文档视界 最新最全的文档下载
当前位置:文档视界 › 开关电源EMI滤波器的正确选择与使用

开关电源EMI滤波器的正确选择与使用

开关电源EMI滤波器的正确选择与使用
开关电源EMI滤波器的正确选择与使用

开关电源EMI滤波器的正确选择与使用

1插入损耗和滤波电路的选择

在用户选择滤波器时,最关心插入损耗性能。但是,往往插入损耗相近的滤波器,在实际运用中效果相差甚远。究其主要原因是,相近插入损耗的滤波器可由不同的电路实现。这和理论分析是吻合的,因为插入损耗本身是个多解函数。

所以,选择滤波器时首先应选择适合你所用的滤波电路和插入损耗性能。要做到这一点,就要求了解所使用电源的等效噪声源阻抗和所需要对噪声的抑制能力。这符合“知己知彼,百战百殆”的客观规律。

那么滤波电路和电源等效噪声之间存在什么样的关系呢?

众所周知,EMI滤波器是由L、C构成的低通器件。为了在阻带内获得最大衰减,滤波器输入端和输出端的阻抗需与之连接的噪声源阻抗相反,即对低阻抗噪声源,滤波器需为高阻抗(大的串联电感);对高阻抗噪声源,滤波器就需为低阻抗(大的并联电容)。对于EMI滤波器,这些原则应用于共模和差模中。

如按此原则选用的滤波器,在实际运用中仍存在效果相差很多的现象,特别发生在重载和满载的情况下。造成这一问题的主要原因可能是滤波器中的电感器件在重载和满载时,产生饱和现象,致使电感量迅速下降,导致插入损耗性能大大变坏。其中尤以有差模电感的滤波器为多。因差模电感要流过电源火线或零线中的全部工作电流,如果差模电感设计不当,电流一大,就很容易饱和。当然也不排除共模扼流圈,因生产工艺水平较差,两个绕组不对称,造成在重载或满载时产生磁饱和的可能。

图1 共模滤波器模型

1.1.2差模滤波电路

由于开关电源的开关频率谐波噪声源阻抗为低阻抗,所以与之相对应的滤波器输出端应是高阻抗串联大电感LDM。

AC电网火线和零线之间是低阻抗,所以与之对应的滤波器输入端也应是高阻抗串联大电感LDM。如果想再进一步抑制差模噪声,可以在滤波器输入端并接线间电容CX1,条件是

它的阻抗要比AC电网火线、零线之间的阻抗还要低得多。

开关电源工频谐波噪声源阻抗是高阻抗,所以与之相对应的滤波器输出端应是低阻抗并联大电容CX2。

合成的差模滤波电路参见图2。

最后,完整的共、差模滤波电路参见图3。

图2 完整的差模滤波器模型

图3 组合滤波器电路

根据要求插入损耗,可求出滤波电路的LCM、LDM、Cx、Cy的值。如果单环电路的插入损耗不能满足要求时,应该选择双环电路。

1.2交流三相滤波电路

交流三相滤波电路又分为三相三线制和三相四线制两种。

典型的单环三相三线制滤波电路如图4所示;典型的双环三相三线制滤波电路如图5所示。

图4 单环三相三线制滤波电路

图5 双环三相三线制滤波电路

比较图4三相中的每一相电路即每相对地电路和典型单相电路就不难发现,其共模电路三相采用π型电路,单相采用L型电路;而差模电路三相的输出端有Cx电容,单相的输出端无Cx 电容。

对比双环单相和三相三线制滤波电路(图5)不难发现,三相中的每一相电路和单相电路完全一样。

典型单环有差模电感的三相三线制滤波电路如图6所示。大家可以和单环有差模电感的单相滤波电路相比较。

典型的单环三相四线制滤波电路如图7所示。

图6单环有差模电感三相三线制滤波电路

图7单环三相四线制滤波电路

比较三相中的每一相电路即每相对中线电路和单相电路,同样差模电路三相的输出端有Cx电容。对地的共模电路三相采用π型电路,但区别的是Cy电容对每相来讲是公用的。

1.3直流滤波电路

为了抑制开关电源对其电流负载产生共模、差模干扰,开关电源直流输出端往往使用直流EMI滤波器,它的典型电路如图8所示。

图8直流滤波电路

显然,这是一个共模扼流圈的典型单环滤波电路。根据电路特点,它只适用于直流输出端对地对称的电源电路。

如果直流输出是非对地对称电路,则只能采用图9所示的电路。该电路为采用二级差模电感电路。如果插入损耗允许,当然也可采用一级差模电感电路。

图9二级π型滤波器

2额定电流与环境温度

EMI滤波器一般采用高导磁率软磁材料锰锌铁氧体,初始导磁率μi=700~10000,但其居里点温度不高,优质的仅为130℃左右。导磁率越高,居里点温度越低,典型曲线如图10所示。

除特殊说明外,EMI滤波器说明书给出的额定电流均指室温+25℃的值;同样,给出的典型插入损耗或曲线也均指室温+25℃的值。

随着环境温度的升高,主要由电感导线的损耗、磁芯损耗以及周围环境温度等原因导致温度高于室温,结果难于确保插入损耗的性能,甚至烧坏滤波器。由于滤波电容的最高工作温度受到限制也是+85℃。我们应该根据实际可能的最大工作电流和工作环境温度来选择滤波器额定电流。

图10 居里点温度曲线

图11额定电流与温度的关系

工作电流、额定电流与环境温度之间存在如下关系:

式中:Ip——容许的最大工作电流;

IR——室温+25℃时的额定电流;

Tmax——容许的最高工作温度,+85℃;

Ta——环境温度;

TH——室温(+25℃)。

也可用曲线表示(参见图11)。曲线表示Ip/IR∝Ta。举例说明:+25℃Ip=IR;+45℃

Ip=0.816IR;+55℃

Ip=0.5IR;+85℃Ip=0.0

因此,要根据工作温度来正确选择滤波器的额定电流;或者用改善滤波器的散热条件(工作环境)来确保滤波器的安全使用。这样,滤波器务必安装在有散热作用的机架、机壳上,切忌安装在绝缘材料上。

3耐压、泄漏电流与安全

3.1耐压与安全

由于EMI滤波器安装在AC电网的输入端,所以除了承受开关电源(滤波器的负载)产生的尖峰脉冲干扰电压外,还要承受来自电网的浪涌电压(电流),特别是浪涌电压,其持续时间长(ms级),能量大(2000伏浪涌电压是经常出现的)。这些干扰电压由滤波器的Cx、Cy承受。因此,要求使用专为EMI滤波器设计的Cx、Cy。目前,据了解,因内尚没有这类电容器生产厂家。

电容Cx或Cy被浪涌电压击穿产生的后果,是Cx被击穿短路,相当于AC电网被短路,至少造成设备停止工作;Cy击穿短路,相当于将AC电网的电压加到设备的外壳,它直接威胁人身安全的同时,波及所有与金属外壳为参考地的电路安全,往往导致某些电路的烧毁。

国际上,耐压的安全规范各主要工业国家有所区别,表1供参考。

表1耐压安全规范

国家和测试机构测试标准

高压测试R-绝缘

KV(1Min.) Hz

P.N→E

P→N

106ΩV(1 Min.)

德国

VDE

0565.1

0565.2

0565.3

4,3 ·Vn

1.5

50

P→N

P.N→E

1500

2000

100

100

瑞士

SEV

1055.1978

4,3 ·Vn

2·Un+1,5

50

P→N

P.N→E

6000 100

瑞典4432901 4,3 ·Vn

2·Un+1,5

50

P→N

P.N→E

6000 100

英国

BS 613

BS 2135

4,3 ·Vn

1.5

2.25

50

P→N

P.N→E

20 100

加拿大

CSA

C 22.2

No.8-M1982

(2Vn+0.5)1,4/4

≥1,414

2Vn+1

60

P→N

P.N→E

6000/N

N=number

Cond.11

100

美国UL 1283

1,0

1,414

1,0

1,414

60

60

P→N

P.N→E

2

-

250

-

举例说明:

德国VDE0565.2高压测试(AC)P,N→E 1.5KV/50Hz1分钟

瑞士SEV1055高压测试(AC)P,N→E2·Un+1.5KV/50Hz1分钟

如最大工作电压Un=250V(AC),则2·Un+1.5KV=2KV

美国UL1283高压测试(AC)P,N→E1KV/60Hz1分钟可见,共模电容Cy的耐压测试条件(瑞士)SEV1055比(美)UL1283高出一倍。

德国VDE0565.1高压测试(DC)P→N 4.5VnKV1分钟如最大工作电压Vn=250V(DC)则

4.3·Vn=4.3×0.250×2根号2=3.040KV1分钟

瑞士SEV1055高压测试(DC)P→N4.3VnKV1分钟

美国UL1283高压测试(DC)P→N 1.414KV1分钟可见,差电模电容Cx的耐压测试条件,瑞士也比美国高出一倍左右。

这里要说明的是

a.P→N耐压测试采用直流电压的原因是因为Cx容量较大。如采用交流测试,则耐压测试仪要求电流容量大,造成成本高,体积大。采用直流电压测试就不存在这种问题。但要将交流工作电压换成等效的直流工作电压。如最大交流工作电压250V(AC)=250×2根号2=707V(DC)直流工作电压。所示UL1283安全规范1414V(DC)=2·Vn。

b.国际著名滤波器专业厂说明书中耐压测试条件

美国Corcom公司P,N→E2250V(DC)1分钟

P→N1450V(DC)1分钟

瑞士Schaffner公司P,N→E2KV(AC)1分钟

P→N不测1分钟国内滤波器专业厂一般参考德国VDE安规或参考美国UL安规。

3.2 泄漏电流与安全

任何典型滤波器电路的共模电容Cy都有一端接金属机壳。从分压角度看,滤波器金属外壳都带有1/2额定工作电压,如工作220V(AC),那么外壳带有110V(AC)电压。因此,从安全角度出发,滤波器通过Cy到地端的泄漏电流要尽可能的小,否则将危及人身安全。图12描述了一路泄漏电流通过人体构成大地回路的情况(图12中E表示滤波器的接地点,FG表示机架的接地点)。对地电容应为C1和杂散电容之和。实际上,通过人体的泄漏电流是两路,所以滤波器泄漏电流应为一路泄漏电流的两倍。设备中使用的滤波器愈多,泄漏电流也愈大。因此,千万要加以注意。

图12 泄漏电流通过人体示意图

同样,国际上泄漏电流的安全规范,各主要工业国家也有所区别,表2供参考。

表2泄漏电流的安全规范

国家安规名称对于一级绝缘的设备,泄漏电流的极限值

美国UL478

UL1283

5mA,120V,60Hz; 0.5~3.5mA,120V,60Hz

加拿大C22.2 No.1 5mA,120V,60Hz

瑞士SEV 1054-1

IEC 335-1

0.75mA,250V,50Hz

德国VDE 0804 3.5mA,250V,50Hz

这里要说明的是:

a.泄漏电流直接和电网电压、电网频率成正比。因此,对于400Hz电网频率要特别注意,否则在相同电网电压的情况下,同一滤波器的泄漏电流要增加8倍(对于50Hz),很可能不符合安规要求。

b.在检验滤波器泄漏电流时,一定要采用符合国际规范的测量电路(如图13所示)。测量时,滤波器金属外壳不能接地,一定要悬浮。

c.三相滤波器的泄漏电流应是各相泄漏电流之和。

图13 国际规范的泄漏电流测量电路

4正确安装方法

a.为了滤波器的安全可靠工作(散热和滤波效果),除滤波器一定要安装在设备的机架或机壳上外,滤波器的接地点应和设备机壳的接地点取得一致,并尽量缩短滤波器的接地线。

若接地点不在一处,那么滤波器的泄漏电流和噪声电流在流经两接地点的途径时,会将噪声引入设备内的其他部分。

其次,滤波器的接地线会引入感抗,它能导致滤波器高频衰减特性的变坏。所以,金属外壳的滤波器要直接和设备机壳连接。如外壳喷过漆,则必须刮去漆皮;若金属外壳的滤波器不能直接接地或使用塑封外壳滤波器时,它与设备机壳的接地线应可能的短。

(a)不正确的安装方法(b)正确的安装方法

图14 滤波器的安装方法

b.滤波器要安装在设备电源线输入端,连线要尽量短;设备内部电源要安装在滤波器的输出端。若滤波器在设备内的输入线长了,在高频端输入线就会将引入的传导干扰耦合给其他部分(参见图15)。若设备内部电源安装在滤波器的输入端,由于连线过长,也会导致同样的结果。

图15

c.确保滤波器输入线和输出线分离

若滤波器输入、输入线捆扎在一起或相互安装过近,那么由于它们之间的耦合,可能使滤波器的高频衰减降低。若输入、输出线必须接近,那么都必须采用双绞线或屏蔽线。

d.要将噪声滤波器正确地连接到设备内部的每一单元。

若带有单独电源的若干单元安装在一个机壳内,那么必须把每一个单元视为设备的独立部

分。每一单元必须连接各自的噪声滤波器,否则在机壳内,这些单元中的每一单元的噪声都会传导给其他单元(参见图16)。

开关电源EMI滤波器典型电路

开关电源EMI滤波器典型电路 开关电源EMI滤波器典型电路 开关电源为减小体积、降低成本,单片开关电源一般采用简易式单级EMI滤波器,典型电路图1所示。图(a)与图(b)中的电容器C能滤除串模干扰,区别仅是图(a)将C接在输入端,图(b)则接到输出端。图(c)、(d)所示电路较复杂,抑制干扰的效果更佳。图(c)中的L、C1和C2用来滤除共模干扰,C3和C4滤除串模干扰。R为泄放电阻,可将C3上积累的电荷泄放掉,避免因电荷积累而影响滤波特性;断电后还能使电源的进线端L、N不带电,保证使用的安全性。图(d)则是把共模干扰滤波电容C3和C4接在输出端。 EMI滤波器能有效抑制单片开关电源的电磁干扰。图2中曲线a为加EMI滤波器时开关电源上0.15MHz~30MHz传导噪声的波形(即电磁干扰峰值包络线)。曲线b是插入如图1(d)所示EMI滤波器后的波形,能将电磁干扰衰减50dBμV~70dBμV。显然,这种EMI滤波器的效果更佳。

电磁干扰滤波器电路 电磁干扰滤波器的基本电路如图1所示。该五端器件有两个输入端、两个输出端和一个接地端,使用时外壳应接通大地 。电路中包括共模扼流圈(亦称共模电感)L、滤波电容C1~C4。L对串模干扰不起作用,但当出现共模干扰时,由于两 个线圈的磁通方向相同,经过耦合后总电感量迅速增大,因此对共模信号呈现很大的感抗,使之不易通过,故称作共模扼流 圈。它的两个线圈分别绕在低损耗、高导磁率的铁氧体磁环上,当有电流通过时,两个线圈上的磁场就会互相加强。L的 电感量与EMI滤波器的额定电流I有关,参见表1。需要指出,当额定电流较大时,共模扼流圈的线径也要相应增大,以便能 承受较大的电流。此外,适当增加电感量,可改善低频衰减特性。C1和C2采用薄膜电容器,容量范围大致是0.01μF~0.47μ F,主要用来滤除串模干扰。C3和C4跨接在输出端,并将电容器的中点接地,能有效地抑制共模干扰。C3和C4亦可并联在 输入端,仍选用陶瓷电容,容量范围是2200pF~0.1μF。为减小漏电流,电容量不得超过0.1μF,并且电容器中点应与大地接

开关电源电路详解图

开关电源电路详解图 一、开关电源的电路组成 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。 开关电源的电路组成方框图如下: 二、输入电路的原理及常见电路 1、AC 输入整流滤波电路原理: ①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1 组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3 会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。

2、DC 输入滤波电路原理: ①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4 为安规电容,L2、L3为差模电感。 ② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图: 3、工作原理: R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖

开关电源原理图精讲.pdf

开关电源原理(希望能帮到同行的你更加深入的了解开关电源,温故而知新吗!!) 一、开关电源的电路组成[/b]:: 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。 开关电源的电路组成方框图如下: 二、输入电路的原理及常见电路[/b]:: 1、AC输入整流滤波电路原理: ①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防

止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。 2、 DC输入滤波电路原理: ①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4为安规电容,L2、L3为差模电感。 ② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路[/b]:: 1、 MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图:

:开关电源中常用EMI滤波器

摘要:开关电源中常用EMI滤波器抑制共模干扰和差模干扰。三端电容器在抑制开关电源高频干扰方面有良好性能。文中在开关电源一般性能EMI滤波器电路结构基础上,给出了使用三端电容器抑制高频噪声的滤波器结构。并使用PSpice软件对插入损耗进行仿真,给出了仿真结果。 1 开关电源特点及噪声产生原因 随着电子技术的高速发展,电子设备种类日益增多,而任何电子设备都离不开稳定可靠的电源,因此对电源的要求也越来越高。开关电源以其高效率、低发热量、稳定性好、体积小、重量轻、利于环境保护等优点,近年来取得快速发展,应用领域不断扩大。开关电源工作在高频开关状态,本身就会对供电设备产生干扰,危害其正常工作;而外部干扰同样会影响其正常工作。 开关电源干扰主要来源于工频电流的整流波形和开关操作波形。这些波形的电流泄漏到输入部位就成为传导噪声和辐射噪声,泄漏到输出部位就形成了波纹问题。考虑到电磁兼容性的有关要求,应采用EMI电源滤波器来抑制开关电源上的干扰。文中主要研究的是开关电源输入端的EMI滤波器。 2 EMI滤波器的结构 开关电源输入端采用的EMI滤波器是一种双向滤波器,是由电容和电感构成的低通滤波器,既能抑制从交流电源线上引入的外部电磁干扰,还可以避免本身设备向外部发出噪声干扰。开关电源的干扰分为差模干扰和共模干扰,在线路中的传导干扰信号,均可用差模和共模信号来表示。差模干扰是火线与零线之间产生的干扰,共模干扰是火线或零线与地线之间产生的干扰。抑制差模干扰信号和共模干扰信号普遍有效的方法就是在开关电源输入电路中加装电磁干扰滤波器。EMI滤波器的电路结构包括共模扼流圈(共模电感)L,差模电容Cx和共模电容Cy。共模扼流圈是在一个磁环(闭磁路)的上下两个半环上,分别绕制相同匝数但绕向相反的线圈。两个线圈的磁通方向一致,共模干扰出现时,总电感迅速增大产生很大的感抗,从而可以抑制共模干扰,而对差模干扰不起作用。为了更好地抑制共模噪声; 共模扼流圈应选用磁导率高,高频性能好的磁芯。共模扼流圈的电感值与额定电流有关。差模电容Cx通常选用金属膜电容,取值范围一般在0.1~1μF。Cy用于抑制较高频率的共模干扰信号,取值范围一般为2200~6800 pF。常选

开关电源整流滤波电路的识读

开关电源整流滤波电路的识读 要看懂一张比较复杂的开关电源整流滤波电路图,首先要了解电路中元件的性能,同时要掌握一些常用的单元电路,做到熟记于心。这样识读电子电路图时就可以做到快速、准确地理解电路图的原理,为实际操作创造理论条件。 本文将分类介绍电子电路中的常用单元电路,使初学者认识、了解这些单元电路的组成及基本功能,同时将简单介绍一些器件的性能、特点,以帮助初学者更好地理解电路的工作原理。 一、直流电源电路 任何一个电子电路都离不开电源,而电子电路中使用的一般都是直流电源。直流电源的获得,一种是使用干电池或蓄电池供电,另一种是将交流电源经过整流、滤波、稳压后供给电路使用。如何将交流电转换成直流电?有哪些方法?这些方法的特点又是什么?下面就来回答这些问题。 1.整流电路 整流电路又可分为单相为波整流电路、单相全波整流电路及单相桥式整流电路,下面分别进行叙述。 (1)单相半波整流电路是最简单的一种整流电路,如图a)所示。电路由电源变压器、整流二极管D、负载R L组成。电源变压器的作用是把220V交流电降低为几伏至几十伏的交流电压。整流二极管的作用是把交流电变换为脉动直流电,其波形如图b)所示。该电路之所以能把交流电变换为脉动直流电,关键是利用了整流二极管具有单相导电的特性。当给二极管加正电压时,二极管呈导通状态(相当于开关闭合)电流可以通过;当给二极管加反向电压时,二极管呈截止状态(相当于开关断开)电流不能通过。 a) b) 图1-1单相半波整流电路 电路工作原理如下:当电源变压器的初级绕组接交流电压时,在次级绕组中就会感应出交流电压U2。当U2为正半周时,设A端为正,B端为负(即A端电位高于B端电位)。这时二极管承受正向电压,呈导通状态,故电流由A端经二极管D和负载R L流到B端,负载R L两端有电压U o。当U2为负半周时,A端为负,B端为正,则二极管承受反向电压,呈截止状态。通过负载上的电流为零,负载两端的电压也为零。可见在交流电U2的一个周期内,负载R L上只有自上而下的单方向电流,实现了整流。从波形图可以看出,整流后的电压(电流)方向不变,但大小是波动的。这种大小变化、方向不变的电压(电流),称为脉动直流电。从波形图中还可以看出,这种电路仅利用了电源电压的半个波,故称为半波整流电路。 (2)单向半波整流电路的缺点是电源的利用率低,且输出电压脉动大。为了克服这一缺点,可以采用全波整流电路,如图1-2a)所示。电路中的变压器次级绕组有中心抽头,是

开关电源始终无电压输出的解决办法

开关电源始终无输出的故障检修技巧 1、开关电源始终无电压输出的原因 这种情况是由于开关电源未产生振荡所致,进一步证明的方法是;测开关电源整流滤波电容关机后的电压,若为300V之后缓慢下降,则说明开关电源确未产生振荡。开关电源未产生振荡的原因有: 1).开关管集电极未得到足够的工作电压。 2).开关管基极未得到启动电压。 3).开关管正反馈电路元件失效。: 2、检修方法与步骤 1).测开关管集电极电压为0或低于市电1.4倍,检查交流220V输入电路及整流滤波电路,若集电极电压正常,则检查开关管b极电压 2).测开关管b极电压或者在关机瞬间,用指针万用表R x 1欧挡,黑笔接b极,红笔接整流滤波电容负极(热地),听电源有启动声音,说明电源振荡电路正常,仅缺乏启动电压,是启动电阻开路或铜皮断。若无启动声,在测be结后,迅速将表转到电压档,测c极电压是否快速泄放。若是,说明开关管及其放电回路均正常,正反馈电路存在故障,包括反馈电阻、电容、续流二极管、正反馈绕组及其开关管故障。若c极电压仍不泄放,说明开关管及其回路有开路故障或b极有短路接地故障 二、开关电源瞬间有电压输出的故障检修技巧 1、瞬间有电压输出故障原因 开关电源在加电的初始产生了振荡,但后来由于过压过流保护引起停振,或开关机接口电路加电初为开机状态,但随着CPU清零的结束而转入待机状态。 其原因有: 1).开关电源因故造成输出电压过高而引起保护停振。 2).负载过流而引起过流保护动作。 3).保护电路本身误动作。 4).遥控系统因故障而执行待机指令。 其中2、3、4项适用于带有副电源的机器。 2.故障判断的方法与检修步骤 1).假负载法: 脱开行负载,在B+输出端接上假负载,监测B+电压(应先将电压表接到位,开机后即关机)。如果高于正常值十几伏以上,可判断故障是由开关电源输出过压,并击穿行输出管所致,或电源本身的保护电路动作关断电源。应对控制开关电源输出电压的脉宽调制电路和振荡定时电容进行检查(后面将专门讲述)。 若开关电源B+正常,则变换负载或改变市电压观察B+是否稳定输出,对于直接取样电源可空载,以便更好地判断开关电源的稳定性能,若确认其良好,则故障系负载过流或保护电路动作所引起。

EMI滤波器电路原理及设计

EMI滤波器电路原理及设计 引言 开关电源以其体积小、重量轻、效率高等优点被广泛应用于电力电子设备系统中,但是开关电源易受到电磁干扰,产生误动作,且本身的高频信号也会引起大量的噪声,会污染电网环境,干扰同一电网其他电子设备的正常工作。这样就对EMC提出了更高的要求指标。 分类: 开关电源中的电磁干扰(EMI)主要有传导干扰和辐射干扰。通过正确的屏蔽和接地系统设计可以得到有效的控制,对于传导干扰来说,加装EMI滤波器,是一种比较经济有效的措施,辐射干扰的抑制可以通过加装变压器屏蔽铜片。 EMI滤波器介绍 开关电源与交流电网相连,尽管开关电源是一个单端口网络,但具有相线(L),零线(N),地线(E)的开关电源实际上形成了两个AC端口,所以噪声源在实际分析中可以将其分解为共模和差模噪声源。火线(L)与零线(N)之间的干扰叫做差模干扰(属于对称性干扰),火线(L)与地线(E)之间的干扰叫做共模干扰(非对称性干扰)。在一般情况下,差模干扰幅度小、频率低、所造成的干扰较小;共模干扰幅度大、频率高,还可以通过导线产生辐射,所造成的干扰较大。 开关电源的EMI干扰源集中体现在功率开关管、整流二极管、高频变压器等,外部环境对开关电源的干扰主要来自电网的抖动、雷击、外界辐射等。 1.开关电源的EMI干扰源 开关电源的EMI干扰源集中体现在功率开关管、整流二极管、高频变压器等,外部环境对开关电源的干扰主要来自电网的抖动、雷击、外界辐射等。 (1)功率开关管 功率开关管工作在On-O ff快速循环转换的状态,dv/dt和di/dt都在急剧变换,因此,功率开关管既是电场耦合的主要干扰源,也是磁场耦合的主要干扰源。 (2)高频变压器 高频变压器的EMI来源集中体现在漏感对应的di/dt快速循环变换,因此高频变压器是磁场耦合的重要干扰源。 (3)整流二极管 整流二极管的EMI来源集中体现在反向恢复特性上,反向恢复电流的断续点会在电感(引线电感、杂散电感等)产生高 dv/dt,从而导致强电磁干扰。 (4)PCB 准确的说,PCB是上述干扰源的耦合通道,PCB的优劣,直接对应着对上述EMI源抑制的好坏。

开关电源EMI滤波器典型电路

开关电源E M I滤波器典型 电路 Prepared on 24 November 2020

开关电源EMI滤波器典型电路 开关电源EMI滤波器典型电路 开关电源为减小体积、降低成本,单片开关电源一般采用简易式单级EMI滤波器,典型电路图1所示。图(a)与图(b)中的电容器C能滤除串模干扰,区别仅是图(a)将C接在输入端,图(b)则接到输出端。图(c)、(d)所示电路较复杂,抑制干扰的效果更佳。图(c)中的L、C1和C2用来滤除共模干扰,C3和C4滤除串模干扰。R为泄放电阻,可将C3上积累的电荷泄放掉,避免因电荷积累而影响滤波特性;断电后还能使电源的进线端L、N不带电,保证使用的安全性。图(d)则是把共模干扰滤波电容C3和C4接在输出端。 EMI滤波器能有效抑制单片开关电源的电磁干扰。图2中曲线a为加EMI滤波器时开关电源上~30MHz传导噪声的波形(即电磁干扰峰值包络线)。曲线b 是插入如图1(d)所示EMI滤波器后的波形,能将电磁干扰衰减50dBμV~ 70dBμV。显然,这种EMI滤波器的效果更佳。 电磁干扰滤波器电路 电磁干扰滤波器的基本电路如图1所示。该五端器件有两个输入端、两个输出端和一个接地端,使用时外壳应接通大地 。电路中包括共模扼流圈(亦称共模电感)L、滤波电容C1~C4。L对串模干扰不起作用,但当出现共模干扰时,由于两 个线圈的磁通方向相同,经过耦合后总电感量迅速增大,因此对共模信号呈现很大的感抗,使之不易通过,故称作共模扼流 圈。它的两个线圈分别绕在低损耗、高导磁率的铁氧体磁环上,当有电流通过时,两个线圈上的磁场就会互相加强。L的

电感量与EMI滤波器的额定电流I有关,参见表1。需要指出,当额定电流较大时,共模扼流圈的线径也要相应增大,以便能 承受较大的电流。此外,适当增加电感量,可改善低频衰减特性。C1和C2采用薄膜电容器,容量范围大致是μF~μ F,主要用来滤除串模干扰。C3和C4跨接在输出端,并将电容器的中点接地,能有效地抑制共模干扰。C3和C4亦可并联在 输入端,仍选用陶瓷电容,容量范围是2200pF~μF。为减小漏电流,电容量不得超过μF,并且电容器中点应与大地接 通。C1~C4的耐压值均为630VDC或250VAC。 图2示出一种两级复合式EMI滤波器的内部电路,由于采用两级(亦称两节)滤波,因此滤除噪声的效果更佳。针对某些用户现场存在重复频率为几千赫兹的快速瞬态群脉冲干扰的问题,国内外还开发出群脉冲滤波器(亦称群脉冲对抗器),能对上述干扰起到抑制作用。

反激式开关电源输出滤波电容器的选择

反激式开关电源输出滤波电容器的选择 陈永真 1.反激式开关电源输出整流滤波电路工作状态分析 反激式开关电源输出整流滤波电路原理上是最简单的。但是,由于反激式开关电源的能量传递必须通过变压器转换实现,变压器的初次级两侧的开关(MOSFET 或整流二极管)均工作在电流断续状态。在相同输出功率条件下,反激式开关电源的开关流过的电流峰值和有效值大于正激式、桥式、推挽式开关电源。为了获得更低的输出电压尖峰,通常的反激式开关电源工作在电感电流(变压器储能)断续状态,这就进一步增加了开关元件的电流额定。 开关电源的电路拓扑对输出整流滤波电容器影响也是非常大的,由于反激式开关电源的输出电流断续性,其交流分量需要由输出整流滤波电容器吸收,当电感电流断续时输出整流滤波电容器的需要吸收的纹波电流相对最大。 对应的输出整流二极管的电流波形如图1,输出滤波电容器的电流波形如图2。**2recM on O I t I T = 图1 反激式开关电源的输出整流二极管的电流波形 图2 输出滤波电容器的电流波形 由图1可以得到流过输出整流二极管电流峰值与平均值、有效值的关系为如下。 流过输出整流器的峰值电流与平均值电流的关系: 根据电荷相等,可以得到: **2recM on O I t I T = (1) 可以得到整流二极管电流的峰值: max 2D I I O recM ?= (2) 流过输出整流器的有效值电流与峰值电流的关系: 3*max D I I recM recrms = (3) 流过整流器的有效值电流与平均值电流的关系:

O recrms I D I *32max = (4) 式中:I recM 、I recrms 、I O 、D max 分别为流过输出整流器的峰值电流、有效值电流、平均值电流和输出整流二极管的最大导通占空比。 流过输出滤波电容器的电流有效值略小于流过输出整流器的有效值电流。 式(2)、(3)、(4)表明,随着输出整流器导通占空比的减小,相同输出电流平均值对应的峰值电流、有效值电流随占空比的减小而增加。 在大多数情况下,反激式开关电源工作在变压器电流临界或断续状态。在变压器电流临界状态下,初级侧开关管导通占空比与输出整流器导通占空比相加为1。 在大多数情况下,反激式开关电源的输出整流器的最大导通占空比约为0.5。这样,流过输出整流器的电流峰值与输出平均值电流之间的关系为: O O O recM I I D I I 45.022=?=?= (4) 有效值电流与输出电流平均值的关系为: O recM recM recrms I I I D I *631*35.0*3=== (5) 2.设计实例与分析 某反激式开关电源的技术参数为:电路图拓扑:反激式;输入电压:85V ac~264V ac 工作频率:65kHz ;输出:12V/5A ;纹波电压:50mV ;CLC 滤波。 (1)第一级滤波电容器的选择 对于输出电流5A 对应的峰值电流为20A 、有效值电流为14.14A ,其中大部分流入滤波电容器。按最高温度的纹波电流2倍选用电容器,滤波电容器的纹波电流之和至少要7A 。 25V/1000μF 低ESR 铝电解电容器的额定纹波电流约为1A ,需要7只并联。如果非要5只并联甚至4只并联,也是可以运行的,但是不具有长期可靠性。 25℃温度下,25V/1000μF 低ESR 铝电解电容器的ESR 约为0.09Ω。7只并联对应的ESR 为129mΩ、5只并联为180mΩ、4只并联为225mΩ。由电流变化在ESR 上产生的峰值电压分别为2.59V 、3.60V 、4.50V 。除此之外,滤波电容器的ESL 还会在整流二极管开通时由于电流的跃变而产生感生电势,这个感生电势同样会加到滤波电容器上,因此,滤波电容器上的峰值电压将不只是上述的2.59V 、3.60V 、4.50V 。其电压波形如图3。 图3 第一级滤波电容器的电压波形 很显然,2.59V 、3.60V 、4.50V 是不能满足设计要求的,需要在第一级滤波电容器后面加上一级LC 低通滤波器。 (2)第二极LC 低通滤波器的设计与参数选择

开关电源EMI滤波器的正确选择与使用

开关电源EMI滤波器的正确选择与使用 1插入损耗和滤波电路的选择 在用户选择滤波器时,最关心插入损耗性能。但是,往往插入损耗相近的滤波器,在实际运用中效果相差甚远。究其主要原因是,相近插入损耗的滤波器可由不同的电路实现。这和理论分析是吻合的,因为插入损耗本身是个多解函数。 所以,选择滤波器时首先应选择适合你所用的滤波电路和插入损耗性能。要做到这一点,就要求了解所使用电源的等效噪声源阻抗和所需要对噪声的抑制能力。这符合“知己知彼,百战百殆”的客观规律。 那么滤波电路和电源等效噪声之间存在什么样的关系呢? 众所周知,EMI滤波器是由L、C构成的低通器件。为了在阻带内获得最大衰减,滤波器输入端和输出端的阻抗需与之连接的噪声源阻抗相反,即对低阻抗噪声源,滤波器需为高阻抗(大的串联电感);对高阻抗噪声源,滤波器就需为低阻抗(大的并联电容)。对于EMI滤波器,这些原则应用于共模和差模中。 如按此原则选用的滤波器,在实际运用中仍存在效果相差很多的现象,特别发生在重载和满载的情况下。造成这一问题的主要原因可能是滤波器中的电感器件在重载和满载时,产生饱和现象,致使电感量迅速下降,导致插入损耗性能大大变坏。其中尤以有差模电感的滤波器为多。因差模电感要流过电源火线或零线中的全部工作电流,如果差模电感设计不当,电流一大,就很容易饱和。当然也不排除共模扼流圈,因生产工艺水平较差,两个绕组不对称,造成在重载或满载时产生磁饱和的可能。 图1 共模滤波器模型 1.1.2差模滤波电路 由于开关电源的开关频率谐波噪声源阻抗为低阻抗,所以与之相对应的滤波器输出端应是高阻抗串联大电感LDM。 AC电网火线和零线之间是低阻抗,所以与之对应的滤波器输入端也应是高阻抗串联大电感LDM。如果想再进一步抑制差模噪声,可以在滤波器输入端并接线间电容CX1,条件是它的阻抗要比AC电网火线、零线之间的阻抗还要低得多。 开关电源工频谐波噪声源阻抗是高阻抗,所以与之相对应的滤波器输出端应是低阻抗并联大电容CX2。 合成的差模滤波电路参见图2。 最后,完整的共、差模滤波电路参见图3。

开关电源AC和DC的输入滤波电路原理

开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。以下是开关电源AC和DC的输入滤波电路原理: 1、AC输入整流滤波电路原理: ①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、 F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。 2、DC输入滤波电路原理: ①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4为安规电容,L2、L3为差模电感。 ②在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。

开关电源滤波器

开关电源滤波器 开关电源电磁干扰滤波器是无源网络,它具有双向抑制性能。将它插入在交流电网中与电源之间,相当于这二者的 EMI 噪声之间加上一个阻断屏障,这样一个简单的无源滤波器起到了双向抑制噪声的作用,从而在各种电子设备中获得广泛的应用。 开关电源由于功耗小效率高,体积小,重量轻,稳压范围广,电路形式灵活等特点,广泛地应用于计算机、通信等各类电子设备。但是随着开关电源的小型化,开关就要高频化,这种高频化,其基波本身也就构成了一个干扰源,发出一种更强的传导干扰波,此外通过改进元器件达到高频化的同时,也会因辐射干扰波而导致一种超标准值的杂散的信号。这些信号构成了电磁干扰 (EMI),被干扰对象是无线电通信。为使无线电波不受电磁干扰的影响,就要采取措施限定这种电磁干扰,使之符合有关电磁兼容(EMC)标准或规范,这已经成为电子产品设计者越来越关注的问题。 开关电源电磁干扰 (EMI)的特点 开关电源功率变换器中的功率半导体器件的开关频率通常较高,功率开关器件在高频下的通、断过程中不可避免地要产生强大的电磁干扰。与数字电路相比,开关电源 EMI 呈现出鲜明的特点:a.开关电源EMI 干扰源的位置比较清楚,主要集中在功率开关器件、二极管以及与之相连的散热器和高频变压器上。b.作为工作于开关状态的能量转换装置,开关电源的电压、电流变化率很高,其产生的EMI 噪声信号既具有很宽的频率范围,又有一定的强度。c.印制电路板布线不当也是引起电磁干扰的主要原因。这些干扰经传导和辐射对其他电子设备造成干扰。 任何电源线上传导干扰信号,均可用差模和共模信号来表示。在一般情况下,差模干扰幅度小,频率低,所造成的干扰较小;共模干扰幅度大,频率高,还可以通过导线产生辐射,所造成的干扰较大。因此,欲削弱传导干扰,把 EMI信号控制在有关EMC 标准规定的极限电平以下,最有效的方法就是在开关电源输入和输出电路中加装电磁干扰滤波器。电磁干扰滤波器的设计 (1)电磁干扰滤波器设计原则 电磁干扰滤波器的设计与选择,应根据干扰源的特性、频率范围、电压、阻抗等参数及负载特性的要求综合考虑,通常要考虑以下几方面的问题: 1)要求电磁干扰滤波器在相应工作频段范围内,能满足负载要求的衰减特性,若一种滤波器衰减量不能满足要求的时候,则可采用多级联,可以获得比单级更高的衰减,不同的滤波器级联,可以获得在宽频带内良好的衰减特性。 2)要满足负载电路工作频率和需抑制频率的要求,如果遇到要抑制的频率和有用信号频率非常接近,则需要频率特性非常陡峭的EMI 滤波器。 3)在所要求的频率上,滤波器的阻抗必须与它连接的干扰源阻抗和负载阻抗相匹配,如果负载是高阻抗,则EMI 滤波器的输出阻抗应为低阻;如果电源或干扰源阻抗是低阻抗,

开关电源的电磁干扰及其滤波措施

开关电源的电磁干扰及其滤波措施 1引言 开关电源与线性稳压电源相比,具有功耗小、效率高、体积小、重量轻、稳压范围宽等特点,广泛用于计算机及外围设备、通信、自动控制、家用电器等领域。但开关电源的突出缺点是产生较强的电磁干扰(EMI)。EMI信号既占有很宽的频率范围,又有一定的幅度,经传导和辐射会污染电磁环境,对通信设备和电子仪器造成干扰。如果处理不当,开关电源本身就会变成一个干扰源。随着电子产品的电磁兼容性(EMC)日益受到重视,抑制开关电源的EMI,提高电子产品的质量,使之符合有关EMC标准或规范,已成为电子产品设计者越来越关注的问题。 2开关电源产生EMI的原理 开关电源产生EMI的因素较多,其中由基本整流器产生的电流高次谐波干扰和变压器型功率转换电路产生的尖峰电压干扰是主要因素。它们所以产生于电源装置的内部,是由于开关电源中的二级管和晶体管在工作过程中产生的跃变电压和电流,通过高频变压器、储能电感线圈和导线以及系统结构、元件布局等而造成的。 基本整流器的整流过程是产生EMI最常见的原因。这是因为正弦波通过整流器后不再是单一频率的电流,而是变成单向脉动电源,此电流波形分解为一直流分量和一系列频率不同的交流分量之和。实验结果表明,较高的谐波(特别是高次谐波)会沿着输电线路产生传导干扰和辐射干扰,一方面使接在其前端电源线上的电流波形发生畸变,另一方面通过电源线产生射频干扰,使接收机等产生噪声。 变压器型功率转换电路是实现变压、变频以及完成输出电压调整的部件,是开关稳压电源的核心,主要由开关管和高频变压器组成。它产生的尖峰电压是一种有较大辐度的窄脉冲,其频带较宽且谐波比较丰富。产生这种脉冲干扰的主要原因是:

开关电源基础知识

开关电源就是用通过电路控制开关管进行高速的道通与截止.将直流电转化为高频率的交流电提供给变压器进行变压,从而产生所需要的一组或多组电压!转华为高频交流电的原因是高频交流在变压器变压电路中的效率要比50Hz高很多.所以开关变压器可以做的很小,而且工作时不是很热!成本很低.如果不将50Hz变为高频那开关电源就没有意义 开关电源大体可以分为隔离和非隔离两种,隔离型的必定有开关变压器,而非隔离的未必一定有. 开关电源的工作原理是: 1.交流电源输入经整流滤波成直流; 2.通过高频PWM(脉冲宽度调制)信号控制开关管,将那个直流加到开关变压器初级上; 3.开关变压器次级感应出高频电压,经整流滤波供给负载; 4.输出部分通过一定的电路反馈给控制电路,控制PWM占空比,以达到稳定输出的目的. 交流电源输入时一般要经过厄流圈一类的东西,过滤掉电网上的干扰,同时也过滤掉电源对电网的干扰; 在功率相同时,开关频率越高,开关变压器的体积就越小,但对开关管的要求就越高; 开关变压器的次级可以有多个绕组或一个绕组有多个抽头,以得到需要的输出;

一般还应该增加一些保护电路,比如空载、短路等保护,否则可能会烧毁开关电源 ATX电源的主要组成部分 EMI滤波电路:EMI滤波电路主要作用是滤除外界电网的高频脉冲对电源的干扰,同时也起到减少开关电源本身对外界的电磁干扰,在优质电源中一般都有两极EMI滤波电路。 一级EMI电路:交流电源插座上焊接的是一级EMI电源滤波器电路,这是一块独立的电路板,是交流电输入后所经过的第一组电路,这个由扼流圈和电容组成的低通网络能滤除电源线上的高频杂波和同相干扰信号,同时也将电源内部的干扰信号屏蔽起来,构成了电源抗电磁干扰的第一道防线。 二级EMI电路:市电进入电源板后先通过电源保险丝,然后再次经过由电感和电容组成的第二道EMI电路以充分滤除高频杂波,然后再经过限流电阻进入高压整流滤波电路。保险丝能在电源功率太大或元件出现短路时熔断以保护电源内部的元件,而限流电阻含有金属氧化物成分,能限制瞬间的大电流,减少电源对内部元件的电流冲击。 桥式整流器和高压滤波:经过EMI滤波后的市电,再经过全桥整流和电容滤波后就变成了高压的直流电。将输入端的交流电转变为脉冲直流电,目前有两种形式,一种是全桥就是把四个二极管封装在一起,一种是用4个分立的二极管组成桥式整流电路,作用相同,效果也一样。

开关电源输出整流滤波电容器选择

开关电源输出整流滤波电容器选择 前言 开关电源的输出整流滤波电容器的作用主要是通过利用滤波电容器吸收开关频率及其高次谐波频率的电流分量而滤除其纹波电压分量。也就是说是利用电容器的低阻抗而将交流电流分量的绝大部分,更希望是全部分流到滤波电容器上,使输出电流没有或非常小的交流电流分量。 无论正激式开关电源工作输出的矩形波电流,还是反激式开关电源的锯齿波电流,均含有极其丰富的高次谐波电压与电流。这些高次谐波电流是不允许作为输出电流成分流入负载,需要采用高频阻抗低的电容器对其分流短路。这要求滤波电容器应具有很好的阻抗频率特性,这与工频整流滤波对电容器要求大电容量的要求有所不同的(工频整流滤波很容易滤除工频的高次谐波,即使是40次也不过才2000Hz,一般电解电容器很容易实现)。因此开关电源的输出整流滤波电容器即使选用铝电解电容器也应首选低ESR的铝电解电容器,而绝不能随意到电子市场抓到什么样的铝电解电容器(只要电压、电容量满足要求)均可。这样作的结果将是电源的输出纹波电压过高,特别是峰-峰值电压过高。 1.输出滤波电容器对输出纹波电流的旁路作用 输出整流滤波电容器的任务主要是旁路开关电源输出的高频交流纹波电流分量,相当于电源的交流等效电路中旁路电容器与负载分享纹波电流,如图1。 图1 旁路电容器与负载分享纹波电流的交流等效电路 图中,电流源等效为开关电源的逆变器部分产生的交流纹波电流。在高频段,输出整流滤波电容器的容抗已经小于电容器的ESR,电容器的容抗可以忽略,这时的纹波电流只剩下旁路电容器的ESR与负载分担。很显然,如果旁路电容器的ESR比较大就会变成负载与旁路电容器的ESR分享纹波电流,这样,旁路电容器的分流效果将大打折扣,影响旁路效果。所以除了对电容量的要求外,还希望旁路电容器的ESR越小越好。 2.不同电路拓扑要求不同输出滤波特性 (1)正激式开关电源要求的输出滤波特性 输出滤波电解电容器的性能直接影响开关电源的性能,那么开关电源的电路拓扑和电路设计的合理性是否反过来也影响输出滤波电容器的工作和寿命?结论是肯定的。通常开关电源的主回路的电路拓扑主要有:反激式(包括电流连续与电流断续)、单管正激(包括双管箝位和有源箝位)、半桥与全桥、推挽电

开关电源原理及各功能电路详解

开关电源原理及各功能电路详解 一、 开关电源的电路组成[/b]:: 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM 控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。 开关电源的电路组成方框图如下: 二、 输入电路的原理及常见电路[/b]:: 1、AC 输入整流滤波电路原理: 深圳市百盛电子有限公司

深圳市百盛电子有限公司 ① 防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、 FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低, 使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ② 输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声 及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。 当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪 涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负 温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③ 整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5 容量变小,输出的交流纹波将增大。 输入滤波电路原理: 2、 DC ① 输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂 波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、 C4为安规电容,L2、L3为差模电感。 ② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间, 由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导 通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导 通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、 功率变换电路[/b]:: 1、 MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半 导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态, 所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半

开关电源相关 开关电源EMI滤波器的正确选择与使用

开关电源EMI滤波器的正确选择与使用 (连载二) 2额定电流与环境温度 EMI滤波器一般采用高导磁率软磁材料锰锌铁氧体,初始导磁率μi=700~10000,但其居里点温度不高,优质的仅为130℃左右。导磁率越高,居里点温度越低,典型曲线如图10所示。 除特殊说明外,EMI滤波器说明书给出的额定电流均指室温+25℃的值;同样,给出的典型插入损耗或曲线也均指室温+25℃的值。 随着环境温度的升高,主要由电感导线的损耗、磁芯损耗以及周围环境温度等原因导致温度高于室温,结果难于确保插入损耗的性能,甚至烧坏滤波器。由于滤波电容的最高工作温度受到限制也是+85℃。我们应该根据实际可能的最大工作电流和工作环境温度来选择滤波器额定电流。 图10 居里点温度曲线图11额定电流与温度的关系 工作电流、额定电流与环境温度之间存在如下关系:

式中:Ip——容许的最大工作电流; IR——室温+25℃时的额定电流; Tmax——容许的最高工作温度,+85℃; Ta——环境温度; TH——室温(+25℃)。 也可用曲线表示(参见图11)。曲线表示Ip/IR∝Ta。 举例说明:+25℃Ip=IR;+45℃ Ip=0.816IR;+55℃ Ip=0.5IR;+85℃Ip=0.0 因此,要根据工作温度来正确选择滤波器的额定电流;或者用改善滤波器的散热条件(工作环境)来确保滤波器的安全使用。这样,滤波器务必安装在有散热作用的机架、机壳上,切忌安装在绝缘材料上。 3耐压、泄漏电流与安全 3.1耐压与安全 由于EMI滤波器安装在AC电网的输入端,所以除了承受开关电源(滤波器的负载)产生的尖峰脉冲干扰电压外,还要承受来自电网的浪涌电压(电流),特别是浪涌电压,其持续时间长(ms级),能量大(2000伏浪涌电压是经常出现的)。这些干扰电压由滤波器的Cx、Cy承受。因此,要求使用专为EMI滤波器设计的Cx、Cy。目前,据了解,因内尚没有这类电容器生产厂家。 电容Cx或Cy被浪涌电压击穿产生的后果,是Cx被击穿短路,相当于AC电网被短路,至少造成设备停止工作;Cy击穿短路,相当于将AC电网的电压加到设备的外壳,它直接威胁人身安全的同时,波及所有与金属外壳为参考地的电路安全,往往导致某些电路的烧毁。 国际上,耐压的安全规范各主要工业国家有所区别,表1供参考。 表1耐压安全规范 国家和测试机构测试标准 高压测试R-绝缘 KV(1Min.) Hz P.N→E P→N 106ΩV(1 Min.) 德国VDE 0565.1 0565.2 0565.3 4,3 · Vn 1.5 50 P→N P.N→E 1500 2000 100 100 瑞士SEV 1055.1978 4,3 · Vn 2·Un+1,5 50 P→N P.N→E 6000 100 瑞典4432901 4,3 · Vn 2·Un+1,5 50 P→N P.N→E 6000 100 英国BS 613 BS 2135 4,3 · Vn 1.5 2.25 50 P→N P.N→E 20 100 加拿大CSA C 22.2 No.8-M1982 (2Vn+0.5)1,4/4 ≥1,414 2Vn+1 60 P→N P.N→E 6000/N N=number Cond.11 100 美国UL 1283 1,0 1,414 1,0 1,414 60 60 P→N P.N→E 2 - 250 - 举例说明: 德国VDE0565.2高压测试(AC)P,N→E 1.5KV/50Hz1分钟瑞士SEV1055高压测试(AC)P,N→E2·Un+1.5KV/50Hz1分钟

开关电源输入EMI滤波器的设计与仿真

开关电源输入EMI滤波器的设计与仿真 于工频电流的整流波形和开关操作波形。这些波形的电流泄漏到输入部位 就成为传导噪声和辐射噪声,泄漏到输出部位就形成了波纹问题。考虑到电磁 兼容性的有关要求,应采用EMI 电源滤波器来抑制开关电源上的干扰。文中主要研究的是开关电源输入端的EMI 滤波器。 2 EMI 滤波器的结构 开关电源输入端采用的EMI 滤波器是一种双向滤波器,是由电容和电感构成的低通滤波器,既能抑制从交流电源线上引入的外部电磁干扰,还可以避免本 身设备向外部发出噪声干扰。开关电源的干扰分为差模干扰和共模干扰,在线 路中的传导干扰信号,均可用差模和共模信号来表示。差模干扰是火线与零线 之间产生的干扰,共模干扰是火线或零线与地线之间产生的干扰。抑制差模干 扰信号和共模干扰信号普遍有效的方法就是在开关电源输入电路中加装电磁干 扰滤波器。EMI 滤波器的电路结构包括共模扼流圈(共模电感)L,差模电容Cx 和共模电容Cy。共模扼流圈是在一个磁环(闭磁路)的上下两个半环上,分别绕制相同匝数但绕向相反的线圈。两个线圈的磁通方向一致,共模干扰出现时, 总电感迅速增大产生很大的感抗,从而可以抑制共模干扰,而对差模干扰不起 作用。为了更好地抑制共模噪声,共模扼流圈应选用磁导率高,高频性能好的 磁芯。共模扼流圈的电感值与额定电流有关。差模电容Cx 通常选用金属膜电容,取值范围一般在0.1~1μF。Cy 用于抑制较高频率的共模干扰信号,取值范围一般为2200~6800 pF。常选用自谐振频率较高的陶瓷电容。由于接地,共模电容Cy 上会产生漏电流Ii-d。因为漏电流会对人体安全造成伤害,所以漏电流应尽量小,通常1.0 mA。共模电容取值与漏电流大小有关,所以不宜过大,取值范围一般为2200~4700 pF。R 为Cx 的泄放电阻。电源滤波器的性能

相关文档
相关文档 最新文档