文档视界 最新最全的文档下载
当前位置:文档视界 › 高中数学第二章函数211函数第2课时映射与函数课堂新人教B版1

高中数学第二章函数211函数第2课时映射与函数课堂新人教B版1

高中数学第二章函数211函数第2课时映射与函数课堂新人教B版1
高中数学第二章函数211函数第2课时映射与函数课堂新人教B版1

2.1.1 函数

第2课时映射与函数

课堂导学

三点剖析

一、考查映射概念

【例1】以下给出的对应是不是从集合A 到集合B 的映射?

(1)集合A={x|x 是三角形},集合B={x|x 是圆},对应法则f:每一个三角形都对应它的内切圆.

(2)集合A={x|x 是新华中学的班级},集合B={x|x 是新华中学的学生},对应法则f:每一个班级都对应班里的学生.

思路分析:映射中的对应法则只有一对一与多对一,不能是一对多.

解:(1)由于每一个三角形只有一个内切圆与之对应,所以这个对应f:A→B 是从集合A 到B 的映射.

(2)新华中学的每一个班级里的学生都不止一个,即与一个班级对应的学生不止一个,所以这个对应f:A→B 不是映射.

二、判断映射个数

【例2】已知集合M={-1,0,1},映射f:M→M 满足f(0)=f(-1)+f(1),则这样的映射的个数为

( )

A.2

B.4

C.6

D.7

解析:按照f(0)的取值进行讨论.

若f(0)=-1,则f(-1)=-1,f(1)=0.

或者f(-1)=0,f(1)=-1,这样的映射有2个.

若f(0)=0,则f(-1)=-1,f(1)=1,

或者f(-1)=f(1)=0.

或者f(-1)=1,f(1)=-1,这样的映射有3个.

若f(0)=1,则f(-1)=0,f(1)=1.

或者f(-1)=1,f(1)=0,这样的映射有2个.

∴所求映射的个数为7.

答案:D

温馨提示

在求映射个数时,要紧扣映射定义,保证A 中元素的任意性,B 中对应元素的唯一性.

三、象与原象之间的关系

【例3】已知(x,y)在映射f 的作用下的象(x+y,xy),

(1)求(-2,3)在f 作用下的象;

(2)若在f 作用下的象是(2,-3),求它的原象.

思路分析:本题主要考查象与原象的概念,会用对应法则求象或原象.在对应法则下有?

???→+→y.x y y,x x 解:(1)∵x=-2,y=3,∴x+y=(-2)+3=1,x·y=(-2)×3=-6.

∴(-2,3)在f 下的象为(1,-6).

(2)∵??

?=?=+-3,y x 2,y x 解得???==-1y 3,x 11或???==-1,y -1,x 11

∴(2,-3)在f 作用下的原象为(3,-1)和(-1,3).

温馨提示

做好本题,关键是理解好象与原象的概念,确定哪个元素是原象,哪个元素是象. 各个击破

类题演练1

已知P={x|0≤x≤4},Q ={y|0≤y≤2},下列对应不表示从P 到Q 的映射的是( )

A.f:x→y=

21x B.f:x→y=3

1x C.f:x→y=23x D.f:x→y=x 解析:根据映射的定义,A 、B 、D 都是P 到Q 的映射.

答案:C

变式提升1

已知集合A 到集合B={0,1,2,3}的映射f:x→y=1

||1-x ,求集合A 中的元素. 解析:∵f:x→y=1

||1-x 是集合A 到集合B 的映射, ∴A 中每一个元素在集合B 中都应该有象. 令1

||1-x =0,该方程无解,所以0没有原象. 分别令

1||1-x =1,1||1-x =2,1||1-x =3,解得x=±2,±23,±34 类题演练2

已知M={1,2},N={a,b},从M 到N 的映射f 有几个?

解析:

从上面可以得到从M 到N 共有4个映射.

变式提升2

已知集合A ={1,2,3},集合B ={-1,0,1},满足条件f(3)=f(1)+f(2)的映射f:A→B 的个数是…( )

A.2

B.4

C.7

D.6

解析:当3对应1,则1和2可分别对应0和1,两种情况;当3对应-1,则1,2可分别对

应0和-1,两种情况;当3对应0,则1和2可分别对应1和-1,两种情况;当3对应0,则1和2也对应0,共有2+2+2+1=7(个).

答案:C

类题演练3

设集合A 和B 都是坐标平面上的点集{(x,y)|x∈R ,y∈R },映射f:A→B把集合A 中的元素(x,y)映射成集合B 中的元素(x+y,x-y),则在映射f 下,象(2,1)的原象是( ) A.(3,1) B.(23,21) C.(23,21

-) D.(1,3)

答案:B

变式提升3

设A =R ,B =R ,f:x→21

2+x 是A→B 的映射.

(1)设a∈A,那么1+a 在B 中的象是什么?

(2)若t∈A,且t-1在f 下的象是6,则t 应是什么?t 在映射f 下的象是什么? 解析:(1)∵a∈A,A=R,∴1+a∈A.

∴1+a 在f:x→21

2+x 下的象为23

2+a .

(2)由t∈A,A=R 知t-1∈A.

∴t -1在f:x→212+x 下的象为21

2-t . 令21

2-t =6知t=213

.

易知t=在f 下的象为21

2132+

?=7.

高中数学函数的零点和最值

函数的零点 1、函数零点的定义: 对于函数y=f(x),我们把使f(x)=0的实数x 叫做函数y=f(x)的零点。 方程f(x)=0有实数根?函数y=f(x)的图象与x 轴有交点?函数y=f(x)有零点 注意:零点是一个实数,不是点。 练习:函数23)(2 +-=x x x f 的零点是( ) A.()0,1 B.()0,2 C.()0,1,()0,2 D.1,2 方程f(x)=0的根的个数就是函数y=f(x)的图象与x 轴交点的个数。 方程f(x)=0的实数根就是函数y=f(x)的图象与x 轴交点的横坐标。 方法:①(代数法)求函数的零点就是求相应的方程的根,一般可以借助求根公式或因式分解等办法,求出方程的根,从而得出函数的零点。 ②(几何法)对于不能用求根公式的方程,可以将它与函数y=f(x)的图象联系起来,并利用函数的性质找出零点. 练习:Ⅰ求零点 ①y=x 3-1, ② y=2^x-1, ③y=lg(x 2-1)-1, ④y=2^|x|-8, ⑤y=2+log 3x Ⅱ结合函数的图像判断函数f(x)=x 3-7x+6的零点 Ⅲ判断函数f(x)=lnx+2x 是否存在零点及零点的个数 2、一元二次方程和二次函数 例,当a>0时,方程ax 2+bx+c=0的根与函数y=ax 2+bx+c 的图象之间的关系如下表: 练习:如果函数f(x)= ax 2-x-1仅有一个零点,求实数a 的范围。 3、零点存在性定理: 如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b) 内有零点,即存在c ∈(a,b),使得f(c)=0,这个c 也就是方程f(x)=0的根。 例1:观察二次函数f (x)=x 2- 2x - 3的图象: ① 在区间[-2,1]上有零点_______; f (-2)=_____,f (1)=_____, f (-2) · f(1)___0(< 或 > 或 =) ② 在区间[2,4]上有零点_______; f (2) · f(4)___0(< 或 > 或 =) 例1图 例2图 例2:观察函数 y = f (x)的图象: ①在区间[a ,b]上___(有/无)零点; f (a) · f(b)___0(< 或 > 或 =) ②在区间[b ,c]上___(有/无)零点; f (b) · f(c)___0(< 或 > 或 =) 练习:①判断函数f(x)=x2-2x-1在区间(2,3)上是否存在零点? 4、函数最值: 最大值:一般地,设函数y=f(x)的定义域为I ,如果存在实数M 满足:(1)对于任意的x ∈I ,都有f(x)≤M ;(2)存在x0∈I ,使得f(x0) = M ,那么,称M 是函数y=f(x)的最大值. 方法:利用函数单调性的判断函数的最大(小)值 利用二次函数的性质(配方法)求函数的最大(小)值 利用图象求函数的最大(小)值 如果函数y=f(x)在区间[a ,b]上单调递增,在区间[b ,c]上单调递减则函数y=f(x)在x=b 处有最大值f(b);如果函数y=f(x)在区间[a ,b]上单调递减,在区间[b ,c]上单调递增则函数y=f(x)在x=b 处有最小值f(b). 练习:①函数 f (x )= )1(11 x x --的最大值是______ ②函数f (x )=ax (a >0,a ≠1)在[1,2]中的最大值比最小值 大2a ,则a 的值为______ ③设a 为实数,函数f (x )=x2+|x -a|+1,x ∈R. (1)讨论f (x )的奇偶性;(2)求f (x )的最小值. ④已知二次函数f (x )=(lga )x2+2x +4lga 的最大值为3,求a 的值.

{高中试卷}高一上数学各知识点梳理:映射与函数[仅供参考]

20XX年高中测试 高 中 试 题 试 卷 科目: 年级: 考点: 监考老师: 日期:

5、映射与函数 一、选择题(每小题5分,共60分,请将所选答案填在括号内) 1.下列对应是从集合A 到集合B 的映射的是 ( ) A .A =R , B ={x |x >0且x ∈R},x ∈A ,f :x →|x | B .A =N ,B =N + ,x ∈A ,f :x →|x -1| C .A ={x |x >0且x ∈R},B =R ,x ∈A ,f :x →x 2 D .A =Q ,B =Q ,f :x → x 1 2.已知映射f :A B ,其中集合A ={-3,-2,-1,1,2,3,4},集合B 中的元素都是 A 中的元素在映射f 下的象,且对任意的a ∈A ,在 B 中和它对应的元素是|a|,则集合B 中的元素的个数是 ( ) A .4 B .5 C .6 D .7 3.设集合A 和B 都是自然数集合N ,映射f :A →B 把集合A 中的元素n 映射到集合B 中的元素2n +n ,则在映射f 下,象20的原象是( ) A .2 B .3 C .4 D .5 4.在x 克a %的盐水中,加入y 克b %的盐水,浓度变成c %(a ,b >0,a ≠b ),则x 与y 的函数关系式是 ( ) A .y = b c a c --x B .y =c b a c --x C .y =c b c a --x D .y =a c c b --x 5.函数y=3 23 2+-x x 的值域是 ( ) A .(-∞,-1 )∪(-1,+∞) B .(-∞,1)∪(1,+∞) C .(-∞,0 )∪(0,+∞) D .(-∞,0)∪(1,+∞) 6.下列各组中,函数f (x )和g(x )的图象相同的是 ( ) A .f (x )=x ,g(x )=(x )2 B .f (x )=1,g(x )=x 0 C .f (x )=|x |,g(x )=2 x D .f (x )=|x |,g(x )=? ??-∞∈-+∞∈)0,(,) ,0(,x x x x 7.函数y =1122---x x 的定义域为 ( ) A .{x |-1≤x ≤1} B .{x |x ≤-1或x ≥1} C .{x |0≤x ≤1} D .{-1,1}

高中奥林匹克数学竞赛 映射与函数1

第二讲 映射与函数 [知识要点] 1.映射有关概念 2.函数定义,定义域、值域 [能力训练] 1. 合B A ,的并集{}321,,a a a B A =?,当B A ≠时,),(B A 与),(A B 视为不同的对,则这样的),(B A 对的个数为( )(1993年全国高中数学联赛试题) (A ) 8 (B ) 9 (C )26 (D )27 [解法一]:若{}321,,a a a A =,则满足题意的B 有:{}{}{}{}{}{}{}; ,,;,;,;,;;;;321323121321a a a a a a a a a a a a B φ=即这时的配对个数有:8)(3323130333=+++C C C C C ;仿此,若{}21,a a A =(或{}{}3231,,,a a a a ),满足题意的B 的个数,即配对个数有:12)(2 2120223 =++C C C C ;于是,全部配对个数有:2716128=+++。 [解法二]:B A =且P B A =?的情形只有1个配对:P B P A ==,,而B A ≠的配对个数必是偶数,所以全部配对个数为奇数。又粗略计数后知,配对个数不少于16,故选(D )。 [评注]:两种解法反映的是一种数学思想:配对思想。解法一是分类讨论;解法二是估算法。 2. 设A ={4321,,,a a a a },},,,,{54321b b b b b B = (1)写出一个f :A →B ,使得f 为单射,并求所有A 到B 的单射的个数。 (2)写出一个f :A →B ,使得f 不是单射,并求所有这些映射的个数。 (3)A 到B 的映射能否是满射? 解:(1)作映射f :A →B ,使得4,3,2,1 ,)(==i b a f i i 则此映射即为A 到B 的一个单射,这种单射的个数为1204 5=P 。 (2)作映射f :A →B ,可以先求A 到B 的映射的个数:分四步确定4321,,,a a a a 的象,每步都有5种可能,因此所求映射的个数为4 5个,因此满足条件的映射的个数为4 5-4 5P =505。 (3) 不能。由于A 中的每一个元素恰与B 中的一个元素对应,|A |=4,|B |=5, 所以B 中至少有一个元素在A 中找不到与它对应的元素,因此A 到B 的满射不存在。 说明:一般地,若A 到B 有一个单射,则|A |≤|B |,若A 到B 有一个满射, 则|A |≥|B |,若A 到B 有一个一一映射,则|A |=|B | 思考:在上述问题中,如何求从A 到B 的子集上的一一映射的个数? B 中的4个元素的子集共有45 C 个,从A 到B 的每4个元素的子集上的一一映射各有44P 个,所求的映射的 个数是4 5C 4 4P =120个。 3. 若函数)(log 23a ax x y -+=的值域为R ,则实数a 的取值范围是________________。(94年第5届“希 望杯”全国数学邀请赛)

高中数学函数的零点教学设计

第4讲与函数的零点相关的问题 函数零点的个数问题 1.函数f(x)=xcos 2x在区间[0,2π]上的零点的个数为( D ) (A)2 (B)3 (C)4 (D)5 解析:要使f(x)=xcos 2x=0,则x=0,或cos 2x=0,而在区间[0,2π]上,通过观察y=cos 2x 的函数图象,易得满足cos 2x=0的x的值有,,,,所以零点的个数为5个. 2.(2015南昌二模)已知函数f(x)=函数g(x)是周期为2的偶函数,且当x∈[0,1]时,g(x)=2x-1,则函数y=f(x)-g(x)的零点个数是( B ) (A)5 (B)6 (C)7 (D)8 解析:函数y=f(x)-g(x)的零点个数就是函数y=f(x)与y=g(x)图象的交点个数.在同一坐标系中画出这两个函数的图象: 由图可得这两个函数的交点为A,O,B,C,D,E,共6个点. 所以原函数共有6个零点.故选B. 3.(2015南昌市一模)已知函数f(x)=若关于x的方程f[f(x)]=0有且只有一个实数解,则实数a的取值范围为. 解析:依题意,得a≠0,令f(x)=0,得lg x=0,即x=1,由f[f(x)]=0,得f(x)=1, 当x>0时,函数y=lg x的图象与直线y=1有且只有一个交点,则当x≤0时,函数y=的图象与直线y=1没有交点,若a>0,结论成立;若a<0,则函数y=的图象与y轴交点的纵坐标-a<1,得-1

答案:(-1,0)∪(0,+∞) 4.(2015北京卷)设函数f(x)= ①若a=1,则f(x)的最小值为; ②若f(x)恰有2个零点,则实数a的取值范围是. 解析:①当a=1时,f(x)=其大致图象如图所示: 由图可知f(x)的最小值为-1. ②当a≤0时,显然函数f(x)无零点; 当01,由二次函数的性质可知,当x≥1时,f(x)有2个零点,则要使f(x)恰有2个零点,则需要f(x)在(-∞,1)上无零点,则2-a≤0,即a≥2.综上可知,满足条件的a的取值范围是[,1)∪[2,+∞). 答案:①-1 ②[,1)∪[2,+∞) 确定函数零点所在的区间 5.(2015四川成都市一诊)方程ln(x+1)-=0(x>0)的根存在的大致区间是( B ) (A)(0,1) (B)(1,2) (C)(2,e) (D)(3,4) 解析:设f(x)=ln(x+1)-, 则f(1)=ln 2-2<0,f(2)=ln 3-1>0, 得f(1)f(2)<0,函数f(x)在区间(1,2)有零点,故选B. 6.(2015河南郑州市一模)设函数f(x)=e x+2x-4,g(x)=ln x+2x2-5,若实数a,b分别是 f(x),g(x)的零点,则( A )

高中数学《方程的根与函数的零点》公开课优秀教学设计一

2016年全国高中青年数学教师优秀课展示与培训活动交流课案 课 题:3.1.1 方程的根与函数的零点 教 材:人教A 版高中数学·必修1 【教材分析】 本节课的内容是人教版教材必修1第三章第一节,属于概念定理课。“函数与方程”这个单元分为两节,第一节:“方程的根与函数的零点”,第二节:“用二分法求方程的近似解”。 第一节的主要内容有三个:一是通过学生已学过的一元二次方程、二次函数知识,引出零点概念;二是进一步让学生理解:“函数()y f x =零点就是方程()0f x =的实数根,即函数 ()y f x =的图象与x 轴的交点的横坐标”;三是引导学生发现连续函数在某个区间上存在零 点的判定方法:如果函数()y f x =在区间[],a b 上图象是连续不断的一条曲线,并且有 ()()0f a f b ?<,那么,函数()y f x =在区间(),a b 内有零点,即存在(),c a b ∈,使得()0f c =,这个c 也就是方程()0f x =的根。这些内容是求方程近似解的基础。本节课的 教学主要是围绕如何用函数的思想解决方程的相关问题展开,从而使之函数与方程紧密联系在一起。为后续学习二分法求方程的近似解奠定基础,本节内容起着承上启下的作用,承接以前学过的方程知识,启下为下节内容学习二分法打基础。 【教学目标】 1.理解函数零点的概念;掌握零点存在性定理,会求简单函数的零点。 2.通过体验零点概念的形成过程、探究零点存在的判定方法,提高学生善于应用所学知识研究新问题的能力。 3.通过本节课的学习,学生能从“数”“形”两个层面理解“函数零点”这一概念,进而掌握“数形结合”的方法。 【学情分析】 1.学生具备的知识与能力 (1)初中已经学过一元二次方程的根、一元二次函数的图象与x 轴的交点横坐标之间的关系。 (2)从具体到抽象,从特殊到一般的认知规律。 2. 学生欠缺的知识与能力 (1)超越函数的相关计算及其图象性质. (2)通过对具体实例的探究,归纳概括发现的结论或规律,并将其用准确的数学语言表达出

高中数学-函数与映射的概念练习

高中数学-函数与映射的概念练习 1.(重庆)函数f (x )=log 2(x 2 +2x -3)的定义域是( ) A .[-3,1] B .(-3,1) C .(-∞,-3]∪[1,+∞) D .(-∞,-3)∪(1,+∞) 2.(湖北)函数f (x )=4-|x |+lg x 2-5x +6x -3 的定义域为( ) A .(2, 3) B .(2, 4] C .(2,3)∪(3,4] D .(-1,3)∪(3,6] 3.给定集合P ={x |0≤x ≤2},Q ={y |0≤y ≤4},下列从P 到Q 的对应关系f 中,不是映射的是( ) A .f :x →y =2x B .f :x →y =x 2 C .f :x →y =52x D .f :x →y =2x 4.(2012年大纲)函数y =x +1(x ≥-1)的反函数为( ) A .y =x 2-1(x ≥0) B.y =x 2-1(x ≥1) C .y =x 2+1(x ≥0) D.y =x 2+1(x ≥1) 5.若函数y =f (x )的定义域是[1,2018],则函数g (x )=f x +1x -1 的定义域是( ) A .[0,2017] B .[0,1)∪(1,2017] C .(1,2018] D .[-1,1)∪(1,2017] 6.设f :x →x 2是集合M 到集合N 的映射.若N ={1,2},则M 不可能是( ) A .{-1} B .{-2,2} C .{1,2,2} D .{-2,-1,1,2} 7.已知映射f :P (m ,n )→P ′(m ,n )(m ≥0,n ≥0).设点A (1,3),B (2,2),点M 是线段AB 上一动点,f :M →M ′.当点M 在线段AB 上从点A 开始运动到点B 结束时,点M 的对应点M ′所经过的路线长度为( ) A.π12 B.π6 C. π4 D. π3 8.已知函数f (x )=x 2-2x ,g (x )=ax +2(a >0). (1)若?x 1∈[-1,2],?x 2∈[-1,2],使得f (x 1)=g (x 2),则实数a 的取值范围是________; (2)若?x 1∈[-1,2],?x 2∈[-1,2],使得g (x 1)=f (x 2),则实数a 的取值范围是________. 9.(1)求函数f (x )= lg x 2-2x 9-x 2的定义域; (2)已知函数f (2x )的定义域是[-1,1],求f (log 2x )的定义域.

高中数学专题练习-函数零点问题

高中数学专题练习-函数零点问题 [题型分析·高考展望] 函数零点问题是高考常考题型,一般以选择题、填空题的形式考查,难度为中档.其考查点有两个方面:一是函数零点所在区间、零点个数;二是由函数零点的个数或取值范围求解参数的取值范围. 常考题型精析 题型一 零点个数与零点区间问题 例1 (1)(·湖北)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为( ) A.{1,3} B.{-3,-1,1,3} C.{2-7,1,3} D.{-2-7,1,3} (2)(2015·北京)设函数f (x )=??? 2x -a ,x <1,4(x -a )(x -2a ),x ≥1. ①若a =1,则f (x )的最小值为________; ②若f (x )恰有2个零点,则实数a 的取值范围是________. 点评 确定函数零点的常用方法: (1)若方程易求解时,用解方程判定法; (2)数形结合法,在研究函数零点、方程的根及图象交点的问题时,当从正面求解难以入手时,可以转化为某一易入手的等价问题求解,如求解含有绝对值、分式、指数、对数、三角函数式等较复杂的函数零点问题,常转化为熟悉的两个函数图象的交点问题求解. 变式训练1 (·东营模拟)[x ]表示不超过x 的最大整数,例如[2.9]=2,[-4.1]=-5.已知f (x )=x -[x ](x ∈R ),g (x )=log 4(x -1),则函数h (x )=f (x )-g (x )的零点个数是( ) A.1 B.2 C.3 D.4 题型二 由函数零点求参数范围问题 例2 (·天津)已知函数f (x )=??? |x 2+5x +4|,x ≤0,2|x -2|,x >0. 若函数y =f (x )-a |x |恰有4个零点,则实数 a 的取值范围为________. 点评 利用函数零点的情况求参数值或取值范围的方法:

函数与映射的概念主要知识梳理

函数与映射的概念知识梳理第 1 页 共 1 页 函数与映射的概念主要知识梳理 ●函数的基本概念: 1、函数的定义:设B A ,是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的数)(x f 和它对应,则称B A f →:为从A 到B 的一个函数。 ①关键词:非空的数集、任意性、唯一性 ②作用:判断一个对应是否是函数 2、函数的三要素: 定义域A 、值域(?B)、对应法则f (定义域和对应法则最为关键) 作用:判断两函数是否是同一函数的依据(只要判断定义域和对应法则是否相同即可) ●函数的表示方法: 解析式法,列表法,图像法 ●分段函数与复合函数 分段函数:? ??∈∈=)()()()()(21D x x h D x x g x f ,复合函数:))((x g f y = ●映射的概念 1、定义:设设B A ,是非空集合,如果按某个确定的对应关系f ,使对于集合A 中的任意一个元素x , 在集合B 中都有唯一确定的数)(x f 和它对应,则称B A f →:为从A 到B 的一个映射。 ①关键词:非空集合、任意性、唯一性 ②作用:判断一个对应是否是映射 2、映射的三要素: 原象集A 、象集(?B)、对应法则f 作用:判断两映射是否是同一映射的依据(只要判断原象集和对应法则是否相同即可) 3、函数是特殊的映射; ●反函数 1、概念; 设函数()y f x =的定义域为A ,值域为C ,由()y f x =求出()x y ?=.如果对于C 中 每个y 值,在A 中都有唯一的值和它对应,那么()x y ?=为以y 为自变量的函数,叫做()y f x =的反函数,记作1()y f x -=,(x C ∈) 2、存在反函数的条件:函数()y f x =在定义域内单调(一 一映射) 3、求反函数的一般步骤: (1)求原函数的值域; (2)反解,由()y f x =解出)(y x ?=; (3)写出反函数的解析式1()y f x -=(互换,x y ),并注明反函数的定义域(即原函数的值域). 4、互为反函数的两个函数具有如下性质: (1)反函数的定义域、值域上分别是原函数的值域、定义域; (2)互为反函数的两个函数在各自的定义域内具有相同的单调性;它们的图象关于x y = 对称; (3)?=b a f )(a b f =-)(1 ●常见的思想方法 1、主要思想: ①数形结合:-------树形图 ②分类讨论:①按象的个数分类;②按原象个数分类; ③按对应关系(一对一、多对一,不能一对多)分类. 2、易错易混点 ①映射B A f →:与函数的定义).(x f y =-----A 中元素的任意性和B 中元素的唯一性? ②一个映射与某一对应的值. ③定义域与原象集以及与集合A 的关系. 值域与象集以及集合B 的关系. 3、主要题型: ①判断映射与函数; ②知原象、象、对应法则三者中的任意二个求余下一个; ③求映射与函数的个数.(注意分类讨论、注意和排列组合知识的综合应用)

高中数学-函数零点问题

函数零点问题 [题型分析·高考展望] 函数零点问题是高考常考题型,一般以选择题、填空题的形式考查,难度为中档.其考查点有两个方面:一是函数零点所在区间、零点个数;二是由函数零点的个数或取值范围求解参数的取值范围. 常考题型精析 题型一 零点个数与零点区间问题 例1 (1)(湖北)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为( ) A.{1,3} B.{-3,-1,1,3} C.{2-7,1,3} D.{-2-7,1,3} (2)(北京)设函数f (x )=????? 2x -a ,x <1,4(x -a )(x -2a ),x ≥1. ①若a =1,则f (x )的最小值为________; ②若f (x )恰有2个零点,则实数a 的取值范围是________. 点评 确定函数零点的常用方法: (1)若方程易求解时,用解方程判定法; (2)数形结合法,在研究函数零点、方程的根及图象交点的问题时,当从正面求解难以入手时,可以转化为某一易入手的等价问题求解,如求解含有绝对值、分式、指数、对数、三角函数式等较复杂的函数零点问题,常转化为熟悉的两个函数图象的交点问题求解. 变式训练1 (东营模拟)[x ]表示不超过x 的最大整数,例如[2.9]=2,[-4.1]=-5.已知f (x )=x -[x ](x ∈R ),g (x )=log 4(x -1),则函数h (x )=f (x )-g (x )的零点个数是( ) A.1 B.2 C.3 D.4 题型二 由函数零点求参数范围问题 例2 (天津)已知函数f (x )=? ??? ? |x 2+5x +4|,x ≤0,2|x -2|,x >0. 若函数y =f (x )-a |x |恰有4个零点,则实 数a 的取值范围为________. 点评 利用函数零点的情况求参数值或取值范围的方法:

高中数学知识点总结 第二章函数

高中数学第二章-函数 考试内容: 映射、函数、函数的单调性、奇偶性. 反函数.互为反函数的函数图像间的关系. 指数概念的扩充.有理指数幂的运算性质.指数函数. 对数.对数的运算性质.对数函数. 函数的应用. 考试要求: (1)了解映射的概念,理解函数的概念. (2)了解函数单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法. (3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数. (4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像 和性质. (5)理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图像和性质. (6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. §02. 函数 知识要点 一、本章知识网络结构: F:A →B 二次函数 二、知识回顾: (一) 映射与函数 1. 映射与一一映射 2.函数 函数三要素是定义域,对应法则和值域,而定义域和对应法则是起决定作用的要素,因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数才是同一函数. 3.反函数 反函数的定义 设函数 ))((A x x f y ∈=的值域是C ,根据这个函数中x,y 的关系,用y 把x 表 示出,得到x=?(y). 若对于y 在C 中的任何一个值,通过x=?(y),x 在A 中都有唯一

的值和它对应,那么,x=?(y)就表示y 是自变量,x 是自变量y 的函数,这样的函数x=?(y) (y ∈C)叫做函数 ))((A x x f y ∈=的反函数,记作)(1y f x -=,习惯上改写成 )(1x f y -= (二)函数的性质 ⒈函数的单调性 定义:对于函数f(x)的定义域I 内某个区间上的任意两个自变量的值x 1,x 2, ⑴若当x 1f(x 2),则说f(x) 在这个区间上是减函数. 若函数y=f(x)在某个区间是增函数或减函数,则就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做函数y=f(x)的单调区间.此时也说函数是这一区间上的单调函数. 2.函数的奇偶性 ⑴偶函数:)()(x f x f =- 设(b a ,)为偶函数上一点,则(b a ,-)也是图象上一点. 偶函数的判定:两个条件同时满足 ①定义域一定要关于y 轴对称,例如:12+=x y 在)1,1[-上不是偶函数. ②满足)()(x f x f =-,或0)()(=--x f x f ,若0)(≠x f 时,1) () (=-x f x f . ⑵奇函数:)()(x f x f -=- 设(b a ,)为奇函数上一点,则(b a --,)也是图象上一点. 奇函数的判定:两个条件同时满足 ①定义域一定要关于原点对称,例如:3x y =在)1,1[-上不是奇函数. ②满足)()(x f x f -=-,或0)()(=+-x f x f ,若0)(≠x f 时, 1) () (-=-x f x f . 3. 对称变换:①y = f (x )) (轴对称 x f y y -=???→? ②y =f (x )) (轴对称 x f y x -=???→? ③y =f (x )) (原点对称x f y --=???→? 4. 判断函数单调性(定义)作差法:对带根号的一定要分子有理化,例如: 在进行讨论. 5. 外层函数的定义域是内层函数的值域. 例如:已知函数f (x )= 1+ x x -1的定义域为A ,函数f [f (x )]的定义域是B ,则集合A 与集合B 之间的关系是 . 2 21222121222 22121)()()(b x b x x x x x b x b x x f x f x ++++-=+-+=-) (

高中数学常见题型解法归纳 函数的零点个数问题的求解方法

高中数学常见题型解法归纳 函数的零点个数问题的求解方法 【知识要点】 一、方程的根与函数的零点 (1)定义:对于函数()y f x =(x D ∈),把使f(x)=0成立的实数x 叫做函数()y f x =(x D ∈)的零点.函数的零点不是一个点的坐标,而是一个数,类似的有截距和极值点等. (2)函数零点的意义:函数()y f x =的零点就是方程f(x)=0的实数根,亦即函数()y f x =的图像与x 轴的交点的横坐标,即:方程f(x)=0有实数根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点. (3)零点存在性定理:如果函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有 0)()(

高一数学《函数—映射与函数》测试题(含答案)[1]

函数—映射与函数 一. 选择题: 1. 已知下列四个对应,其中是从A 到B 的映射的是( ) A B A B A B A B a m a m a a m b n b m n c n b p c b p (1) (2) (3) (4) A. (3)(4) B. (1)(2) C. (2)(3) D. (1)(4) 2. 已知A x x B y y =≤≤=≤≤{|}{|}0402,,从A 到B 的对应法则为:(1)f x y x :→= 1 2 ,(2)f x y x :→=-2,(3)f x y x :→=,(4)f x y x :||→=-2, 其中能构成一一映射的是( ) A. (1)(2)(3)(4) B. (1)(2)(3) C. (1)(3) D. (1)(4) 3. 设A 到B 的映射为f x y x 121:→=+,B 到C 的映射f y z y 22 1:→=-,则A 到C 的映射f 是( ) A. f x z x x :()→=+41 B. f x z x :→=-212 C. f x z x :→=22 D. f x z x x :→=++4412 4. 下列函数f(x)和g(x)中,表示同一函数的是( ) A. f x x g x x x ()()== -2 1, B. f x x x g x x ()()= --=+21 1 1, C. f x x g x x ()||()== ,2 D. f x x x g x x ()||||()||=++=+121, 5. 某种玩具,每个价格为10.25元,买x 件玩具所需的钱数为f x x ().=1025元,此时x 的取值范围为( ) A. R B. Z C. Q D. N 6. 函数y x x x =+ || 的图象是( )

《1.2.1 对应、映射和函数》教案新部编本

教师学科教案[ 20 – 20 学年度第__学期] 任教学科:_____________ 任教年级:_____________ 任教老师:_____________ xx市实验学校

《1.2.1 对应、映射和函数》教案【教学重难点】 1.了解映射、一一映射的概念; 2.初步了解映射与函数间的关系; 3.会判定一些对应关系是不是映射、一一映射. 【教学过程】 通过对教材上实例的研究,引入映射的概念. 通过映射与函数的对比,加深对函数概念的理解,进一步体会特殊与一般的辩证关系. 填一填:知识要点、记下疑难点 1.映射的概念 设A,B是两个非空集合,如果按照某种对应法则f,对A中的任意一个元素x,在B中有一个且仅有一个元素y与x对应,则称f是集合A到集合B的映射.这时,称y是x在映射f的作用下的象,记作f(x).于是y=f(x),x称作y的原象. 2.映射的定义域、值域 集合A到B的映射f可记为f:A→B或x→f(x).其中A叫做映射f的定义域(函数定义域的推广),由所有象f(x)构成的集合叫做映射f的值域,通常记作f(A). 3.一一映射的概念 如果映射f是集合A到集合B的映射,并且对于集合B中的任意一个元素,在集合A中都有且只有一个原象,这时我们说这两个集合的元素之间存在一一对应关系,并把这个映射叫做从集合A到集合B的一一映射. 4.函数与映射的关系 由映射的定义可以看出,映射是函数概念的推广,函数是一种特殊的映射,特殊在构成函数的两个集合A、B必须是数集. 研一研:问题探究、课堂更高效 [问题情境]大家想一想,如果我们都没有名字了,这个世界将会怎样?一个人可以有小名,有笔名,有外号,有学名,是一人多名,也可能是多人一名,但为了便于管理,政府部门规定,每人只能有一个法定的名字,这样,每个人都有了唯一确定的身份证上的名字,人与名字的关系是居民集合到声音符号集合的一种确定的对应. 在数学里,把这种集合到集合的确定性的对应说成映射. 探究点一映射的概念及应用 问题1初中已经学习过的一些对应,或者日常生活中的一些对应实例,你能举出几个?

高中数学-函数的概念教案

高中数学-函数的概念教案 教学目的:(1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画 函数概念中的作用; (2)了解构成函数的要素; (3)会求一些简单函数的定义域和值域; (4)能够正确使用“区间”的符号表示某些函数的定义域; 教学重点:理解函数的模型化思想,用合与对应的语言来刻画函数; 教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示; 教学过程: 一、引入课题 1.复习初中所学函数的概念,强调函数的模型化思想; 2.阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想: (1)炮弹的射高与时间的变化关系问题; (2)南极臭氧空洞面积与时间的变化关系问题; (3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题 3.引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系; 4.根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系. 二、新课教学 (一)函数的有关概念 1.函数的概念: 设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A 到集合B的一个函数(function). 记作:y=f(x),x∈A.

其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域(range).注意: ○1“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”; ○2函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.2.构成函数的三要素: 定义域、对应关系和值域 3.区间的概念 (1)区间的分类:开区间、闭区间、半开半闭区间; (2)无穷区间; (3)区间的数轴表示. 4.一次函数、二次函数、反比例函数的定义域和值域讨论 (由学生完成,师生共同分析讲评) (二)典型例题 1.求函数定义域 课本P19例1 解:(略) 说明: ○1函数的定义域通常由问题的实际背景确定,如果课前三个实例; ○2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合; ○3函数的定义域、值域要写成集合或区间的形式. 巩固练习:课本P22第1题 2.判断两个函数是否为同一函数 课本P20例2

高中数学-函数零点问题及例题解析

高中数学-函数零点问题及例题解析 一、函数与方程基本知识点 1、函数零点:(变号零点与不变号零点) (1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫函数)(x f y =的零点。 (2)方程0)(=x f 有实根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点。 若函数()f x 在区间[],a b 上的图像是连续的曲线,则0)()(f ,所以由根的存在性定理可知,函数x x x f 2 )1ln()(-+=的零点所在的大致区间是(1,2),选B (二)求解有关函数零点的个数(或方程根的个数)问题。 函数零点的存在性定理,它仅能判断零点的存在性,不能求出零点的个数。对函数零点的个数问题,我们可以通过适当构造函数,利用函数的图象和性质进行求解。如:

高中数学最全必修一函数性质详解及知识点总结及题型详解

(经典)高中数学最全必修一函数性质详解及知识点总结及题型详解 分析 一、函数的概念与表示 1、映射:(1)对映射定义的理解。(2)判断一个对应是映射的方法。一对多不是映射,多对一是映射 集合A ,B 是平面直角坐标系上的两个点集,给定从A →B 的映射f:(x,y)→(x 2+y 2,xy),求象(5,2)的原象. 3.已知集合A 到集合B ={0,1,2,3}的映射f:x →11 -x ,则集合A 中的元素最多有几个写出元素最多时的集合A. 2、函数。构成函数概念的三要素 ①定义域②对应法则③值域 两个函数是同一个函数的条件:三要素有两个相同

二、函数的解析式与定义域 函 数 解 析 式 的 七 种 求 法 待定系数法:在已知函数解析式的构造时,可用待定系数法。 例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f 配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。 例2 已知221 )1(x x x x f + =+ )0(>x ,求 ()f x 的解析式 三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。与配凑法一样,要注意所换元的定义域的变化。 例3 已知x x x f 2)1(+=+,求)1(+x f 四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。 例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式 五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。例5 设,)1(2)()(x x f x f x f =-满足求)(x f 例6 设)(x f 为偶函数,)(x g 为奇函数,又,1 1 )()(-= +x x g x f 试求)()(x g x f 和的解析式 六、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。 例7 已知:1)0(=f ,对于任意实数x 、y ,等式)12()()(+--=-y x y x f y x f 恒成立,

第13讲 函数的零点个数问题的求解方法高中数学常见题型解法归纳反馈训练及详细解析 (1)

【知识要点】 一、方程的根与函数的零点 (1)定义:对于函数()y f x =(x D ∈),把使f(x)=0成立的实数x 叫做函数()y f x =(x D ∈)的零点.函数的零点不是一个点的坐标,而是一个数,类似的有截距和极值点等. (2)函数零点的意义:函数()y f x =的零点就是方程f(x)=0的实数根,亦即函数()y f x =的图像与x 轴的交点的横坐标,即:方程f(x)=0有实数根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点. (3)零点存在性定理:如果函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(

相关文档
相关文档 最新文档