文档视界 最新最全的文档下载
当前位置:文档视界 › 导热高分子的研究进展报告

导热高分子的研究进展报告

导热高分子的研究进展报告
导热高分子的研究进展报告

高分子材料与工程08-01班

魏俊统

200804010138

填充型导热高分子的研究进展

摘要:导热性能作为材料很重要的物理性能越来越多地被提及,

而导热材料也广泛应用于换热工程、采暖工程、电子信息工程等领域。

长期以来, 使用最多的导热材料为金属材料, 但是随着应用的不断扩大, 人们对导热材料提出了新的要求, 希望材料具有优良的综合性能,

如耐化学腐蚀、耐高温、优异的电绝缘性。具有导热功能的高分子复

合材料就是能满足上述要求的一种可选材料, 因而成为研究的一个

重要方向。

关键词:填充型导热功能性导热

Research Development of Thermally Conductive Polymer Composites

Abstract:The heat conduction performance as the materials

are important physical performance more and more likely to be described, and thermal conductive materials also widely used in

heat engineering, heating engineering, electronic and information engineering, and other fields . Long-term since, use most thermal conductive materials for metal materials, but with the expansion of

the application, the people of thermal conductive materials put forward new requirements, hope material with excellent

comprehensive performance, such as chemically resistant, high temperature resistant, excellent electrical insulation.

Key words:Filling type;thermal conductivity ;functional thermal conductivity

前言导热材料在国防工业和国民经济各个领域都有着广泛应用, 如换热工程, 采暖工程, 电子信息工程等。而传统意义上的导热材料多为金属材料, 如Cu、Al等。但是由于金属抗腐蚀性能和成型工艺性能较差, 限制了其在导热领域上的应用, 因而迫切需要开发除导热性能外, 还具有其它优良综合性能如质轻、耐腐蚀、易成型加工的材料。

高分子材料由于具有质轻、耐化学腐蚀、易加工成型、电绝缘性能优异、力学及抗疲劳性能优良等优异的特点,开始向这些领域渗透,并逐步在这个领域发挥着重要的角色。然而,由于高分子材料是绝缘体,且热导率极低,在很大程度上限制了它在这些领域的应用。因此,开发出具有高导热、导电性能,且综合性能优异的高分子材料是近几年研究的一个热点,并取得了显著成果,进一步拓宽高分子材料在导热、导电方面的应用领域[4]。特别是近年来,高信息产业的蓬勃发展,如电器、微电子领域中广泛使用的高散热界面材料及封装材料,电磁屏蔽、电子信息领域广泛使用的功率管、集成块、热管、集成电路、覆铜基板等元器件,塑料在这些高端信息化产品配件上的应用将向着高功率化、高密度化、高集成化,散热快等方向发展,这为高导热高分子材料在新的领域的发展提供了更大的舞台。

目前, 导热填料的研究主要集中在导热绝缘填料、导热非绝缘填料这两个方面, 本文将着重介绍填料填充的复合材料导热性能的研究进展。

一、导热机理

热传导过程采取扩散形式, 但各种材料的导热机理是不同的。储九荣等对材料的导热机理进行了详细的讨论。固体内部的导热载体分别为电子、声子(点阵波) 、光子(电磁辐射)3种。对聚合物而言, 通常为饱和体系, 无自由电子, 导热载体为声子, 热传导主要依靠晶格振动。聚合物相对分子质量很大, 具有多分散性, 分子链则以无规则缠结方式存在, 难以完全结晶, 再加上分子链的振动对声子有散射作用, 使聚合物材料的热导率很小, 如表1所示。要使聚合物具有更好的热导率, 可通过以下 2 种方式进行改性: (1)合成具有高热导率的聚合物; (2) 用高热导率物质填充聚合物, 制备聚合物基导热复合材料。生产实践中通常采用添加高热导率填料的方式来提高高分子材料的热导率, 得到导热高分子复合材料。

1.1 导热网链型

填料的热导率及其在聚合物基体中的分布形式决定了整个复合材料的热导率。当填料的填加量较少时,填料在基体中以近似孤岛形式分布,为分散相,被聚合包覆,形成类似于聚合物共混体系中的“海-岛”结构。当填料的填充量达到某一临界值时,填料之间会相互接触,形成导热网链。随着填充量的增加,导热网链相互贯穿,复合材料导热性能显著提高。这就如同一个简单的电路, 基体和填料分别看作2个热阻。当填充量较小时,不能形成导热网链,从热流方向来看,基体和填料相当于是串联的热阻,阻值越大,导热性越差;当填充量较大时,填料之间相接触,形成导热网链,导热网链热阻小,此时基体和填料在热流方向上相当于并联, 导热网链在热量传递过程中起主导作用, 如图1所示。Agari模型即是以导热网链机理为基础的。

这就如同一个简单的电路,基体和填料分别看作2个热阻。当填充量较小时, 不能形成导热网链,从热流方向来看,基体和填料相当于是串联的热阻,阻值越大, 导热性越差;当填充量较大时,填料之间相接触,形成导热网链,导热网链热阻小, 此时基体和填料在热流方向上相当于并联,导热网链在热量传递过程中起主导作用,如图1所示。Agari模型即是以导热网链机理为基础的。

1.2 热弹性组合增强型

李宾等以熔融共混法制备聚合物基导热复合材料,研究了复合材料热导率和电导率随填料品种、粒径等因素的变化规律及内在原因。研究结果显示复合体系热导率随填料含量的增加始终呈逐步上升趋势,未表现出电导率那样的急剧变化;

在相同填充量时,复合材料的热导率随粒径的减小而减小,与电导率随粒径变化规律相反。这种差异主要是二者具有不同传导机理,文中通过热弹性复合增强机制解释了这一变化规律。根据固体物理学理论,声子是人为量化的固体点阵振动格波, 与电子这一实体物质粒子的运动和传递存在实质性的差异。导电过程是自由电子的定向运动和传导过程,因此形成传导路径非常重要。通过分析各种无机物的热物性变化规律发现,材料热导率的变化与经典振动和弹性力学中的弹性模量非常类似,因此可将材料的热导率看作是声子(即热振动)传递过程的弹性模量。类似地,导热填料填充的聚合物基复合材料热导率的增大可以看成高热导率的填料对低导热率的基体的复合(组合增强作用)。

二、导热高分子材料的分类

2.1 非绝缘型导热塑料

由于塑料本身具有绝缘性,因此,绝大多数导热塑料的电绝缘性能,最终是由填充粒子的绝缘性能决定的。用于非绝缘型导热塑料的填料常常是金属粉、石墨、炭黑、碳纤维等。这类填料的特点是具有很好的导热性, 能够容易使材料得到高的导热性能,但是同时也使得材料的绝缘性能下降甚至成为导电材料。因此,在材料的工作环境对于电绝缘性要求不高的情况下,都可以应用上述填料。而且,在某些条件下还必须要求导热塑料具有低的电绝缘性以满足特定的要求,如抗静电材料、电磁屏蔽材料等。

2.2 绝缘型导热塑料

由于电子产品越来越趋于小型化, 因此, 那些容易集成化和小型化而且柔韧性好的聚酰胺、聚酯塑料基板被广泛应用。但因为集成电路的高集成化和层板的多层化必然产生放热问题, 因此, 对这些材料的导热性能的要求就成了当务之急。而在电子工业中, 大多数电子材料要求较高的电绝缘性能, 因此, 要求这些材料不仅具有良好的导热性能,而且同时具有电绝缘性能。近年来人们用非导电性的金属氧化物和其他化合物填充聚合物, 已初步解决了这一问题。绝缘型导热塑料的填料主要包括: 金属氧化物如BeO,MgO, Al2O3,CaO,NiO;金属氮化物如AlN,BN等; 碳化物如SiC,B4C3等。它们有较高的导热系数, 且更为重要的是同金属粉相比有优异的电绝缘性,因此,它们能保证最终制品具有良好的电绝缘性, 这在电子电器工业中是至关重要的。

2.3 导热橡胶

导热橡胶一般分为结构型导热橡胶和填充型导热橡胶。目前, 导热橡胶的研究和报道以填充型导热橡胶为主, 结构型导热橡胶还鲜有报道。导热橡胶目前主要用在航空、航天电子电气等领域。在橡胶工业中,一般从加工和使用两个角度来考虑导热性问题。在加工过程中, 对导热性的研究主要针对厚橡胶制品硫化均匀性这个问题。在导热橡胶制品的研究开发上,重点集中在用于电子电气元件的橡胶制品上。导热橡胶的导热性能不仅和导热材料的厚度有关,还和导热材料的使用面积有关。由于导热材料的结构关系,所以一般情况下,导热材料还会和受到的压力有关。压力大,导热能力就会强。一般导热材料受到的压力在34MPa~690MPa,大多数散热器的安装压力不会超过170MPa。

三、导热机理

固体内部导热载体分为电子、光子、声子三种。金属晶体因存在大量自由电子, 其热导率很高。晶体导热是通过排列整齐的晶格热振动来实现, 通常用声子概念来描述。非金属材料中, 晶体由于微粒远程有序性比非晶体大得多, 故导热性也较好。结晶性聚合物由于结晶度高, 导热系数远比非晶聚合物高; 非晶聚合

物因声子自由程很小, 故导热率很低。导热性能是聚合物重要的物理性能之一, 对于热流平衡计算、聚合物结构与性能、聚合物加工条件及聚合物材料应用等都有重要意义。

3.1 填料的导热特性

填料自身的导热性能及其在基体中的分布情况, 在很大程度上决定了橡塑材料的导热性能。金属晶体由于存在大量自由电子, 其热导率很高。晶体导热是通过排列整体的晶粒热振动来实现的, 通常用声子概念来描述。聚合物由于分子链的无规缠结, 分子量的多分散性及分子链振动对声子的散射, 导致无法形成完整晶体, 导热系数很低。通过填充高导热性填料能提高其导热性能。填料的种类不同其导热机理也不同。金属填料是靠电子运动进行导热; 而非金属填料的导热主要依靠声子,其热能扩散速率主要取决于邻近原子或结合基团的振动。非金属可分为晶体非金属和非晶体非金属两类。晶体非金属其热导率仅次于金属。在强共价键结合的材料中, 在有序的晶体晶格中传热是比较有效的, 尤其在很低的温度下, 材料具有良好的热导率。但随着温度升高, 晶格的热运动呈现抗热流性增加和热导率降低, 而抗热流性是由于晶格中的缺陷造成的。目前, 导热填料以高导热的银、铜、石墨、氧化铝、氮化铝、碳化硅、氮化硼等为主。在传热方面, 大量研究表明: 填料碳纳米管由于其独特的一维纳米结构使得其热传导性能在平行于轴线与垂直于轴线方向上表现出很大的不同。碳纳米管在平行于轴线方向的热传导性能甚至能与金刚石的相媲美,而垂直于轴线方向上的热传导率却非常小。对于纯净的单壁碳纳米管, 其热传导主要是由声子间的相互作用实现。而有研究表明碳纳米管引入了Ar原子后, 除了碳纳米管本身沿其自身轴向的热传导外,Ar 原子与碳管的C原子间的相互作用对整个系统的热传导贡献很大;另外,由于Ar 原子在碳管内来回频繁运动导致出现了传质现象, 因而使得碳管的导热性能有了大幅度提高。

3.2 填充型高分子复合材料的导热机理

导热高分子材料的导热性能最终由高分子基体、导热填料以及它们之间的相互作用来共同决定。高分子基体中基本上没有热传递所需要的均一致密的有序晶体结构或载荷子,导热性能相对较差。作为导热填料来讲,其无论以粒状、片状, 还是纤维状存在,导热性能都比高分子基体本身要高。当导热填料的填充量很小时,导热填料之间不能形成真正的接触和相互作用,这对高分子材料导热性能的提高几乎没有意义;只有当高分子基体中,导热填料的填充量达到某一临界值时, 导热填料之间才有真正意义上的相互作用,体系中才能形成类似网状或链状的形态,即:导热网链。当导热网链的取向与热流方向一致时,导热性能提高很快。体系中在热流方向上未形成导热网链时,会造成热流方向上热阻很大, 导热性能很差。导热填料的加入是改善导热高分子材料的关键。复合材料导热率取决于树脂基体和导热填料以及两者之间的界面。粒状、片状、球形、纤维等形状导热填料分散于树脂中,当用量较小时, 填料虽均匀分散,但彼此间未能形成相互接触和相互作用,导热性提高不大;当用量提高到某一临界值时,填料间形成接触和相互作用,体系内形成了类似网状或链状结构形态,即:形成导热网链。当导热网链的取向与热流方向一致时, 导热性能提高很快。体系中在热流方向上未形成导热网链时,会造成热流方向上热阻很大,导热性能很差。因此,为获得高导热高分子材料,在体系内部最大程度地形成热流方向上的导热网链是提高材料导热率的关键。

四、聚合物导热性能的影响因素

要控制或提高高分子材料的热导率,必须了解影响热导率的因素,即: 这些因素对热导率的贡献。高分子材料热导率的影响因素主要有: 导热填料的种类及添加量、温度、结晶度、分子链取向、密度和湿度等。

4.1 填料

绝大多数高分子材料本身属于绝热性材料。要赋予其优异的导热性,主要的途径是通过共混(机械共混、熔体共混或溶液共混等)的方法在高分子材料中填充导热性能好的填料,从而得到导热性能优良、价格低廉、易加工成型的导热高分子材料。用具有高热导率的物质对橡塑材料进行填充,可以得到具有高热导率的橡塑材料。导热填料的自身导热特性在很大程度上决定了添加型橡塑复合材料的导热性能。根据现代固体物理学基本原理,高导热填料是具有自由电子的固体,或结晶完整能振动产生声子的固体,包括金属、非金属单质、氧化物以及其它二元化合物。金属导热填料中,Fe,Cu,Ag,Al最为常用, 从性能价格考虑,Al应是首选金属填料。因为它导热系数相对较高,密度小,填充率高。固体氧化物绝大多数为电的绝缘体,热传导主要依赖于声子导热机制实现。与金属相比,固体氧化物导热性虽然较差,但却有良好的电绝缘性,可作为制备绝缘导热橡塑材料的填充材料使用。二元化合物主要指SiC,AlN,BN 等。它们具有原子晶体形式和致密的结构, 以声子导热为主,导热系数很高,是良好的高导热填料。但其导热性能受制备方法、产品纯度等影响较大。一般而言,产品纯度高、结构致密、晶格缺陷少,导热系数大。在非金属导热填料中,石墨的导热系数与金属的最为接近。石墨是自然界广泛存在的一种矿物。它一般分为三类,即:无定型态、鳞片状晶体、高结晶态。由于石墨是导电材料,能以电子、声子双重机制共同作用,所以石墨具有良好的导热特性。

4.2 温度

高聚物热导率与温度的依赖关系是比较复杂的。总的说来,随温度的升高, 热导率增大。但结晶聚合物和非结晶聚合物的热导率随温度的变化规律有所不同。热导率的温度依赖性对于各种非晶聚合物相当类似。结晶聚合物的热导率与温度的关系截然不同于非晶聚合物。在低温区,结晶聚合物的热导率不出现平台, 并对结晶度的变化十分敏感; 即使有相同结晶度,不同聚合物的热导率也因晶型不同而出现截然不同的温度依赖关系。对于高结晶度聚合物,热导率随温度升高而增大直到最大值,然后又下降。伴随着结晶度的增大,最大值移向低温区。对低结晶度的聚合物,热导率主要取决于结晶相热导率,随温度升高缓慢增大, 直至玻璃化转变温度附近才出现一个极大值,然后发生逆转。这一点与非晶聚合物类似。

五、展望

当前,随着科学技术以及世界经济的飞速发展,对于具有优良综合性能且具有高导热性材料的需求越来越大。对于填充型高分子复合材料的研究,是一个很重要也很严峻的课题,还有很多问题有待解决,主要表现在:填充性导热塑料的研究,大部分采用物理填充的方法,导热性能不高,机械性能下降严重,导热系数预测理论局限于经验模拟,缺乏导热机理的理论支持等。对此,希望科学工作者从填料体系的研发及改性、基体材料的合理选择、填充机理的研究,以及制备方法、工艺条件的选择与优化,结合当前较为热门的纳米科技及其它前沿技术手段,做更深入的探索,开发出优良性能的导热材料。

高分子材料与工程实习报告

南京林业大学 认知实习报告 学院:理学院 专业:高分子材料与工程 姓名:陈凯 学号:101102203 指导老师:陈泳 实习时间:2012年10月22日——2012年10月28日 实习地点:南京林业大学校内 一、目录 二、实习目的和意义 三、实习内容 “聚氨酯材料”讲座 “玻璃钢复合材料”讲座 “玻璃钢复合材料”讲座

参观实验室 三、认知实习总结 一、实习目的和意义 通过认识实习,使学生了解高分子材料的一些典型成型方法,了解高分子材料的应用领域。通过认识实习,学生应该将正在学习的聚合物加工基础、塑料橡胶成型原材料、塑料橡胶成型工艺与设备等专业理论知识与生产实际相结合,进一步理解和深化过去学到的知识为即将要学习塑料橡胶模具设计等课程积累生产实践经验。 二、实习内容 “聚氨酯材料”讲座 聚氨酯全称为聚氨基甲酸酯,英文名称是polyurethane,CASNo.:51852-81-4分子式:(C10H8N2O2·C6H14O3)x,它是一种高分子材料。聚氨酯是一种新兴的有机高分子材料,被誉为“第五大塑料”是主链上含有重复氨基甲酸酯基团(NHCOO)的大分子化合物的统称。它是由有机二异氰酸酯或多异氰酸酯与二羟基或多羟基化合物加聚而成。反应式如下:-N=C=O+HO-→-NH-COO-,聚氨酯大分子中除了氨基甲酸酯外,还可含有醚、酯、脲、缩二脲,脲基甲酸酯等基团。(氰酸说明:H—O—C≡N(正)氰酸H—N=C=O(异氰酸)有(正)氰

酸和异氰酸两种。游离酸是二者混合物,未曾分离开业,但其酯类则有两种形式。氰酸是有挥发性和腐蚀性的液体。有强烈的乙酸气味。密度1.14。沸点23.6℃。在水溶液中显示极强酸性。性不稳定,容易聚合。水解时生成氨和二氧化碳。与醇类作用时生成氨基甲酸酯。(正)氰酸酯R—O—C≡N易聚合,并易水解,很难得到纯态物。异氰酸酯R—N=C=O或O=C=N—R—N=C=O,一般是带有不愉快气味的液体。氰酸可由氰尿酸经加热分解而制得。) 聚氨酯制品形态有软质、半硬质及硬质泡沫塑料、弹性体、油漆涂料、胶粘剂、密封胶、合成革涂层树脂、弹性纤维等,广泛应用于汽车制造、冰箱制造、交通运输、土木建筑、鞋类、合成革、织物、机电、石油化工、矿山机械、航空、医疗、农业等许多领域。 根据所用原料的不同,可有不同性质的产品,一般为聚酯型和聚醚型两类。聚醚型聚氨酯主要是针对制备聚氨酯材料中的多元醇定义的,即制备聚氨酯的多元醇完全由聚醚型多元醇或者是在该体系中占有绝大部分。 聚醚多元醇分子结构中,醚键内聚能低,并易旋转,故有它制备的聚氨酯材料低温柔顺性能好,耐水解性能优良,虽然机械性能不如聚酯型聚氨酯,但原料体系粘度低,易与异氰酸酯、助剂等组份互溶,加工性能优良。 聚酯多元醇一般所指的是由二元羧酸与二元醇等通过缩聚反应得到的聚酯多元醇。广义上是含有酯基(COO)或是碳酸酯基

导热高分子材料的发展历程(精)

导热高分子的发展历程 学校名称:华南农业大学 院系名称:材料与能源学院 时间:2017年2月27日

发展历程 1聚苯胺在19世纪中叶首次由Henry Letheby描述,他研究了苯胺在酸性介质中的电化学和化学氧化产物。他指出,还原形式是无色的,但氧化形式是深蓝色。第一高导电性有机化合物是电荷转移络合物。在20世纪50年代,研究人员报告说,多环芳族化合物与卤素形成半导电电荷转移络合盐。在1954年,贝尔实验室和其他地方的研究人员报告了有机电荷转移络合物,电阻率低至8欧姆- 厘在20世纪70年代初,研究人员证明四硫富瓦烯的盐显示几乎金属导电性,而超导性在1980年被证明。关于电荷转移盐的广泛研究继续今天。虽然这些化合物在技术上不是聚合物,但这表明有机化合物可以携带电流。虽然有机导体以前间歇性讨论,该领域特别通过预测的超导性BCS理论发现后激发。1963年澳大利亚人B.A.博尔托Weiss及其同事报道了电阻率低至1欧姆·厘米的聚吡咯衍生物引用了类似的高电导率氧化聚乙炔的多个报道。除了电荷转移复合物(其中一些是偶数超导体)的显着例外之外,有机分子先前被认为是绝缘体或者最好是弱导电半导体。随后,DeSurville和同事报道了在聚苯胺中的高导电性。同样,在1980年,Diaz和Logan报道了可用作电极的聚苯胺膜。 尽管大多数在小于100纳米的量子领域中操作,但“分子”电子过程可以在大规模上集体表现。示例包括量子隧道效应,负电阻,声子辅助跳跃和极化子。1977年,Alan J. Heeger,Alan MacDiarmid和Hideki Shirakawa报道了氧化碘掺杂聚乙炔的相似的高电导率对于这项研究,他们被授予2000年诺贝尔化学奖“用于发现和发展导电聚合物”。自20世纪80年代后期以来,有机发光二极管(OLED)已经成为导电聚合物的重要应用。 1维基百科

高分子材料实习报告合集5篇

高分子材料实习报告合集5篇 ,希望大家能够喜欢。 高分子材料实习报告篇1 时间飞逝,金工实习虽然有两周时间,但也在一转眼的工夫里就结束了,再回首,它在心中留下了永远也挥之不去的痕迹,它让我体味到了工厂工作的艰辛与苦闷,并学习到一些实习知识,提高了我的动手能力,更重要的是,增强了我在工作学习中对自己,社会的责任感。所以我要衷心地感谢学校提供这样的一次机会给我们,并感谢各位老师的悉心指点和教导。 总的来说,在工厂里实习,艰辛是免不了的,其中最辛苦的莫过于钳工,我记得,当时我清楚的感觉到我的汗水不停地顺着我的腿流到了脚上,还有好多同学的手都磨出了好多泡泡,不过不管曾经是多么的艰辛,今天我们依然毫发不损,而且值得庆幸的是我们中每一个人都经受住了考验,保持良好的心态,并一路坚持到最后,还有的就是自豪与成就感,看着那些用我们的汗水浇注而成的,带着我们浓浓的感情的成品,所有的自豪与成就感是无法用言语来表达的。 在为期两周的时间里,我们进行了电焊、气焊、铸造、数控板金、钳工、车工、刨工、CAD RP、数车980、数铣928、电火花这10个机械加工工种的培训,尽管时间仓促,但在实习老师的悉心指导下,通过实地操作我们对这些机械加工知识都有了一定的了解和认识,基本掌握了各种工种的基本操作技能。此外我们还积极的进行一些创新性的思考,锻炼了动手动脑的能力。我

们相信在以后的学习和工作中,这些知识都将起到积极而有效的作用,使我受益非浅。 在还没进行实习之前,凭着传言和想象,我们就有些心惊和胆颤,毕竟是很危险的,也经常听说出一些机械事故,所以在第一天早上,便安排了安全知识讲座,还看了一个录像,录象向我们介绍了几种真正的纯工厂条件下的工种,并展示了各种可能事故的发生,以及一些急救措施,我们发现这些事故多数都是由工作人员自己操作不小心,甚至是进行违规操作才引起的,一般情况,只要小心的按照规定进行操作是不可能出现那些危险事故,并强调了一些着装要求,像不能穿拖鞋,女生不能穿裙子,头发长的要戴帽子,等等。上了这一课,我们终于放下了些心,反正只要掌握了正确的方法,提高警惕,是不会有意外发生的。这才使得我们每个人都能认真的积极的勇敢的投入实习。 第一天的工种是电焊和气焊,小的时候曾经见父亲在家里弄过,那好像只是一些简单的焊接,长大一点后,也有在一些建筑施工地见到焊接,印象中,一个工人头带安全帽,一手拿着遮光罩,一手拿着焊条,焊接时发出哧哧的声音,还有很多火星飞溅出来,挺恐怖的。今天的电焊就是和后者一样,经过老师的讲解和示范,我们了解了电焊的实质,电焊机的组成与焊条的构成;学会了选用焊条的种类和以及如何进行电焊操作。我带着几分害怕终于起工具开始了操作练习,原来是不恐怖的啊!只是要焊接成一直线,并使焊缝达到要求真是非常之难的,经过多番练习,才渐渐掌握到了正确的方法,并具有了一点水平,终于能焊接出

高分子材料毕业设计

ChuZhou Vocational Technology College 高分子材料应用技术专业 毕业论文 课题名称:多层共挤高阻隔薄膜的工艺流程 学号:QQ:359973519 班级:09级高分子材料应用技术 姓名: DChris 指导教师:老师好 2011年10月30日

目录 摘要 前言 第一章多层共挤高阻隔薄膜的概述 第一节高阻隔薄膜的概念及特点 1.1.1 概念 1.1.2 产品特点 1.1.3 应用方向 第二节高阻隔薄膜产品的成分 1.2.1 阻隔树脂 1.2.2 肉类包装膜(七层高阻隔薄膜)结构分析 1.2.3 EVOH的性能与特点 第三节肉类包装膜 1.3.1 肉品包装的必要性 1.3.2 肉类包装膜产品特点 第二章多层共挤高阻隔薄膜的生产工艺 第一节多层共挤高阻隔薄膜的工艺介绍 2.1.1 生产工艺 2.1.2 工艺特点 第二节多层共挤高阻隔薄膜的生产原理及设备 2.2.1 原材料的选择和质量控制 2.2.2 生产设备(七层共挤吹塑薄膜的机组设备及型号)第三节肉类包装膜的生产工艺流程 2.3.1 多层共挤包装薄膜(肉类包装膜)成型原理 2.3.2 生产工艺 2.3.3 生产工艺流程示意图及设备 第四节影响阻隔性的主要因素 第三章多层共挤高阻隔薄膜的展望 第一节肉类高阻隔薄膜的发展趋势 3.1.1 肉类高阻隔薄膜的发展及展望 3.1.2 七层以上高阻隔共挤吹塑薄膜生产技术的发展趋势第四章多层共挤高阻隔薄膜的总结 指导老师评语 致谢 参考文献

多层共挤高阻隔薄膜的生产工艺流程设计 摘要 本次的论文主要是讨论和研究多层共挤高阻隔薄膜的生产工艺及应用方向,并特别举例介绍目前市场上所销售的肉类包装膜(火腿肠),其外包装即为七层共挤薄膜,具有很强的阻气阻油性能,市场需求量也很大。在叙述生产过程的同时,也对高阻隔薄膜的前景进行了分析讨论,目前在我国,阻隔性包装薄膜处于推广使用的增长期,国内生产的阻隔性薄膜大多应用在低端产品的包装,性能优良的阻隔性薄膜还需要大量进口,因此市场发展空间很大。 关键词:多层高阻隔薄膜工艺 前言 改革开放几十年来,我国塑料包装行业得到稳步的高速发展,已经从一个初期分散性的行业发展成为独立的、产品门类齐全的现代化产业体系,对塑料制品的年均需求增长率在不断攀升。塑料制品行业成为了增长速度最快,是具有广阔发展前景的朝阳产业。其中,薄膜是用量最大的塑料包装材料,由于其无毒、质轻、包装美观、成本低的特点,因而应用领域在不断拓展,几乎渗透到工农产品和日常生活用品的各个方面,塑料包装薄膜行业的投资正在快速增长。因此,把握国际、国内塑料包装薄膜的技术和市场发展的总体趋势,对于审时度势地进行前瞻性正确决策具有重要现实意义。 随着社会的发展和人们生活水平的提高,产品的分类越来越细,对于产品的包装并不仅仅局限在视觉效果上,而是要根据产品的特点和市场的需求,朝功能化、多样化方向纵深开发。近年来,技术的进步使得塑料包装薄膜的功能化发展趋势日渐明显,高要求、高技术含量的塑料包装薄膜正成为许多企业的支柱产业和研发目标,其包装功能是多样的,除对一般薄膜的抗静电、抗粘连要求外,主要通过原材料、助剂或工艺的调整赋予包装薄膜某些特殊的功能,如适应香烟和饮料包装挺括性与紧贴性需要的热收缩性、适应蔬菜和水果包装需要的透气性、适应电子元件包装需要的导电性、适应可透视包装需要的高光学性能、适应金属设备和仪器包装需要的防锈性以及日益在食品、化妆品、医药方面广泛需要的阻隔性和抗菌性等,薄膜的功能化提高了产品的附加值。 其中阻隔性塑料包装薄膜是目前发展最快的功能薄膜之一。在我国,阻隔性包装薄膜处于推广使用的增长期,国内生产的阻隔性薄膜大多应用在低端产品的包装,性能优良的阻隔性薄膜还需要大量进口,因此市场发展空间很大。 近年来,在日本、欧洲阻隔性薄膜的消费量每年以10%左右的速度增长;而美国阻隔性树脂的消费年均增长13.6%,尽管在我国阻隔性薄膜只是近几年才引起薄膜生产企业的重视,但早已在食品、医药等行业得到广泛的应用,消费市场巨大,有很大的发展空间,发展速度也很快,国内许多相关企业都在根据人们的生活习惯和各类阻隔性包装的实际要求,认真研究相关的包装市场,找准切入点,以期有所收获。综观阻隔性材料的开发及其包装薄膜生产工艺技术的发展状况,笔者认为有一点应该引起我国相关部门的重视,无论是阻隔性原料树脂,还是阻隔性薄膜的生产设备和相关工艺技术,国内科研院所和企业的自主开发能力缺乏,严重依赖进口,国内绝大多数企业实际上还停留在来料加工的初级阶段,包装行业技术整体落后的局面依然

高分子材料项目可行性研究报告范文

高分子材料项目 可行性研究报告 规划设计 / 投资分析

摘要 该高分子材料项目计划总投资12232.85万元,其中:固定资产投资9827.42万元,占项目总投资的80.34%;流动资金2405.43万元,占项目 总投资的19.66%。 达产年营业收入23608.00万元,总成本费用18236.22万元,税金及 附加247.21万元,利润总额5371.78万元,利税总额6359.93万元,税后 净利润4028.84万元,达产年纳税总额2331.09万元;达产年投资利润率43.91%,投资利税率51.99%,投资回报率32.93%,全部投资回收期4.54年,提供就业职位430个。 本报告所描述的投资预算及财务收益预评估均以《建设项目经济评价 方法与参数(第三版)》为标准进行测算形成,是基于一个动态的环境和 对未来预测的不确定性,因此,可能会因时间或其他因素的变化而导致与 未来发生的事实不完全一致,所以,相关的预测将会随之而有所调整,敬 请接受本报告的各方关注以项目承办单位名义就同一主题所出具的相关后 续研究报告及发布的评论文章,故此,本报告中所发表的观点和结论仅供 报告持有者参考使用;报告编制人员对本报告披露的信息不作承诺性保证,也不对各级政府部门(客户或潜在投资者)因参考报告内容而产生的相关 后果承担法律责任;因此,报告的持有者和审阅者应当完全拥有自主采纳 权和取舍权,敬请本报告的所有读者给予谅解。

项目概况、项目背景及必要性、市场分析、调研、建设规模、选址可 行性研究、项目土建工程、工艺先进性、环境保护和绿色生产、安全保护、项目风险应对说明、节能可行性分析、项目计划安排、投资分析、项目经 济效益分析、项目综合评估等。

生活中的高分子材料

生活中的高分子材料 【摘要】 高分子应用在生活中各个地方,塑料便是应用较为广泛。塑料在生活起重大作用,但是也给环境带来了危害。如何解决由塑料制品所造成的白色污染时全人类共同面临的问题。目前,在诸多的解决方案中,开发可降解塑料成为全球瞩目的热点。 【正文】 高分子材料:以高分子化合物为基础的材料,高分子材料是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料,由千百个原子彼此以共价键结合形成相对分子质量特别大、具有重复结构单元的有机化合物。 高分子的分子量从几千到几十万甚至几百万,所含原子数目一般在几万以上,而且这些原子是通过共价键连接起来的。高分子化合物中的原子连接成很长的线状分子时,叫线型高分子(如聚乙烯的分子)。如果高分子化合物中的原子连接成网状时,这种高分子由于一般都不是平面结构而是立体结构,所以也叫体型高分子。 高分子材料的结构特征 高分子材料的高分子链通常是由成千上万个结构单元组成,高分子链结构和许许多多高分子链聚在一起的聚集态结构形成了高分子材料的特殊结构。因而高分子材料除具有低分子化合物所具有的结构特征(如同分异构体、几何结构、旋转异构)外,还具有许多特殊的结构特征。高分子结构通常分为链结构和聚集态结构两个部分。链结构是指单个高分子化合物分子的结构和形态,所以链结构又可分为近程和远程结构。近程结构属于化学结构,也称一级结构,包括链中原子的种类和排列、取代基和端基的种类、结构单元的排列顺序、支链类型和长度等。远程结构是指分子的尺寸、形态,链的柔顺性以及分子在环境中的构象,也称二级结构。聚集态结构是指高聚物材料整体的内部结构,包括晶体结构、非晶态结构、取向态结构、液晶态结构等有关高聚物材料中分子的堆积情况,统称为三级结构。 高分子材料按其来源可分为:天然高分子材料、半合成高分子材料(改性天

导热高分子材料

导热高分子材料 一、概述 传统的导热物质多为金属如Ag, Cu, Al和金属氧化物如Al2O3, MgO, BeO以及其它非金属材料如石墨,炭黑,Si3N4,AlN。随着工业生产和科学技术的发展,人们对导热材料提出了新的要求,希望材料具有优良的综合性能。如在化工生产和废水处理中使用的热交换器既需要所用材料具有导热能力,又要求其耐化学腐蚀、耐高温。在电气电子领域由于集成技术和组装技术的迅速发展,电子元件、逻辑电路的体积成千成万倍地缩小,则需要高导热性的绝缘材料。近几十年来,高分子材料的应用领域不断拓展,用人工合成的高分子材料代替传统工业中使用的各种材料,特别是金属材料,已成为世界科研努力的方向之一。在导热材料领域,纯的高分子材料一般是不能胜任的,因为高分子材料大多是热的不良导体(见表2 )。 在塑料工业中,导热塑料最大和最重要的应用是替代金属和金属合金制造热交换器[3]。它可以代替金属应用于需要良好导热性和优良耐腐蚀性能的环境,如换热器、太阳能热水器、蓄电池的冷却器等。电子电器工业也是应用导热塑料较多的一个领域,主要用来制造要求较高的导热电路板。另外在用作输送、盛装、封闭、装饰、埋嵌等材料,以及满足某些制品在固化时的尺寸稳定性的要求方面也有应用。 在橡胶工业中,关于导热橡胶制品的研究开发,重点集中在以硅橡胶和丁腈橡胶为基质的领域内,用于制造与电子电气元件接触的橡胶制品,既提供了系统所需要的高弹性、耐热性,又可以将系统的热量迅速传递出去。如具有良好导热性和电绝缘性能的橡胶可以用于电子电器元部件的减震器;事实上,许多橡胶制品都在动态情况下使用,由材料的形变滞后效应所造成的体系温升经常是很高的,从而使得材料的动态疲劳性能下降。以往人们总是研究怎样从配方上降低橡胶材料的动态生热,而没有很好地研究胶料本身导热性好坏及怎样进一步提高的问题。 在粘合剂工业中,随着电子元器件和电子设备向薄轻小方面发展,对于用作封装和热界面材料的导热粘合剂尤其是导热绝缘粘合剂的需求越来越高。散热在电子工业中是一个至关重要的问题。比如对于电子元器件,如果热量来不及散除将导致其工作温度升高,这样不仅会降低其使用寿命而且也将大大降低它的稳定性。 如上所述,绝大多数高分子材料本身属于绝热性材料。要想赋予高分子材料优良的导热性,主要是通过共混(熔体共混和溶液共混等)方法在高分子材料中填充导热性能好的填料。这样得到的导热材料有价格低廉、易加工成型等优点。 二、导热高分子材料的制作

高分子材料本科毕业论文选题

高分子材料本科毕业论文选题 (1) 高分子材料在印花涂料中的应用 (2) 体现区域经济特色的高分子材料方向工学硕士的培养 (3) 高分子材料与工程:接地气的材料学 (4) 新型高分子材料在采空区漏风治理的应用 (5) 高分子材料功能助剂的应用现状和发展趋势 (6) 天然高分子材料在阻燃技术中的研究进展 (7) 高分子材料成型加工技术及应用 (8) 地方应用型本科院校高分子材料与工程专业认证体系的构建与实践 (9) 《药用高分子材料学》创新型实验教学的探索 (10) 浅析高分子材料成型加工技术 (11) 高分子材料成型及其控制 (12) 高分子材料耐候性试验中的紫外辐射测定方法研究 (13) 对高分子材料成型加工技术关键点的分析 (14) 《药用高分子材料》课程教学中若干问题探讨 (15) 农业院校《药用高分子材料》教学探讨 (16) 高分子材料与工程专业生产实习问题调查及对策 (17) 高分子材料三防技术研究 (18) 高分子材料的老化及防老化研究 (19) 浅谈高分子材料成型及其控制技术 (20) 高分子材料的发展及应用 (21) 混凝土节水保湿高分子材料养护膜在渠道衬砌工程中的应用

(22) 高分子材料合成与应用中的绿色战略 (23) 新型高分子材料与应用探析 (24) 高分子材料,“罢工”脏器的好替身 (25) 试析高分子材料成型加工技术 (26) 热致型形状记忆高分子材料研究 (27) 生物可降解高分子材料的研究 (28) 改善高分子材料课程教学效果的几点措施 (29) 高分子材料的金属化 (30) “理实一体化”在高分子材料加工原理课程教学中的应用研究 (31) 高分子材料与工程专业人才培养模式的探究 (32) 导热高分子材料的研究与应用分析 (33) 聚乳酸高分子材料的生物安全性评价 (34) 浅谈高分子材料抗静电剂ASA (35) 高分子材料加工技术专业“理实一体化”实训室建设的探索 (36) 功能高分子材料课程的教学实践与探索 (37) 《高分子材料性能测试》课程教学探析 (38) 浅析Pro/E软件在高分子材料中的应用 (39) 形状记忆高分子材料的研究进展 (40) 探讨功能高分子材料的应用 (41) 石墨炉原子吸收法快速测定聚醚酮酮特种高分子材料中铝离子 残留形状记忆高分子材料在自拆卸构件中的应用进展 (42) 浅谈高分子材料与工程专业创新性实验能力的培养

中国可降解高分子材料行业上下游产业链分析报告

深圳中企智业投资咨询有限公司

中国可降解高分子材料行业上下游产业链分析 (最新版报告请登陆我司官方网站联系) 公司网址: https://www.docsj.com/doc/3e7006038.html, 1

目录 中国可降解高分子材料行业上下游产业链分析 (3) 第一节可降解高分子材料行业上下游产业链概述 (3) 第二节可降解高分子材料上游行业发展状况分析 (3) 一、上游原材料市场发展现状 (3) 二、上游原材料供应情况分析 (4) 三、上游原材料价格走势分析 (4) 四、上游原材料行业前景分析 (4) 第三节可降解高分子材料下游行业需求市场分析 (4) 一、下游行业发展现状分析 (4) 二、下游行业需求状况分析 (9) 三、下游行业需求前景分析 (10) 2

3 中国可降解高分子材料行业上下游产业链分析 第一节 可降解高分子材料行业上下游产业链概述 图表- 1:可降解高分子材料产业链 以PLA 为例,聚乳酸全名为PolyLacticAcid(PLA),又名玉米淀粉树酯,学名为Polylactide ,是一种丙交酯聚酯。聚乳酸为一多用途可堆肥的高分子聚合物,完全由植物中萃取出淀粉→经过发酵→去水→聚合等过程制造而成,无毒性。 其上游为淀粉、纤维素等原材料行业,下游行业应用范围较为广泛,主要包含医疗、食品包装、日用品等多个行业。 第二节 可降解高分子材料上游行业发展状况分析 一、上游原材料市场发展现状 作为生物塑料家族中的当家品种,聚乳酸(PLA)目前是产业化最成熟、产量最大、应用最广泛、价格最低的生物基塑料,是未来最有希望撼动石油基塑料传统地位的降解材料,也将成为生物塑料的主力军。 由于我国农业基础较为发达,淀粉酶以及纤维素等相关产品的数量较多,供给较为充足。

实习报告高分子材料与工程专业毕业实习报告

三一文库(https://www.docsj.com/doc/3e7006038.html,)/求职离职/实习报告 高分子材料与工程专业毕业实习报 告 高分子材料与工程专业毕业实习报告(一) 高吸水性树脂(英文名为SuperAbsorbentResin,简写为SAR),或者称为高吸水性聚合物(英文名为SuperAbsorbentPolymer,简写为SAP),是一种含有羧基等强亲水性基团并具有一定交联度的水溶胀型高分子聚合物。与传统吸水材料如海绵、纤维素、硅胶相比,它不溶于水,也不溶于有机溶剂,却又有着奇特的吸水性能和保水能力,同时又具备高分子材料的优点。高吸水性树脂的吸水量高,可达到自重的千倍以上,而且保水性强,即使在受热、加压条件下也不易失水,对光、热、酸碱的稳定性好,还具有良好的生物降解性能。 高吸水性树脂的开发与研究只有几十年的历史。是一种典型的功能高分子材料,具有一般高分子化合物的基本特性。它能够吸收并保持自身质量数百倍乃至数千倍的水分或都数十倍的盐水,并且能够保水贮水,即使加压也很难把水分离出来。这是由于其分子结构上带有大量具有很强亲水性的化学基团,而这些化

学基团又可形成各种相应的复杂结构,从而赋予该材料良好的高吸水和高保水特性。 高吸水性树脂与水有很强的亲和力使它在个人卫生用品方 面得到广泛应用,并在农业、土木建筑、保鲜材料、改造环境等方面的应用也显示出广阔的前景。如婴儿纸尿片、老年失禁纸尿片布、妇女用卫生巾等,广大发展中国家在这方面的需求不断增长,各国纷纷扩大生产,增加研究和开发力度。高吸水性树脂作为通讯电缆的防水剂、湿度调节剂、凝胶转动装置、活体酶载体、人造雪等方面也得到了大量的研究和应用。高吸水性树脂在农艺园林方面的应用也已表现出令人鼓舞的前景,它有利于节水灌溉、降低植物死亡率、提高土壤保肥保水能力、提高作物发芽率等。高吸水树脂在沙漠治理方面的应用更是具有无可估量的社会效益。由此可见进一步开发高吸水性树脂仍然有很重大的意义。 高吸水树脂的研究开发始于20世纪60年代后期。1966年美国农业部北方研究所Fan-ta等进行了淀粉接枝丙烯腈的研究,从此开始了高吸水树脂的发展。Fanta等在论文中提出:淀粉衍生物的吸水性树脂具有优越的吸水能力,吸水后形成的膨润凝胶体保水性很强,即使加压也不与水分离,甚至还具有吸湿放湿性,这些材料的吸水性能都超过以往的高分子材料。该树脂最初在HenkelCorporation工业化成功,其商品名为SGP (StarchGraftPolymer)。1971年GrainProcessing公司以硝酸铈

高分子材料毕业论文

高分子材料毕业论文 第 1 页共 9 页 计算题 1. PA-66原纤维支数为4500支,在不断增加负荷的作用下,当负荷为8克时,纤维 被拉断。试求:a))特数旦数D)绝对强Tex力)相对强度PPDPT)断裂长 度)LPbcdef 强度极限σ(ρ=1.14) 2. 某腈纶厂生产的产品经测量其含湿率为2.5%。 a)试折合为回潮率为多少, b)若知回潮率为2%,那么该纤维的每1000公斤的标准重量是多少, 3. 已知某纤维厂生产PET长丝,规格为128支/3L根,试求a)该长丝的旦数,50米卷重 (1)单根纤维的旦数 (2) 单根纤维的断面直径是多少,(PE T:ρ=1.38) 4. PET的纺丝温度为286?,计量泵规格为0.6cm3/r,转速为15r/min,喷丝板孔径

为0.3mm,孔数为20孔,孔长为0.5mm,已知η0,210Pa.s,试求流经每孔的yw 0.78,η,140 Pa.s时,其yw和和压力降Δp。若为非牛顿流体,非牛顿指数n, Δp又为多少, 5. 聚丙烯腈的硫氰酸钠浓水溶液,已知其20?时的零切粘度为40Pa.S,非牛顿指 数为0.43,临界剪切速率为150S,1,粘流活化能为38KJ/mol,问: (1)20?时,把剪切速率提高到3×104S-1,其表观粘度为多少, (2)把该溶液提高到60?时其零切粘度为多少, 6. 涤纶纺丝工艺中所用工艺参数为:纺丝温度280?,吹风温度30?,纺丝线上固 -33化点温度80?,熔体密度ρ=1.20×10g/ ,熔体比热容cm容1.88kJ/kg?,卷绕丝密3-4度1.38 g/,空气cm导热系数J/cm.s.2.6×10?,泵供量365g/min,空气运动粘度 -521.6×1m/0s,卷绕速度1000m/min,喷丝板规格?0.25mm×400孔,L/D=2,求: (1)纺丝线固化点前的平均直径;(2)纺丝线固化点前的平均速度;(3)纺 丝线固化点前的平均给热系数;(4)固化时间。 337. PA6熔体纺丝条件为:熔体密度,卷绕高度1.0 4.5mg/cm,泵供量 /min2.,4 cm-6-33喷丝板孔径d0=0.076cm,空气粘度和密度分别 为:19.2×10Pa.s,和1.g/2×10,cm -42Cf=0.37Re-0.01,表面张力N/cm,在两种λ为5.0纺丝速度 (×10100m/min,

高分子毕业实习报告

高分子毕业实习报告 毕业实习是毕业设计的重要环节之一,是学生进行设计的重要基础。毕业实习的好坏直接影响毕业设计的质量,所以我们必须认对待。以下关于高分子毕业实习报告范文是由聘才网的小编为各位编辑们整理收集的,希望能给大家一个参考,欢迎阅读与借鉴。 高分子毕业实习报告范文一 日上午,在所有的科目都考完之后,老师带着我们进行了认知实习。老实讲,在之前我都不知道这认知实习是个什么东西,还以为会被带到什么工厂去转一圈。在老师的讲解下才知道原来是在学校的实验室对我们专业的一些生产或实验仪器进行一定的了解。虽然时间不长,但总归是有了不少的收获。对于理工科的同学来说,专业认识实习是一个很关键的学习内容,也是一个能清楚了解自己所学专业以后将从事什么样工作的机会。对于我们来说,能认自己专业以后从事的工作,清楚的了解自己以后工作的方向,这对我们在自己以后的职业规划上又能增加一笔无形的财富,还能让我们在本专业工作上走得更远,探的更深。以下便是我通过笔记和从网上查资料了解到的一些知识。 高分子材料成型加工实验室拥有一批功能较齐全的用于塑料、橡胶、涂料和胶粘剂等高分子材料成型加工和性能测试的仪器设备,主要承担高分子材料与工程的本科课程教

学、毕业论文及大学生开放创新实验工作,是大学生较为理想的工程训练培训基地;也为教师及研究生提供科研支持。 可承担的本科生及研究生实验 (1).橡胶的共混改性及其性能测试 (2).热固型树脂的浇注成型及其性能测试 (3).高抗冲增强热塑性塑料的制备及其性能测试 (4).PVC成型物料的配制、塑炼及模压成型及其性能测试 拥有XLB型平板硫化机、XK-160型开放式塑练机、HBL-1300型注塑机、SHJ-18双杆配混挤出机、捏合机、万能制样机、聚合反应釜。 生物医用高分子材料是生物医学材料和器械研究为主线的、跨越机械、物理、化学、力学和生物医学工程等学科的多学科交叉的创新科研平台,主要致力于生物医学金属材料、纳米生物医学材料、介入医学材料、材料的生物相容性评价、器械的先进制造技术、生物力学等前沿领域的基础研究。研究中心下设四个实验室(生物医用材料的合成与表征实验室、生物相容性试验和评价实验室、生物医学器械的优化设计与检测实验室及生物医学器械的先进制造技术实验室实验室)和一个中心研究室。生物医学材料与工程研究中心实行“开放、流动、联合、竞争”的运行机制,在培养环境、培养方式和研究学科上更加注重学科之间的合作、交叉

导热高分子影响热导率因素(精)

导热高分子 影响热导率的因素 学校名称:华南农业大学 院系名称:材料与能源学院 时间:2017年2月27日

1.影响热导率的因素 1.1树脂基体 虽然有聚乙炔、聚亚苯基硫醚、聚噻吩等本征型导电、导热高分子材料,但绝大多数高分子材料本身属于绝热材料。赋予其优异的导热性的主要途径是通过共混(如机械共混、熔体共混或溶液共混等)的方法在高分子材料中填充导热性能好的填料,从而得到导热性能优良、价格低廉、易加工成型的导热高分子材料。表1是一些材料的热导率: 1.2导热填料 1.2.1填料的种类及填充量 填料主要包括金属填料和非金属填料。填料的种类不同,其导热机理、热导率及适用范围也不同。一般来说,在特定条件下,填充量越大,导热效果越好

1.2.2.填料的尺寸 填料填充复合材料的热导率随粒径增大而增加,在填充量相同时,大粒径填料填充所得到的复合材料热导率均比小粒径填料填充的要高。但是,导热填料经过超细微化处理可以有效提高其自身的导热性能;譬如在丁苯橡胶中分别添加纳米氧化铝或微米氧化铝,在相同填充量下,发现纳米氧化铝填充丁苯橡胶的热导率和物理力学性能均优于微米氧化铝填充的丁苯橡胶,且丁苯橡胶的热导率随着氧化铝填充量的增加而增大。 1.2.3.填料的形状 分散于树脂基体中的填料可以是粒状、片状、球形、纤维等形状,填料的外形直接影响其在高分子材料中的分散及热导率。在相同的情况下,热导率最低的是粉状,其次是纤维,最高的则是以晶须形态填加的复合材料。 1.2.4.基体与填料的界面 导热高分子复合材料是由导热填料和聚合物基体复合而成的多相体系,在热量传递(即晶格振动传递)过程中,必然要经过许多基体一填料界面,因此界面间的结合强度也直接影响整个复合材料体系的热导率。 基体和填料界面的结合强度与填料的表面处理有大关系,取决于颗粒表面易湿润的程度。这是因为为填料表面润湿程度影响填料与基体的粘结程度、基体与填料界面的热障、填料的均匀分散、填料的加入量等一些直接影响体系热导率的因素。增加界面结合强度能提高复合材料的热导率。表面处理剂的加入既可以改善填料的分散能力,又可以减少硅橡胶受外力作用时填料粒子与基体间产生的空隙,减少应力集中导致的基体破坏。 表面处理剂对热导率的影响应该是“桥联”和“包覆”共同作用的结果。一方面,其“桥联”作用改善了填料与基体的界面相容性,减少了界面缺陷及可能

材料毕业论文浅谈生物可降解高分子材料的开发利用

浅谈生物可降解高分子材料的开发利用 我国目前的高分子材料生产和使用已跃居世界前列, 每年产生几百万吨废旧物。如此多的高聚物迫切需要进行生物可 降解,以尽量减少对人类及环境的污染。生物可降解材料,是指 在自然界微生物,如细菌、霉菌及藻类作用下,可完全降解为低 分子的材料。这类材料储存方便,只要保持干燥,不需避光,应 用范围广,可用于地膜、包装袋、医药等领域。生物可降解的机 理大致有以下3 种方式:生物的细胞增长使物质发生机械性破坏;微生物对聚合物作用产生新的物质;酶的直接作用,即微生物侵 蚀高聚物从而导致裂解。按照上述机理,现将目前研究的几种主 要的可生物可降解的高分子材料介绍如下。 1、生物可降解高分子材料概念及降解机理 生物可降解高分子材料是指在一定的时间和一定的条件下,能 被微生物或其分泌物在酶或化学分解作用下发生降解的高分子材料。 生物可降解的机理大致有以下3种方式:生物的细胞增长使物 质发生机械性破坏;微生物对聚合物作用产生新的物质;酶的直 接作用,即微生物侵蚀高聚物从而导致裂解。一般认为,高分子 材料的生物可降解是经过两个过程进行的。首先,微生物向体外 分泌水解酶和材料表面结合,通过水解切断高分子链,生成分子 量小于500的小分子量的化合物;然后,降解的生成物被微生物 摄入人体内,经过种种的代谢路线,合成为微生物体物或转化为 微生物活动的能量,最终都转化为水和二氧化碳。 因此,生物可降解并非单一机理,而是一个复杂的生物物理、生 物化学协同作用,相互促进的物理化学过程。到目前为止,有关

生物可降解的机理尚未完全阐述清楚。除了生物可降解外,高分 子材料在机体内的降解还被描述为生物吸收、生物侵蚀及生物劣 化等。生物可降解高分子材料的降解除与材料本身性能有关外, 还与材料温度、酶、PH值、微生物等外部环境有关。 2、生物可降解高分子材料的类型 按来源,生物可降解高分子材料可分为天然高分子和人工合成高 分子两大类。按用途分类,有医用和非医用生物可降解高分子材 料两大类。按合成方法可分为如下几种类型。 2.1微生物生产型 通过微生物合成的高分子物质。这类高分子主要有微生物聚酯和 微生物多糖,具有生物可降解性,可用于制造不污染环境的生物 可降解塑料。如英国ICI 公司生产的“Biopol”产品。 2.2合成高分子型 脂肪族聚酯具有较好的生物可降解性。但其熔点低,强度及耐热 性差,无法应用。芳香族聚酯(PET) 和聚酰胺的熔点较高,强度好,是应用价值很高的工程塑料,但没有生物可降解性。将脂肪 族和芳香族聚酯(或聚酰胺) 制成一定结构的共聚物,这种共聚物 具有良好的性能,又有一定的生物可降解性。 2.3天然高分子型 自然界中存在的纤维素、甲壳素和木质素等均属可降解天然高分子,这些高分子可被微生物完全降解,但因纤维素等存在物理性 能上的不足,由其单独制成的薄膜的耐水性、强度均达不到要求,因此,它大多与其它高分子,如由甲壳质制得的脱乙酰基多糖等 共混制得 2.4掺合型 在没有生物可降解的高分子材料中,掺混一定量的生物可降解的 高分子化合物,使所得产品具有相当程度的生物可降解性,这就 制成了掺合型生物可降解高分子材料,但这种材料不能完全生物

某某年产8万吨聚丙烯高分子材料生产线投资项目可行性研究报告

l 总说明 1.1项目名称 1.1.1项目名称 年产8万吨聚丙烯高分子材料生产线投资项目 1.1.2项目承办单位及法人 单位名称:******实业有限公司 法定代表人:*** 项目负责人: 项目拟建地点:***经济开发区 企业主管部门:***经济开发区管委会 1.2可行性研究工作的组织 1.2.1可行性研究报告工作的承担单位及资质 可行性研究报告的承担单位: 工程咨询资格证书编号: 1.2.2可行性研究报告负责人 可行性研究报告负责人: 1.3可行性研究概论 1.3.1建设目标 根据市场调研,结合企业实际情况,本项目分两期引进国际先进水平的8.2m宽幅高速聚丙烯高分子材料生产线四条,配套部分国产设备;形成年产10万吨聚丙烯高分子材料的生产能力。

1.3.2生产及配套条件 (1)土建 本项目位于***经济开发区,项目征地面积146520m2(220亩),新建厂房、管理用房62680m2。 (2)供电 该项目新增装机容量为16400KW,计算视在功率8312KW,新增3200KVA节能变压器三台。全年耗电量为6200万KW〃h。 (3)供水 供水系统由泗水经济开发区统一规划供给。项目新增年用水量7万吨。 (4)环保、消防及劳动安全 环保、消防及劳动安全等严格执行国家有关规定,实行“三同时”。 1.3.3总投资及资金来源 本项目总投资60000万元,其中固定资产投资xxx万元,铺地流动资金xxx万元。 资金来源:银行贷款xxxx万元,企业自有资金xxxx万元。 1.3.4经济效益 项目建成后,可年新增销售收入xxxx万元,利润xxx万元,销售税金xxx万元。 1.3.5技术经济主要指标 技术经济主要指标

导热高分子的概述(精)

导热高分子材料的概述 学校名称:华南农业大学 院系名称:材料与能源学院 时间:2017年2月27日

1.概述 1.1概念 指具有较高导热系数的高分子材料,固体中传导热量的载体包括电子、声子、磁激发和电磁辐射等;从本质上讲,绝大多数聚合物的导热性能与无机材料相比均不理想。 1.2发展历程 1聚苯胺在19世纪中叶首次由Henry Letheby描述,他研究了苯胺在酸性介质中的电化学和化学氧化产物。他指出,还原形式是无色的,但氧化形式是深蓝色。第一高导电性有机化合物是电荷转移络合物。在20世纪50年代,研究人员报告说,多环芳族化合物与卤素形成半导电电荷转移络合盐。在1954年,贝尔实验室和其他地方的研究人员报告了有机电荷转移络合物,电阻率低至8欧姆- 厘在20世纪70年代初,研究人员证明四硫富瓦烯的盐显示几乎金属导电性,而超导性在1980年被证明。关于电荷转移盐的广泛研究继续今天。虽然这些化合物在技术上不是聚合物,但这表明有机化合物可以携带电流。虽然有机导体以前间歇性讨论,该领域特别通过预测的超导性BCS理论发现后激发。1963年澳大利亚人B.A.博尔托Weiss及其同事报道了电阻率低至1欧姆·厘米的聚吡咯衍生物引用了类似的高电导率氧化聚乙炔的多个报道。除了电荷转移复合物(其中一些是偶数超导体)的显着例外之外,有机分子先前被认为是绝缘体或者最好是弱导电半导体。随后,DeSurville和同事报道了在聚苯胺中的高导电性。同样,在1980年,Diaz和Logan报道了可用作电极的聚苯胺膜。 尽管大多数在小于100纳米的量子领域中操作,但“分子”电子过程可以在大规模上集体表现。示例包括量子隧道效应,负电阻,声子辅助跳跃和极化子。1977年,Alan J. Heeger,Alan MacDiarmid和Hideki Shirakawa报道了氧化碘掺杂聚乙炔的相似的高电导率对于这项研究,他们被授予2000年诺贝尔化学奖“用于发现和发展导电聚合物”。自20世纪80年代 1维基百科

高分子认识实习报告

高分子认识实习报告 篇一:四川大学高分子材料专业认识实习报告 一:实习时间 二:实习地点 1. 四川航天技术研究院(成都航天模塑股份有限公司) 2. 四川凯力威科技股份有限公司 三:实习目的 认识实习是本科教学计划中非常重要的一个环节,通过认识实习,我们能够了解高分子材料工业化生产的一些典型合成过程,高分子材料的一些典型成型方法,了解高分子材料的应用领域。 通过认识学习,有助于我们将基础课程如化工原理,高分子化学,材料科学与工程基础等专业基础理论知识与生产实际相结合,进一步理解和深化过去学到的知识。并能够为即将要学习的专

业课程如高分子物理、聚合物加工基础、聚合反应工程、材料工厂设计等课程积累生产实践经验。 认识实习有助于我们了解工厂的生产组织管理知识和企业的经营管理模式。了解化工生产易燃易爆的特殊性,掌握基本的安全常识,培养严格的组织纪律性。 总之,认识实习是与今后的职业生活直接相关的,通过认识实习可以直接认识生产流水线和相关工艺,将课堂所学与实际的工厂生产结合起来,通过感性认识巩固加深理性认识,获得在书本上不易了解和学到的生产现场的实际知识,提高实践动手能力,并学习工程技术人员和师傅们敬业奉献、精益求精的高尚品质,开拓视野,广阔心胸,培养积极思考、解决困难的习惯,为后继专业课的学习、课程设计和毕业设计打下坚实的基础。 四:实习内容 (1)四川航天技术研究院

单位简介:四川航天技术研究院(四川航天管理局)隶属于中国航天科技集团公司。前身是国防三线建设062基地和064基地,2005年正式更名为四川航天技术研究院,在四川成都挂牌成立;该院是一个以航天型号产品、航天技术应用产业、服务业三大产业为主,以国防装备生产、火箭弹研制、航天技术应用为重点,航天制造优势突出、自主创新能力强的大型科研生产联合体。 我们参观的四川航天技术研究院的成员单位之一,成都航天模塑股份有限公司,位于四川省成都市龙泉驿经济技术开发区,该公司成立于1998年12月,主营业务为大中型汽车塑料内外装饰件、功能件及大中型汽车塑料模具,从产品设计、模具设计、模具制造、制件加工、售后服务提供全方位解决方案。主要产品包括:仪表台系列、保险杠系列、车门护板/立柱系列、车轮装饰罩系列、车载空调/暖风机外壳系列、挡泥板系列、防擦条系列、格栅系列、门槛系

化学毕业论文生活中的高分子材料

生活中的高分子材料 一、高分子的定义 高分子材料:以高分子化合物为基础的材料,高分子材料是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料,由千百个原子彼此以共价键结合形成相对分子质量特别大、具有重复结构单元的有机化合物。 高分子的分子量从几千到几十万甚至几百万,所含原子数目一般在几万以上,而且这些原子是通过共价键连接起来的。高分子化合物中的原子连接成很长的线状分子时,叫线型高分子(如聚乙烯的分子)。如果高分子化合物中的原子连接成网状时,这种高分子由于一般都不是平面结构而是立体结构,所以也叫体型高分子。 二、高分子材料的结构特征 高分子材料的高分子链通常是由103~105个结构单元组成,高分子链结构和许许多多高分子链聚在一起的聚集态结构形成了高分子材料的特殊结构。因而高分子材料除具有低分子化合物所具有的结构特征(如同分异构体、几何结构、旋转异构)外,还具有许多特殊的结构特征。高分子结构通常分为链结构和聚集态结构两个部分。链结构是指单个高分子化合物分子的结构和形态,所以链结构又可分为近程和远程结构。近程结构属于化学结构,也称一级结构,包括链中原子的种类和排列、取代基和端基的种类、结构单元的排列顺序、支链类型和长度等。远程结构是指分子的尺寸、形态,链的柔顺性以及分子在中的构象,也称二级结构。聚集态结构是指高聚物材料整体的内部结构,包括晶体

结构、非晶态结构、取向态结构、液晶态结构等有关高聚物材料 中分子的堆积情况,统称为三级结构。 三、高分子材料按来源分类 高分子材料按来源分,可分为天然高分子材料、半合成 高分子材料(改性天然高分子材料)和合成高分子材料。 天然高分子材料包括纤维素、蛋白质、蚕丝、橡胶、淀 粉等。合成高分子材料以及以高聚物为基础的,如各种塑料,合 成橡胶,合成纤维、涂料与粘接剂等。 四、生活中的高分子材料 生活中的高分子材料很多,如蚕丝、棉、麻、毛、玻璃、橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基 复合材料等。下面就以塑料和纤维素举例说明。 (一)、塑料 塑料是一种合成高分子材料,又可称为高分子或巨分子,也是一般所俗称的塑料或树脂,可以自由改变形体样式。是利用 单体原料以合成或缩合反应聚合而成的材料,由合成树脂及填料、增塑剂、稳定剂、润滑剂、色料等添加剂组成的,它的主要成分 是合成树脂。[1] [1]

相关文档
相关文档 最新文档