5) 2.1施工阶段的应力 (5) 2.2成桥阶段应力(恒+活+支座沉降) (6) 2.3移动荷载 (6) 第三部分PSC验算结果 (7) 3.1施工阶段的法向压应力验算 (7) 3.2受拉区钢筋的拉应力验算 (11) 3.3使用阶段正截面压应力验算 (12) 3.4使用阶段斜截面主压应力验算 (13) 3.5结论 (14)

第一部分逐跨施工模型 1.1预应力钢束布置 图1-1 第一跨钢筋布置 图1-2 第二跨钢筋布置 图1-3 第三跨钢筋布置 图1-4 第四跨钢筋布置 本次桥梁的总体布置,四跨连续梁桥,跨度分别是29.95m+30m+30m +29.95m图如下所示:

图1-5-8 桥梁整体布置图 汇总的预应力张拉表格,张拉控制应力为0.75的高强钢绞线,控制应力为1395MPa,具体的表格如下所示:

1.2施工阶段定义 逐跨施工,我们采用满堂支架的方法,依次从梁一施工到四号梁,中间存在从简支梁到连续梁的体系转换,为本次设计修改的难点。我们的施工过程定义为三个步骤满堂支架的施工和主梁施工、预应力张拉、拆除满堂支架,最后完成全线的浇筑。从midas中提取的施工阶段细节具体如下: NAME=主梁1-浇筑, 20, YES, NO AELEM=主梁1, 7, 节点1, 7 ABNDR=满堂1, DEFORMED, 支座1, DEFORMED, 支座2, DEFORMED ALOAD=自重, FIRST NAME=主梁1-张拉, 1, YES, NO ALOAD=预应力1, FIRST NAME=主梁1-拆除支架, 2, YES, NO DELEM=节点1, 100 DBNDR=满堂1 NAME=主梁2-浇筑, 20, YES, NO AELEM=主梁2, 7, 节点2, 7 ABNDR=支座3, DEFORMED, 满堂2, DEFORMED NAME=主梁2-张拉, 1, YES, NO DELEM=节点2, 100 ALOAD=预应力2, FIRST NAME=主梁2-拆除支架, 2, YES, NO DELEM=节点2, 100 DBNDR=满堂2 NAME=主梁3-浇筑, 20, YES, NO AELEM=主梁3, 7, 节点3, 7 ABNDR=满堂3, DEFORMED, 支座4, DEFORMED NAME=主梁3-张拉, 1, YES, NO ALOAD=预应力3, FIRST NAME=主梁3-拆除支架, 2, YES, NO DELEM=节点3, 100 DBNDR=满堂3 NAME=主梁4-浇筑, 20, YES, NO AELEM=主梁4, 7, 节点4, 7 ABNDR=支座5, DEFORMED, 满堂4, DEFORMED NAME=主梁4-张拉, 5, YES, NO ALOAD=预应力4, FIRST NAME=拆除满堂支架, 10, YES, NO

悬臂梁施工作业指导书

新建石武铁路客运专线段 SWZQ-1标 庄漳河特大桥 (DK490+250.88-DK500+019.1段)(40+64+40)m悬灌连续梁施工作业指导书 编制: 审核: 批准: 中铁三局石武客专段项目部一分部 二00九年八月

悬臂梁施工作业指导书 1.目的 悬臂梁施工是所有桥梁工程的重要组成部分,也是整个质量管理活动的重点,关系到整个工程质量的优劣。为了保证悬臂梁施工过程的质量特制定本作业指导书。 2.适用围 适用于石武客运专线庄漳河特大桥跨S301省道施工的连续梁。 3.编制依据 3.1铁路混凝土施工技术指南。 3.2客运专线铁路桥涵施工技术指南。 3.3客运专线铁路桥涵施工质量验收暂行标准。 3.4铁路混凝土工程施工质量验收补充标准。 3.5客运专线铁路工程施工质量验收标准应用指南。 4.施工要求 4.1预应力混凝土连续箱梁悬臂灌注 本单元预应力混凝土变高度连续箱梁采用全液压式菱形挂篮悬灌施工。 梁体悬臂浇筑的施工,分四大部分,即:0#段(墩顶梁段)部分;由0#段两侧对称分段悬臂浇筑部分;尾段支架浇筑部分;合拢段浇筑部分。 墩顶现浇段(0#段),采用墩旁托架或万能杆件拼装落地支架法施工,不足2m高度采用短钢管调整,箱顶板采用门式脚手架支撑;

悬灌梁段采用轻型菱形挂篮悬臂施工,跨越铁路和公路时,挂篮采用全密封,并在既有线上搭设防护棚架防止桥上物品掉落,防护棚架用钢管架搭设而成,顶部铺设双层竹跳板及彩条布防护。中跨合拢段采用合拢吊架施工,吊架底篮及模板采用挂篮的相应部件。边跨现浇段及边跨合拢段,采用墩旁托架或落地支架法施工;钢筋由工厂集中加工制作,运至现场由塔吊提升、现场绑扎成型;混凝土由搅拌站集中供应,搅拌输送车运输,混凝土输送泵泵送入模,插入式振捣器捣固。混凝土采用覆盖塑料薄膜养护。 施工工艺流程见“连续箱梁施工工艺总流程图”。 4.1.1.临时支墩、支座锁定 4.1.1.1临时支墩、支座锁定 临时固结通过设置临时支墩和锁定支座的方式来实现。临时支墩设有厚15~20厘米设有电阻丝的硫磺砂浆夹层,通过电阻丝通电融化硫磺砂浆即可解除临时支墩。在临时支墩顶底设塑料薄膜隔离层。 4.1.1.2结构体系的转换 连续梁桥采用悬臂施工法,在结构体系转换时,为保证施工阶段的稳定,边跨先合拢,释放梁墩锚固,结构由双悬臂状态变成单悬臂状态,最后跨中合拢,形成连续梁受力状态。施工过程中存在梁的受力结构体系转换,施工时应注意以下几点。 4.1.1.2.1结构由双悬臂状态转换成单悬臂受力状态时,梁体某 连续箱梁施工工艺总流程图

悬臂施工工艺

预应力混凝土连续箱梁悬臂灌筑法施工工艺 1 工艺概述 本工艺适用于不宜在桥下设置支架的高墩、跨河、跨路、桥位地质不良等桥梁的预应力连续梁,及大跨度预应力混凝土连续梁的施工。 悬臂灌筑法是采用移动式挂篮作为主要施工设备,以桥墩为中心,对称向两岸利用挂篮逐段灌注梁段混凝土,待混凝土达到强度后,张拉预应力束,再移动挂篮,进行下一节段的施工,悬臂灌筑每个节段长度一般2~6m。其主要特点是:1)桥梁在施工过程中产生负弯矩,桥墩也要承受由施工而产生的弯矩,因此悬臂施工宜选用营运状态的结构受力与施工阶段的受力状态比较接近的桥梁中选用,如预应力混凝土T型刚构桥、变截面连续梁桥和斜拉桥等; 2)非墩梁固接的预应力混凝土梁桥,采用悬臂施工时采取措施,使墩、梁临时固结形成“T构”,梁体施工完成后,需要进行结构体系的转化; 3)采用悬臂施工的机具种类很多,就挂篮而言,也有桁架式、斜拉式等多种形式,可根据实际情况选用; 4)悬臂灌筑施工简便,结构整体性好,施工中可不断调整位置,常用跨径大于100m的桥梁上选用; 5)悬臂施工可不用或少用支架,施工中不影响通航或桥下交通。 灌筑混凝土和预应力施加质量、梁体线形、体系转换、合拢段施工等是连续梁悬臂灌筑法工艺和质量控制的关键。 2 作业内容 主要作业内容是:施工准备、测量放样、0号梁段混凝土灌筑、挂篮的设计与安装就位、安装箱梁底模、绑扎底板与肋板钢筋、灌筑底板混凝土、安装肋模、顶板及肋内预应力管道、灌筑肋板及顶板混凝土、拆除模板、穿钢丝束、张拉锚固、管道压浆、挂篮前移定位、下一节段梁体混凝土灌筑、合拢梁段混凝土灌筑等。 3 质量标准及检验方法 梁段模板安装尺寸按表1检验、梁段几何形态按表2检验、梁体外形按表3检验。

相关文档
相关文档 最新文档