文档视界 最新最全的文档下载
当前位置:文档视界 › 第四章_飞行控制

第四章_飞行控制

第四章_飞行控制
第四章_飞行控制

第四章- 飞行控制

飞行器飞行控制系统费为主要飞行控制和辅助飞行控制。主要飞行控制系统包含那些飞行中要求的安全控制飞机,这些包含副翼,升降舵或者安定面,以及方向舵。辅助控制系统提升了飞机的性能特性,或者减轻了飞行员的过多控制力。辅助控制系统的例子有机翼襟翼和配平系统。

主要飞行控制

飞机控制系统被细心的设计为提供自然的感觉,同时,对控制输入有足够的响应度。低速时,控制通常感觉是偏软且反应缓慢的,飞机对施加控制的反应是慢慢的。在高速飞行时,控制感是偏硬的,反应也更快。

三个主要飞行控制面中任意一个的运动都会改变机翼上面和周围的气流以及压力分布。这些变化影响机翼和控制面结合而产生的升力和阻力,这样飞行员才能够操控飞机沿3个轴向的旋转。

设计特征限制了飞行控制面的偏转程度。例如,控制停止机制可能会结合到飞行控制中,或者控制杆的运动和/或方向脚舵可能受限。这些设计限制的目的是防止在正常机动时飞行员无意中的操纵过量或者飞机的过载。

良好设计的飞机应该是机动时稳定而容易控制的。控制面输入导致3个轴向旋转的运动。飞机表现出来的稳定性类型也和3个轴向的旋转有关。如图4-1。

(注:飞机控制,运动,旋转轴向,和稳定性类型)

副翼

副翼控制纵轴方向的侧滚。副翼安装在每一个机翼的后缘外侧,且运动方向彼此相反。副翼通过线缆,双臂曲柄,滑轮或推挽式管互相链接,然后相连到控制轮。

向右移动控制轮导致右侧副翼向上偏转,左侧副翼向下偏转。右侧副翼的向上偏转降低了机翼的拱形,使右侧机翼的升力降低。相应的左侧副翼的向下偏转增加了拱形幅度,使左侧机翼的升力增加。因此,左侧机翼的升力增加和右侧机翼的升力降低使飞机向右侧滚。

逆偏转

由于向下偏转的副翼产生更大的升力,它也会产生更大的阻力。这个增加的阻力试图使飞机头朝机翼上升的一侧偏转。这称为逆偏转。如图4-2。

方向舵用来克服逆偏转,在低速,大迎角和大的副翼偏转角时所需要的方向舵控制程度最大。然而,在较低速度时,垂直安定面和方向舵组合变得低效,扩大了和逆偏转有关的控制问题。所有转弯都是通过使用副翼,方向舵和升降舵来协调的。为使飞机达到所需要的倾斜角度必须要对副翼施加压力,而同时要施加方向舵压力来克服产生的逆偏转。转弯期间,必须施加

升降舵压力来增加迎角,因为转弯时所需要的升力比平直飞行时的升力大。转弯越急,升降舵就越需要往后压(即操纵杆往后拉)。

当需要的倾斜角之后稳定后,应该释放副翼和方向舵的压力。这将停止倾斜度的增加,因为副翼和方向舵控制面将会在它们的位置上呈中性的流线型。升降舵压力需要保持恒定以维持恒定高度。

转弯时的向外侧滑和向内侧滑是类似的,除非施加的飞行控制方向相反。副翼和方向舵的控制方向向外侧滑或者高机翼方向。当倾斜角增加时,为维持高度必须要释放升降舵的压力。差动副翼

对于差动副翼,在控制轮的给定运动下,一只副翼的上升距离比另一只副翼的下降距离大。下降的机翼产生的阻力增加。产生较大阻力的下降机翼侧副翼的上偏转角度比上升机翼侧的副翼向下偏转的角度大。虽然逆偏转被减轻了,但是它不会立即消除。如图4-3

弗利兹型副翼

就弗利兹型副翼而言,当控制轮上施加压力后,被升起的副翼在一个偏置的铰链上旋转。这就把副翼的前缘突出到气流中,因此产生了阻力。这有助于使另一侧机翼上放下的副翼产生的阻力得到均衡,从而减轻逆偏转。如图4-4

弗利兹型副翼也形成一个狭槽,因而气流平滑的通过放下的副翼,使得在大迎角时更有效。弗利兹型副翼也可能被设计成功能差动的。类似于差动副翼,弗利兹型副翼不能完全消除逆偏转。无论什么情况下使用了副翼都仍然需要协调运用方向舵。

耦合式副翼和方向舵

耦合副翼和方向舵的意思是这些控制被连接在一起。这是通过使用方向舵-副翼互连弹簧来完成的,它通过副翼偏转的同时自动地偏转方向舵来帮助纠正副翼阻力。例如,当移动操纵杆进行左侧滚时,互连的线缆和弹簧向前拉左侧的脚舵正好足够阻止飞机机头向右偏转。弹簧施加到方向舵上的力可以盈余,如果必须滑移飞机的话。如图4-5

升降舵

升降舵控制沿横轴的俯仰运动。类似小飞机上的副翼,升降舵通过一系列机械连杆机构连接到座舱中的控制杆。控制杆的向后移动使升降舵面的后缘向上偏转。这一般指上升降舵。如图4-6

升降舵是改变飞机俯仰姿态的主要控制手段。

上升降舵位置减弱了升降舵的拱形,产生了一个向下的空气动力,它比平直飞行时的正常尾部向下的力要大。总体效果是导致飞机的尾部向下移动,机头上仰。俯仰运动绕重心发生。

俯仰运动的强度由重心和水平尾翼面的距离和水平尾部翼面上气动力有效性决定。

向前移动控制杆有相反的效果。这种情况下,升降舵的拱形度增加,水平安定面或者安定面上产生的升力更多(尾部向下的力更小)。这就把尾部向上移动,使机头下俯。此外,俯仰运动还是绕飞机重心发生的。

正如前面稳定性讨论中提到的,功率,推力线,和尾翼上水平尾翼面的位置都是影响升降舵控制俯仰有效性的因素。例如,水平尾翼面可能安装在开进垂直安定面的较低位置,在中点,或者在高点的位置,就像T型尾翼的设计。

T型尾翼

在T型尾翼结构中,正常飞行条件下,升降舵在螺旋桨带来的气流和机身以及以及气流大部分影响范围之上。升降舵在这种未受扰动气流中的操作使得大多数飞行状态下的控制运动是一致的。T型尾翼设计在很多轻型飞机和大飞机上变的流行了,特别是那些机身尾部安装引擎的飞机,因为T型尾翼结构使得尾部翼面远离发动机排出的气流。水上飞机和水陆两用飞机经常有T型尾翼结构,目的是让水平尾翼面尽可能远离水面。另一个额外的好处是降低了振动和飞机内部的噪声。

低速飞行时,T型尾翼飞机的升降舵相比常规尾翼飞机的升降舵必须移动一个较大的角度来抬升机头到相同的角度。这是因为常规尾翼的飞机有来自螺旋桨的气流在尾翼上施加向下的力来辅助抬升机头。因为飞机的控制是这样的方式装备的,增加的控制行程要求控制力增加,抬升T型尾翼飞机的机头需要的力比抬升常规尾翼飞机机头需要的力大的多。两种类型尾翼的飞机平衡后的纵向稳定性是一样的,但是飞行员必须知道在起飞、着陆或者失速等低速飞行时,需要的控制力比同规格大小的常规尾翼飞机需要的力大的多。

T型尾翼飞机也需要额外的设计考虑来克服颤动问题。因为水平翼面的重量在垂直尾翼的顶部,产生的力臂在垂直尾翼上有很高载荷,会导致颤动。工程师必须通过增加垂直尾翼的刚度来补偿这个载荷,通常相比常规尾翼设计这带来了重量代价。

当以低速飞行在很高迎角,且重心偏后,T型尾翼飞机会容易发生深度失速。在深度失速状态,水平尾翼上的气流被来自机翼和机身的扰动气流覆盖。这种条件下,升降舵和全动水平尾翼控制会被削弱,使得难以从失速改出。应该注意到偏后的重心是这些意外事件的促进因素,因为重心偏后的常规尾翼飞机也会发现类似的改出问题。如图4-7。

因为高迎角低速和重心偏后的飞行可能危险,很多飞机有补偿这种状态的系统。这些系统从控停(control stop)到升降舵下拉弹簧。升降舵下拉弹簧帮助降低机头来比啊免由于重心偏后引起的失速。失速发生因为适当平衡的飞机其后缘的升降舵位于向下位置,迫使尾部抬升和机头下降。在这种不稳定状态,如果飞机遭遇紊流和速度进一步降低,配平片不能再使升降舵置于机头下降的位置。升降舵然后呈流线型,飞机机头开始向上仰。这就使情况恶化,可能导致一次失速。

升降舵下拉弹簧在升降舵上产生一个机械载荷,如果没有平衡的话会使它朝机头下降的位置移动。升降舵配平片平衡升降舵下拉弹簧,以设定升降舵位于配平平衡位置。当配平片开始失灵时,下拉弹簧驱动升降舵到机头下降位置。飞机机头降低,速度增加,失速就会避免。如图4-8。

在着陆拉平期间,升降舵也必须有足够的力量来保持机头抬起。既然这样,靠前的重心就会导致一个问题。在着陆拉平时,功率通常是降低了,这也使尾翼上的气流减弱。这和降低的着陆速度一起使得升降舵的有效性变差。

根据这些讨论,很明显飞行员必须理解和遵守适当的装载程序,特别要注意重心的位置。有关飞机载荷的更多信息以及重量和平衡在第八章讨论。

全动式水平尾翼

正如第一章提到的,全动式水平尾翼本质上是一片带有相同类型控制系统的水平安定面。因为全动式水平尾翼绕中心铰链点做回转运动,它们对控制输入和空气动力负载相当敏感。反作用伺服调整片(antiservo tab)安装在它的后缘以降低灵敏度。另外,在主翼梁的前面还有配有配重装置。配重可以设计到尾部或安装到全动式尾翼片的前部。如图4-9

当控制杆后拉时,它抬升了全动式水平尾翼面的后缘,使飞机旋转机头抬升。向前推控制杆,使水平尾翼的后缘放低,机头向下俯。如果没有抗随动片的话,飞机会由于飞行员的控制而倾向于舵面偏转过量。

鸭式机翼

术语鸭式机翼是指作为水平安定面的控制面却位于主机翼的前面。这个术语也被用来形容装配了鸭式机翼的飞机。从效果上讲,它是一种类似于常规后尾设计水平控制面的翼型。区别是实际上鸭式机翼产生升力,保持机头抬升,和后尾设计相反,后尾设计会在尾部施加向下的力来防止机头向下偏。如图4-10.

尽管莱特飞机有水平控制面在升力翼前面的鸭式机翼配置,直到最近鸭式配置才开始出现在较新的飞机上。鸭式设计包括两种类型:一种是水平控制面和正常的后尾设计有大约相同的尺寸,另外一种是差不多相同大小的控制面,但是翼型是被称为串联翼配置(tandem wing configuration)的后安装式机翼。理论上认为鸭式机翼更有效率,因为利用水平控制面来帮助抬升飞机的重量对于一定大小的升力来说应该导致阻力更少。

鸭式机翼的主要优势是在失速特性方面。适当设计的鸭式机翼或者串联翼将会在主机翼将要失速前的一个时刻失去进一步抬升机头的能力。这就使飞机具备抗失速能力,结果是可以通过增加马力来阻止飞机的速度。主机翼上的副翼在整个失速改出过程中仍然起作用。其他的鸭式结构也被设计出来,所以鸭翼比主机翼提前失速,能够自动的降低机头,改出飞机到一个安全的飞行速度。而且,副翼在失速中保持有效。

鸭式设计有几个限制。首先,鸭式设计的前部升力面比主翼提前失速是很重要的。如果主翼先失速,来自前面机翼或鸭式机翼的残余升力明显的在重心之前,飞机将不可控制的上仰。其次,当前部升力面先失速,或者鸭翼增加迎角的能力受限时,主翼将永远不能产生最大的升力,会浪费一些性能。第三,对于前部机翼或者鸭翼,主翼上襟翼的使用带来设计问题。当主翼通过伸出襟翼来增加升力时,鸭翼所需要的升力也增加。前向翼或者鸭翼必须足够的大才能适应襟翼的应用,但是又不能产生过大而产生比主翼多的升力。

最后,主翼和前部控制面的关系也不同了。当靠近垂直平面的状态时,来自前部机翼的下洗流会对主翼的升力有负作用。增加的垂直分量增加了设计效率。当两个控制面的大小增加到接近相等时,效率也会增加。

方向舵

方向舵控制飞机沿垂直轴的运动。这个运动称为偏航。和其他主要控制面类似,方向舵也是一个铰链到固定面的可运动面,在这里它是铰链到垂直安定面上。左右方向舵踏板的运动控制方向舵。当方向舵偏转到气流中时,会在相反的方向上施加水平方向的力。如图4-11

通过踩踏左踏板,方向舵向左移动。这就改变了垂直安定面/方向舵周围的气流,产生一个侧向里,把尾部向右移动,使得飞机头向左偏航。方向舵有效性随速度而增加,因此在低速飞行时的大角度偏转和高速飞行时的小角度偏转能够提供需要的反作用力。对于螺旋桨驱动的飞机,流过方向舵的任何滑流都会增加它的有效性。

V型尾翼

V型尾翼使用两个倾斜的尾部翼面来完成和常规升降舵及方向舵结构控制面相同的功能。固定的翼面既作为水平安定面也作为垂直安定面。如图4-12

可动的控制面通常称为“方向升降舵”,它们使用特殊铰链连接,使得控制轮能够同时移动两个控制面。另一方面,方向脚踏的移位能够方向相反的移动控制面,所以就提供了方向控制。当飞行员移动方向舵和升降舵控制时,一个控制混合机构会移动每个控制面适当的大小。V 型尾翼的控制系统比常规尾翼需要的要复杂的多。另外,V尾设计对荷兰轨滚趋势比常规尾翼更加敏感,唯一最小的是阻力的总减少量。

辅助飞行控制

辅助飞行控制系统由可包括襟翼,前缘装置,扰流板和配平(trim)装置。

襟翼

襟翼是几乎所有飞机都使用的最常见高升力装置。对任何设定的迎角,这些安装在机翼后缘的控制面既增加了升力又增加了诱导阻力。襟翼容许在高巡航速度和低着陆速度之间折衷,因为它可以在需要的时候伸出,不需要的时候收起到机翼结构里。有四种常见类型的襟翼:简单襟翼,分裂襟翼,开缝襟翼和福勒(Fowler)襟翼。如图4-13

简单襟翼是四种类型中最简单的。它增加翼面弯度,导致一定迎角时的升力系数明显增加。同时它也大大的增加了阻力,而且把机翼压力中心向后移动,导致机头下俯运动。

分裂襟翼从机翼的下表面分离出来,它比简单襟翼产生的升力有稍微的增加。但是,也由于在机翼后产生了紊乱的气流模式,所以产生的阻力更多。当完全伸出时,简单襟翼和分裂襟翼都产生高阻力,而升力增加不多。

现今飞机上最流行的襟翼是开缝襟翼。这种设计的变体既用于小型飞机也用于大型飞机。开缝襟翼比简单襟翼和分裂襟翼明显的增加升力系数。对于小型飞机,铰链位于襟翼的下表面下面,当襟翼放下时,它在机翼的襟翼槽和襟翼前缘之间形成一个导气槽。

当开缝襟翼放下时,来自下表面的高能量空气被输送到襟翼的上表面。来自导气槽的高能量空气加速了上表面边界层流,延迟了气流分离,提供了更高的升力系数。因此,开缝襟翼产生的最大升力系数(Clmax)比简单襟翼和分裂襟翼要增加很多。然而有很多中类型的开缝襟翼,大飞机通常有双开缝襟翼,甚至是三开缝襟翼。这些襟翼使阻力有最大增加而不会出现襟翼上的气流分离损害产生的升力。

福勒襟翼是开缝襟翼的一种类型。这个襟翼设计不仅改变了机翼的曲面弯度,它也增加了机翼的面积。福勒襟翼不是在铰链上向下旋转,而是沿导轨向后滑动。在伸长的第一部分中,它增加的阻力非常小,但是由于增加面积和弯度而增加了很多升力。随着继续伸长,襟翼向下偏转,在襟翼行程的最后一部分,它增加了阻力而额外增加的升力很少。

前缘装置

高升力装置也可以应用到翼型的前缘。最常规的类型是固定裂缝,可动缝翼,和前缘襟翼。如图4-14

固定裂缝把气流引导到机翼的上表面,延迟了大迎角时的气流分离。裂缝不增加机翼的弯度,但是让机翼获得更高的最大升力系数,因为在机翼到达一个更大的迎角之前失速被延迟了。可动缝翼由前缘拱形片组成,它在导轨上移动。在小迎角时,每一缝翼都被机翼前缘形成的高压保持在平齐的靠着机翼前缘。当迎角增加时,高压区域沿着机翼下表面向后移动,使得缝翼向前移动。然而,某些缝翼是由飞行员控制的,可以在任何迎角下伸出。打开缝翼会让机翼下方的空气流过机翼的上表面,延迟了气流分离。

前缘襟翼类似后缘襟翼,用来既增加最大升力系数有增加机翼的曲面弯度。这种类型的前缘装置经常和后缘襟翼结合使用,可以降低由于后者引起的机头下俯运动(前面说过襟翼的应用会导致升力中心后移,导致机头下俯)。相比后缘襟翼来说,前缘襟翼的一点增量会让升力比阻力增加多的多。随襟翼伸出的面积越大,阻力的增加比升力增加要快的多。

扰流板

在一些飞机上,称为扰流板的高阻力装置被安装在机翼上,以扰乱平滑的气流,降低升力和增加阻力。一些飞机上扰流板用于侧滚控制,一个好处是消除了逆偏转。例如要右转弯,右侧机翼上的扰流板抬起,损失了一些升力,在右边产生了更多的阻力。右边的机翼就下降,飞机就向右倾斜和偏航。两侧机翼同时使用扰流板使飞机下降而速度不增加。扰流板也用于帮助缩短着陆后的地面滑跑距离。通过损失升力,它们把重量转移到轮子上,改善了减速效力。如图4-15

配平系统

尽管飞机可以运行在很大范围的姿态,空速和功率设定,但是被设计成只在这些变量非常有限的组合内才能脱手飞行。因此,配平系统用来接替飞行员对控制面施加恒定压力的需要。配平系统通常有座舱控制和链接到一个或多个主飞行控制面后缘的小铰链装置组成。通过空气动力学地帮助飞行控制面运动和定位到它们所安装的位置,设计的配平系统能够使飞行员工作量降到最低。普通类型的配平系统包括配平调整片,平衡片,反作用伺服调整片,地面可调节调整片,和可调节稳定器。

配平调整片

小飞机上最常安装的是一个安装在升降舵后缘的单体配平调整片。大多数配平调整片是通过一个小的竖直安装的控制轮来手工操控的。然而,一些飞机上也能看到一个配平曲柄。座舱控制包括一个配平位置指示器。把配平控制放置在完全机头下俯(nose-down)位置会移动配平片到它的完全上升位置。随着配平片上升到气流中,水平尾翼面上的气流趋于迫使升降舵的后缘向下。这就导致飞机的尾部向上移动,进而引起一次机头下俯的俯仰变化。如图4-16

如果你设定配平调整片到完全的机头抬起(nose-up)位置,配平片会移动到它的完全下降位置。这种情况下,流经水平尾翼面下的空气冲击配平片,趋于迫使升降舵后缘升起,降低了升降舵的迎角。这就导致飞机的尾部下降运动和机头上仰的俯仰变化。

尽管配平片和升降舵的运动方向相反,配平片的控制对于飞行员来说还是自然的。如果你不得不在操纵杆上施加一个恒定的向后压力,就说明需要一个机头上仰的配平。正常的配平程序是持续配平,直到飞机平衡且飞机头重状态不明显。正常地飞行员首先要确立需要的功率,俯仰姿态,和配置,然后配平飞机来减轻那个飞行条件下可能存在的控制压力。在功率,俯仰姿态或者配置发生变化的任何时候,都必须要重新配平来消除新飞行条件下的控制压力。平衡调整片

在某些飞机上控制力可能过高,为了降低它们,制造商会使用平衡调整片。它们看起来象配平调整片,被铰链在和配平调整片大约相同的地方。两者之间的本质区别是平衡调整片和控制面连杆耦合,因此当主控制面朝任何方向运动,调整片自动的朝相反方向移动。按这种方式,气流冲击调整片,相对平衡的也有部分气压冲击主控制面,这就使飞行员更容易的移动和保持控制面的位置。

如果调整片和固定控制面之间的连杆机构是从座舱可调的话,调整片就成为配平片和平衡调整片的组合了,它可以调节到任何需要的偏转位置。控制面偏转的任何时候,调整片向相反方向运动,减轻了飞行员的负担。

反作用伺服调整片

除了降低全动式水平尾翼的灵敏度,反作用伺服调整片也作为减轻控制压力和保持全动式水平尾翼位于期望位置的配平装置。连杆机构的固定端在调整片反面的触角上,当全动平尾后缘向上移动时,连杆机构迫使调整片的后缘向上。当全动平尾向下移动时,调整片也朝下运动。这和升降舵上的配平调整片不同,它朝控制面的相反方向运动。如图4-17

这个调整片的工作方式和平衡调整片相同,除了它不是以相反方向运动外,它和全动平尾的后缘运动方向是相同的。例如,当全动平尾的后缘向上运动时,连杆机构迫使调整片的后缘向上。当全动平尾向下运动史,调整片也向下运动。

地面可调调整片

很多小飞机在方向舵上有一个不可动的金属配平调整片。这个调整片在地面时朝一个方向或另一个方向弯曲,目的是对方向舵施加配平力。正确的位移量是通过试错步骤来确定的。通常,在正常的巡航飞行期间需要小的调整,知道你对飞机不再左右滑移感到满意位置。如图4-18

可调节水平尾翼

宁可不使用升降舵后缘的可动调整片,一些飞机有一个可调节水平尾翼。就这种配置结构,连杆机构使水平尾翼绕它后面的翼梁转动。这是通过在水平尾翼的前缘安装一个起重螺丝来实现的。如图4-19

在小型飞机上,起重螺丝是用配平轮或者曲柄线缆控制的,在更大的飞机上,它是马达驱动的。可调水平尾翼的配平效果和座舱指示和配平调整片的类似。

由于主飞行控制和辅助飞行控制在不同的飞机上有很大变化,你应该熟悉你自己飞机的系统。较好的信息来源是飞机飞行手册(AFM)和飞行员操作手册(POH)。

heheheh

四旋翼飞行器论文(原理图 程序)..

四旋翼自主飞行器(B题) 摘要 系统以R5F100LE作为四旋翼自主飞行器控制的核心,由电源模块、电机调速控制模块、传感器检测模块、飞行器控制模块等构成。飞行控制模块包括角度传感器、陀螺仪,传感器检测模块包括红外障碍传感器、超声波测距模块、TLS1401-LF模块,瑞萨MCU综合飞行器模块和传感器检测模块的信息,通过控制4个直流无刷电机转速来实现飞行器的欠驱动系统飞行。在动力学模型的基础上,将小型四旋翼飞行器实时控制算法分为两个PID控制回路,即位置控制回路和姿态控制回路。测试结果表明系统可通过各个模块的配合实现对电机的精确控制,具有平均速度快、定位误差小、运行较为稳定等特点。

目录 1 系统方案论证与控制方案的选择............................................................................................. - 2 - 1.1 地面黑线检测传感器............................................................................................................. - 2 - 1.2 电机的选择与论证................................................................................................................. - 2 - 1.3 电机驱动方案的选择与论证................................................................................................. - 3 - 2 四旋翼自主飞行器控制算法设计............................................................................................. - 3 - 2.1 四旋翼飞行器动力学模型..................................................................................................... - 3 - 2.2 PID控制算法结构分析.......................................................................................................... - 3 - 3 硬件电路设计与实现................................................................................................................. - 5 - 3.1飞行控制电路设计.................................................................................................................. - 5 - 3.2 电源模块................................................................................................................................. - 6 - 3.3 电机驱动模块......................................................................................................................... - 6 - 3.4 传感器检测模块..................................................................................................................... - 7 - 4 系统的程序设计......................................................................................................................... - 8 - 5 测试与结果分析......................................................................................................................... - 9 - 5.1 测试设备................................................................................................................................. - 9 - 5.2 测试结果................................................................................................................................. - 9 - 6 总结........................................................................................................................................... - 10 - 附录A 部分程序清单.................................................................................................................. - 11 -

飞行控制系统设计

(此文档为word格式,下载后您可任意编辑修改!) 一、对最简单的角位移系统的评价 1、某低速飞机本身具有较好的短周期阻尼,采用这种简单的控制规律是可行的。它的传递函数为: open p3_6 系统根轨迹为: nem1=-12.5; den1=[1 12.5]; sys1=tf(nem1,den1); nem2=[-1 -3.1]; den2=[1 2.8 3.24 0]; sys2=tf(nem2,den2); sys=series(sys1,sys2); rlocus(sys) 随着k的增大,该系统的一对闭环复极点的震荡阻尼逐渐减小。但由于飞机本身的阻尼较大,所以当k增大致1.34时,系统的震荡阻尼比仍有0.6。k增大到6.2时系统才开始不稳定。 2、现代高速飞机的短周期运动自然阻尼不足,若仍采用上述单回路控制系统则不能胜任自动控制飞机的要求。 open p3_10 系统根轨迹为: nem1=-10; den1=[1 10]; sys1=tf(nem1,den1);

nem2=[-4.3 -4.3*0.33]; den2=[1 0.61 3.3 0]; sys2=tf(nem2,den2); sys=series(sys1,sys2); rlocus(sys) 随着k增大,系统阻尼迅速下降。当k=1.06时,处于临界稳定。所以无法选择合适的k值以满足系统动静态性能。为了使系统在选取较大的k值基础上仍有良好的动态阻尼,引入俯仰角速度反馈。 二、具有俯仰角速率反馈的角位移自动驾驶仪参数设计open p3_16 1、系统内回路根轨迹为: nem1=-10; den1=[1 10]; sys1=tf(nem1,den1); nem2=[-4.3 -4.3*0.33]; den2=[1 0.61 3.3]; sys2=tf(nem2,den2); sys=series(sys1,sys2); rlocus(sys) 按物理概念似乎速率陀螺的作用越强,阻尼效果越显著。但根轨迹分析告诉我们,只有在一定范围内这种概念才是正确的,否则会得到相反的效果。这种现象是由舵回路的惯性造成的。舵回路具有不同时间常数时的内回路根轨迹图: Tδ=0 sys1=-1; nem2=[-4.3 -4.3*0.33]; den2=[1 0.61 3.3]; sys2=tf(nem2,den2); sys=series(sys1,sys2); rlocus(sys) Tδ=0.1

飞行控制系统

飞行控制系统 为了使无人机飞行控制系统具有强大的数据处理能力、较低的功耗、较强的灵活性和更高的集成度,提出了一种以SmartFusion为核心的无人机飞行控制系统解决方案。为满足飞控系统实时性和稳定性的要求,系统采用了μC/OS-Ⅱ实时操作系统。与传统的无人机飞行控制系统相比,在具有很强的数据处理能力的同时拥有较小的体积和较低的功耗。多次飞行证明,各个模块设计合理,整个系统运行稳定,可以用作下一代无人机高性能应用平台。 关键词:无人机;飞行控制系统;SmartFusion芯片;μC/OS-Ⅱ 0 引言 飞行控制系统是无人机的重要组成部分,是飞行控制算法的运行平台,它的性能好坏直接关系着无人机能否安全可靠的飞行。随着航空技术的发展,无人机飞行控制系统正向着多功能、高精度、小型化、可复用的方向发展。高精度要求无人机控制系统的精度高,稳定性好,能够适应复杂的外界环境,因此控制算法比较复杂,计算速度快,精度高;小型化则对控制系统的重量和体积提出了更高的要求,要求控制系统的性能越高越好,体积越小越好。此外,无人机飞行控制系统还要具有实时、可靠、低成本和低功耗的特点。基于以上考虑,本文从实际工程应用出发,设计了一种基于SmartFusion的无人机飞行控制系统。 1 飞控系统总体设计

飞行控制系统在无人机上的功能主要有两个:一是飞行控制,即无人机在空中保持飞机姿态与航迹的稳定,以及按地面无线电遥控指令或者预先设定好的高度、航线、航向、姿态角等改变飞机姿态与航迹,保证飞机的稳定飞行,这就是通常所谓的自动驾驶;二是飞行管理,即完成飞行状态参数采集、导航计算、遥测数据传送、故障诊断处理、应急情况处理、任务设备的控制与管理等工作。 飞行控制系统主要完成3个功能任务,其层次构成为三层:最底层的任务是提高无人机运动和突风减缓的固有阻尼——三个轴方向的阻尼器功能;第2层的任务是稳定无人机的姿态角——基本驾驶仪的功能(主要进行角运动控制);第3层的任务是控制飞行高度、航迹和飞行速度,实现较高级自动驾驶功能。飞行控制系统原理框图见图1。 由上述分析易知,飞行控制系统主要由飞行控制器、传感器(或敏感元件)、舵机3部分组成。无人机飞行控制系统的基本架构如图2所示。

四旋翼飞行器智能控制(A题)

2016年吉林省大学生电子设计竞赛 参赛注意事项 (1)2016年8月31日8:00竞赛正式开始。 (2)参赛队认真填写《登记表》内容,填写好的《登记表》交赛场巡视员暂时保存。 (3)参赛者必须是有正式学籍的全日制在校本、专科学生,应出示能够证明参赛者学生身份的有效证件(如学生证)随时备查。 (4)每队严格限制3人,开赛后不得中途更换队员。 (5)参赛队必须在学校指定的竞赛场地内进行独立设计和制作,不得以任何方式与他人交流,包括教师在内的非参赛队员必须迴避,对违纪参赛队取消评审资格。 (6)2016年9月3日20:00竞赛结束,上交设计报告、制作实物及《登记表》,由专人封存。 四旋翼飞行器智能控制(A) 一、任务 设计并制作一个四旋翼飞行器控制系统,能够按照相应设定要求,实现四旋翼飞行器的自主飞行(为安全起见,要在飞行器底部系上一安全绳)。 二、要求 1.基本要求 (1)自主定点悬停 在地面上设置一个标志点,飞行器在20cm高度上自主定点悬停时间不低于20秒;悬停期间,飞行器中心点横向偏离标志点位移不超过10cm(即要求飞行器上的垂直激光器光点落在以地面标志点为圆心,半径为10cm的圆内),示意图如图1所示。 图1 自主定点悬停示意图

(2)自主定点、定高悬停 如图2所示,第一步从地面标志点飞到离地高20cm 处,稳定悬停10s ;第二步从20cm 处自主提升到离地高60cm 处,稳定悬停10s ;第三步从离地60cm 处自主下降到离地高40cm 处,稳定悬停10s 。悬停期间,飞行器横向偏离地面标志点位移不超过10cm 。高度偏差在5cm 以内。 图2 自主定点、定高悬停示意图 (3)跟踪飞行 如图3所示,由地面A 点起飞,跟随地面标志(标志可移动)或者自主飞至距离A 点2m 处的任意地面B 点降落,降落点(飞行器中心点)距离B 点偏差小于15cm ,完成时间小于30s 。 15cm 图3 跟踪飞行示意图 2.发挥部分 (1)在飞行器的某个单臂上悬挂重物(重物质量不小于飞行器整体质量的10%),悬挂点位置在飞行器中心到最外端的1/2以外的任意位置。完成基本要求(1)的内容; (2)在飞行器的某个单臂上悬挂重物(重物质量不小于飞行器整体质量的10%),悬挂点位置在飞行器中心到最外端的1/2以外的任意位置。完成基本要求(2)的内容;

四旋翼飞行器实验报告

实验报告 课程名称:《机械原理课内实验》 学生姓名:徐学腾 学生学号:1416010122 所在学院:海洋信息工程学院 专业:机械设计制造及其自动化 报导教师:宫文峰 2016年6 月26 日

实验一四旋翼飞行器实验 一、实验目的 1.通过对四旋翼无人机结构的分析,了解四旋翼无人机的基本结构、工作的原理和传动控制系统; 2. 练习采用手机控制终端来控制无人机飞行,并了解无人机飞行大赛的相关内容,及程序开发变为智能飞行无人机。 二、实验设备和工具 1. Parrot公司AR.Drone 2.0四旋翼飞行器一架; 2. 苹果手机一部; 3. 蓝牙数据传输设备一套。 4. 自备铅笔、橡皮、草稿纸。 三、实验内容 1、了解四旋翼无人机的基本结构; 2、了解四旋翼无人机的传动控制路线; 3、掌握四旋翼无人机的飞行控制的基本操作; 4、了解四旋翼无人机翻转动作的机理; 5、能根据指令控制无人机完成特定操作。 四、实验步骤 1、学生自行用IPHONE手机下载并安装AR.FreeFlight四旋翼飞行器控制软件。 2、检查飞行器结构是否完好无损; 3、安装电沲并装好安全罩; 4、连接WIFI,打开手机AR.FreeFlight软件,进入控制界面; 5、软件启动,设备连通,即可飞行。 6、启动和停止由TAKE OFF 控制。 五、注意事项 1.飞行器在同一时间只能由一部手机终端进行控制; 2. 飞行之前,要检查螺旋浆处是否有障碍物干涉; 3. 飞行之后禁止用手去接飞行器,以免螺旋浆损伤手部; 4. 电量不足时,不可强制启动飞行; 5. 翻转特技飞行时,要注意飞行器距地面高度大于4米以上; 6. 飞行器不得触水; 7. 飞行器最大续航时间10分钟。

飞行器姿态控制法综述

飞行器姿态控制方法综述 一.引言 经过一个世纪的发展,各种飞行器如雨后春笋般出现,从飞机、导弹到火箭、卫星,从宇宙飞船、航天飞机、空间站到月球探测器、火星探测器。这些飞行器能在空中按预定的轨迹运动总离不开它的姿态控制系统,飞行器在空间的运动是十分复杂的。为使问题简单化,总是将一飞行器的空间运动分解为铅锤平面的纵向运动和水平面内的侧向运动,将飞行器在空间的角运动分解成俯仰、偏航和滚动三个角运动。由于角运.动使飞行器的姿态发生变化,所以对角运动的控制就是对飞行器姿态的控制。对于飞行器姿态的控制,不同的飞行器需要不同的策略,本文主要就飞行器姿态控制方法的应用与发展作一一论述。 二.姿态控制的数学模型 要控制飞行器的姿态,就是要控制使飞行器三个姿态角发生变化的力矩大小。飞行器的姿态模型可以认为是一类不确定MIMO 仿射非线性系统,如式(1)所示: ()//()//()//(cos sin )/cos cos sin sin tan cos tan x y z y x x x x x z x x x y y y x x y x y z z z x x x z x y z I I I M I I I I M I I I I M I ωωωωωωωωωψ ωθωθ??ωθωθ θωθ?ωωθ?=-+??=-+??=-+??=-??=+?=+-?? (1) 式中,x 、y 、z 下标表示空间飞行器的三个主轴方向;I 表示相对于飞行器质心的惯量矩,设飞行器是主轴对称的,则惯量积可以忽略;ω表示飞行器相对于惯性空间的角速度;M 表示控制力矩;,,ψ?θ分别是飞行器的欧拉角。控制了M 的大小,就可以控制飞行器按我们期望的轨迹运动。M 由飞行器上的执行机构产生,常见的有空气舵、推力矢量发动机、反作用飞轮、喷气执行机构或由其它环境力执行机构。 三.飞行器姿态控制方法 3.1空气动力控制 根据运动的相对性原理和气体流动时的基本定律,当飞行器在大气中以一定

四轴飞行器姿态控制算法

姿态解算 姿态解算(attitude algorithm),是指把陀螺仪,加速度计, 罗盘等的数据融合在一起,得出飞行器的空中姿态,飞行器从陀螺仪器的三轴角速度通过四元数法得到俯仰,航偏,滚转角,这是快速解算,结合三轴地磁和三周加速度得到漂移补偿和深度解算。 姿态的数学模型坐标系 姿态解算需要解决的是四轴飞行器和地球的相对姿态问题。地理坐标系是固定不变的,正北,正东,正上构成了坐标系的X,Y,Z轴用坐标系R表示,飞行器上固定一个坐标系用r表示,那么我们就可以适用欧拉角,四元数等来描述r和R的角位置关系。 姿态的数学表示 姿态有多种数学表示方式,常见的是四元数,欧拉角,矩阵和轴角。在四轴飞行器中使用到了四元数和欧拉角,姿态解算的核心在于旋转。姿态解算中使用四元数来保存飞行器的姿态,包括旋转和方位。在获得四元数之后,会将其转化为欧拉角,然后输入到姿态控制算法中。姿态控制

算法的输入参数必须要是欧拉角。AD值是指MPU6050的陀螺仪和加速度值,3个维度的陀螺仪值和3个维度的加速度值,每个值为16位精度。AD值必须先转化为四元数,然后通过四元数转化为欧拉角。在四轴上控制流程如下图: 下面是用四元数表示飞行姿态的数学公式,从MPU6050中采集的数据经过下面的公式计算就可以转换成欧拉角,传给姿态PID控制器中进行姿态控制.

PID控制算法 先简单说明下四轴飞行器是如何飞行的,四轴飞行器的螺旋桨与空气发生相对运动,产生了向上的升力,当升力大于四轴的重力时四轴就可以起飞了。四轴飞行器飞行过程中如何保持水平:我们先假设一种理想状况:四个电机的转速是完全相同的是不是我们控制四轴飞行器的四个电机保持同样的转速,当转速超过一个临界点时(升力刚好抵消重力)四轴就可以平稳的飞起来了呢?答案是否定的,由于四个电机转向相同,四轴会发生旋转。我们控制四轴电机1和电机3同向,电机2电机4反向,刚好抵消反扭矩,巧妙的实现了平衡, 但是实际上由于电机和螺旋

自动飞行控制系统电子讲稿第一部分

学习情景1 课程导论 1.飞行控制系统发展概述 自动飞行控制系统已有100多年的研制历史,早在有人驾驶飞机出现之前,自动飞行装置即已出现。 1.1方向稳定器 1873年,法国雷纳德(C.C.Renard)无人多翼滑翔机的方向稳定器。 1.2 电动陀螺稳定装置-姿态稳定 1914年,美国的爱莫尔·斯派雷(Eimer Sperry)研制成功第一台可以保持飞机稳定平飞的电动陀螺稳定装置,该装置利用陀螺的稳定性和进动性,建立一个测量基准,用来测量飞机的姿态,它和飞机的控制装置连在一起,一旦飞机偏离指定的状态,这个机构就通过飞机的控制装置操纵飞机的舵面偏转使飞机恢复到原来的状态。 1.3 自动驾驶仪 20世纪30年代出现了可以控制和保持飞机高度、速度和航迹的自动驾驶仪。 第二次世界大战促使自动驾驶仪等设备得到进一步发展,由过去气动-液压到全电动,由三个陀螺分别控制三个通道改用一个 或两个陀螺来操纵飞机,并可作机动、爬高及自动保持高度等。 二次大战期间,美国和原苏联相继研制出功能较完善的电气式自动驾驶仪C-1和其仿制品A∏-5; 德国在二战后期研制成功飞航式导弹V-1和弹道式导弹V-2,

更进一步促进了飞行自动控制装置的研制和发展。 20世纪50年代后,和导航系统、仪表着陆系统相联,自动驾驶装置实现了长距离自动飞行和自动着陆。 1.4 自动飞行控制系统 1947年成功突破音障后,飞机的飞行包线(飞行速度和高度的变化范围)扩大,越来越复杂的飞行任务对飞机性能的要求也越来越高,仅靠气动布局和发动机设计所获得的飞机性能已经很难满足复杂飞行任务的要求。因此,借助于自动控制技术来改善飞机稳定性的飞行自动控制装置(如增稳系统)相继问世,在此基础上,自动驾驶仪的功能得到进一步的扩展,发展成为自动飞行控制系统(AFCS)。 20世纪60年代,产生了随控布局飞行器(congtrol configured vehicle--CCV)的设计思想。 20世纪60年代前的以模拟电路或模拟计算机为主要计算装置的飞行控制系统,逐渐发展成为现在已普遍应用的数字式飞行控制系统,这也为新技术应用和更复杂更完善系统的综合提供了实现的可能性。例如: 主动控制技术(active control technology—ACT); 余度技术 容错控制技术 20世纪80年代得到迅速发展的火/推/飞综合控制系统等。 20世纪70年代中期,由于计算机的应用使自动驾驶仪和飞机的指引系统组成一个综合系统,使飞机的各种传感器数据、指

QFT飞行控制系统设计

QFT 飞行控制系统设计 4.1 引言 在飞控系统中,被控对象(如直升机等)往往是非常复杂的多输入多输出系统,具体表现为非线性、时变、高度耦合、高阶、不稳定、模型不确定性等。因此,这对设计一个覆盖整个飞行包线的控制器带来相当大的难度。目前,国内外设计全包线控制器一般有以下几种方法: 增益调度(gain scheduling )、非线性动态逆(Non-Linear Dynamic Inversion )、定量反馈理论(QFT )、自适应控制(AC )等。其中,国内外大多数采用增益调度方法。 本章将介绍一种工程上较为容易实现的强鲁棒控制理论—定量反馈理论(QFT )。重点介绍了MIMO 系统设计QFT 控制器的原理和一般步骤。 4.2 MIMO 系统的QFT 控制器设计概述 定量反馈理论(QFT )是以色列人Horowitz 教授提出的一种强鲁棒控制理论,它针对当对象具有不确定性和存在干扰的情况下,如何利用反馈信息设计出满足一定要求的控制系统这一问题而提出的。QFT 的最初发展首先研究具有不确定性的线性时不变单输入单输出系统(LTI/SISO ),如图4.1所示。其中,P 为不确定控制对象,r 为指令输入,y 为系统输出,1d 和2d 分别表示输入干扰和输出干扰,G 和F 为要设计的控制器和前置滤波器。随着QFT 的理论研究的深入,进一步推广到多输入多输出、非最小相位/不稳定、时变及非线性等系统。LTI/SISO 系统是QFT 研究的基础,而其他的MIMO 系统等都可以通过数学变化转化为等效的LTI/SISO 系统,再进行设计。 y 图4.1 SISO 系统的QFT 控制框图 MIMO 系统QFT 研究的重点就是如何有效地将原控制系统转化成一组等效的MISO 系统,从而可以运用相对成熟的SISO 系统QFT 设计分析,这也是MIMO 系统QFT 设计相比较与SISO 系统设计的最大特点。图4.2给出了两输入两输出系统的等效过程。可以看出原系统是22?系统,等效后变成了4个结构类似的21?子系统。每个系统都有两个输入端,一个输出端。两个输入分别是指令输入和由各子系统之间耦合作用引起的输入,即“干扰”输入。 然后,就可以对每个子系统采用SISO 系统的QFT 设计方法设计对应的控制器。最后,将各子系统的设计结果综合起来就是原系统的设计结果。

飞行操纵系统

飞行操纵系统 摘要:飞行操纵系统是保障民航飞机在天空安全可靠飞行的重要系统。它是飞机上所有用来传递操纵指令,驱动舵面运动的所有部件和装置的总和,用于控制飞机的飞行姿态、气动外形和乘坐品质。波音737NG作为典型的液压助力机械式主操作系统,对其研究具有重要意义。因此,本文将结合波音737NG对飞机的主操纵系统和辅助操纵系统做主要介绍。 正文: 飞行操纵系统分类很多,根据操纵信号的来源不同可分为人工飞行操纵系统和自动飞行操纵系统。自动飞行操纵系统操纵信号由系统本身产生,而人工飞行操纵系统操纵信号由驾驶员产生。在人工操纵系统中,通常又分为主操纵系统和辅助操纵系统。主操纵系统指驱动副翼、升降舵和方向舵,使飞机产生绕纵轴、横轴、立轴转动的系统。其他驱动扰流板、前缘装置、后缘襟翼和水平安定面配平等辅助操纵面的操纵系统均称为辅助操纵系统。 一、飞行主操作系统 1、副翼 飞机副翼通常铰接在机翼外侧后缘,在大型飞机的组合横向操纵系统中,通常有4块副翼----2块内副翼和2块外副翼。低速飞行时,内外副翼可以共同进行横向操作;高速飞行时,仅有内副翼进行横向操作。 副翼系统操纵飞机绕纵轴进行滚转运动,运动期间,一侧机翼的

副翼上偏,另一侧机翼的副翼下偏,两侧机翼产生升力差,飞机完成滚转。 图一典型副翼操纵系统原理 如图所示为737NG飞机的副翼操纵系统,采用并列驾驶盘式操纵机构,两驾驶盘通过互联鼓轮柔性相连。当转动任意驾驶盘产生操纵信号都可以按如下路径向后传递:驾驶盘、左侧副翼鼓轮、钢索、副翼输入扇形轮、副翼输入扭力管、输入摇臂和输入杆、液压助力器、输出摇臂和输出扭力管、输出鼓轮、钢索、扇形轮、传动杆、副翼。其中关键部件为驾驶盘柔性互联机构、液压助力器与副翼感觉定中机构。驾驶盘柔性互联机构用于防止驾驶盘卡阻。正常情况下,操纵一侧驾驶盘,另一侧随动。当右侧驾驶盘卡阻,左侧机长可以操纵左驾驶盘通过左钢索系统操纵副翼;当左驾驶盘卡阻时,副驾驶可以使用右驾驶盘操纵扰流板进行应急横滚操作。现代民航客机舵面的气动载荷较大,故采用液压助力器进行助力操作。液压助力器输入是一个机

西工大飞行控制系统总复习

总复习 第一章 飞行动力学 一、概念: 1、体轴系纵轴ox 在飞机对称平面内;速度轴系纵轴a ox 不一定在飞机对称平面内;稳定轴系纵轴ox 在飞机对称平面内,与体轴系纵轴ox 相差一个配平迎角0α。 2、俯仰角θ的测量轴为地轴系横轴g oy ;滚转角φ(倾斜角)的测量轴为体轴系纵轴ox ;偏航角ψ的测量轴为地轴系铅锤轴g oz 。 3、迎角α:空速向量在飞机对称平面内投影与机体纵轴ox 夹角。 以的投影在ox 轴之下为正。 4、β(侧滑角):空速向量v 与飞机对称平面的夹角。以v 处于对称面右为正。 5、坐标系间的关系 机体轴系b S 与地轴系g S 之间的关系描述为飞机姿态角(ψφθ、、); 速度轴系a S 与机体轴系b S 之间的关系描述为气流角(βα、); 速度轴系a S 与地轴系g S 之间的关系描述为航迹角(χμγ、、)。 6、舵偏角符号 升降舵偏角e δ:平尾后缘下偏为正0>e δ,产生低头力矩。0a δ,产生左滚转力矩 0r δ,产生左偏航力矩0

四旋翼飞行器建模与仿真Matlab

四轴飞行器的建模与仿真 摘要 四旋翼飞行器是一种能够垂直起降的多旋翼飞行器,它非常适合近地侦察、监视的任务,具有广泛的军事和民事应用前景。本文根据对四旋翼飞行器的机架结构和动力学特性做详尽的分析和研究,在此基础上建立四旋翼飞行器的动力学模型。四旋翼飞行器有各种的运行状态,比如:爬升、下降、悬停、滚转运动、俯仰运动、偏航运动等。本文采用动力学模型来描述四旋翼飞行器的飞行姿态。在上述研究和分析的基础上,进行飞行器的建模。动力学建模是通过对飞行器的飞行原理和各种运动状态下的受力关系以及参考牛顿-欧拉模型建立的仿真模型,模型建立后在Matlab/simulink软件中进行仿真。 关键字:四旋翼飞行器,动力学模型,Matlab/simulink Modeling and Simulating for a quad-rotor aircraft ABSTRACT The quad-rotor is a VTOL multi-rotor aircraft. It is very fit for the kind of reconnaissance mission and monitoring task of near-Earth, so it can be used in a wide range of military and civilian applications. In the dissertation, the detailed analysis and research on the rack structure and dynamic characteristics of the laboratory four-rotor aircraft is showed in the dissertation. The dynamic model of the four-rotor aircraft areestablished. It also studies on the force in the four-rotor aircraft flight principles and course of the campaign to make the research and analysis. The four-rotor aircraft has many operating status, such as climbing, downing, hovering and rolling movement, pitching movement and yawing movement. The dynamic model is used to describe the four-rotor aircraft in flight in the dissertation. On the basis of the above analysis, modeling of the aircraft can be made. Dynamics modeling is to build models under the principles of flight of the

1 飞行控制系统的硬件设计

1 飞行控制系统的硬件设计 本文设计的飞行控制系统在硬件方面主要分为控制器、传感器、电源、执行机构和遥控接收等模块, 1.2 传感器 1.2.1 陀螺仪 陀螺仪能够对检测指示器中的数据加以显示,是自动控制系统当中的一个非常重要的组成。应用的陀螺仪是MPU6050三轴形式的陀螺仪,具有16位的模拟、数字转换器,使输出模拟量实现向可输出数字量的转化。 1.2.2 加速度传感器 在多旋翼的飞行控制系统当中,加速传感器应该说是一个非常重要的元器件。这不仅是由于加速度传感器具有动态载体的特性校正功能,并且它能够针对加速度实施积分,继而得出载体速度以及位置之类的基本信息。我们所选取的ADI公司研发的ADXL345传感器,同时兼具SPI以及I2C的数字输出功能,其分辨率较高,同时体积也比较小。 1.2.3 GPS模块 当无人机在天空飞行的时候定位系统是十分重要的,需要对无人机所呈现的姿态加以实时的测量,可以说在无人机系统当中,GPS模块占据着一定的主导地位。我们选取了U-BLOX公司所研发和生产的CJMCU-6M当作GPS的接收机,该传感器具有接口较为方便,而且定位的速度也比较快,不用长时间等待的特征。其利用串口输出的形式RS-232数据传输,继而结合协议而解算无人机所处的坐标、高度和时间之类的信息。 1.3 电源 电源模块主要的功能是为飞控系统当中的其他模块供给电量,从而确保飞行顺利。电源模块当中主要包含一个电源接口,以及一个稳压器,稳压器所具备的功能是对电压加以转换,避免因为高电压而导致电路板和一些其他元器件的损坏。本文中选择系统稳压器的标准为5V 输入,主控板的供电输出是3.3V,而最大的输出电流是500mA。 1.4 执行机构驱动 多旋翼无人机的飞行系统想要达成自主悬停功能,这就需要飞行器必须要在飞行不稳的情况之下能够迅速地改变成为平稳的状态,也就是在这种情况之下,执行机构要在非常短的时间之内做出相应的反应,让无人机所呈现的速度能够高速地提升或降低。本文所设计的系统当中采用直流无刷电机当作执行机构,继而配合无刷电调来应用,这个电机具备周期较长,而且效率较高等特征。电机是一种十分关键的执行机构,是对飞行器的姿态加以控制的动力。而我们所选择的直流无刷电机是想让四旋翼形式的飞行器形成多种飞行的姿态,工作的主要原理为对空气动力学的利用,从而使旋翼形成多种转速,继而达到想要的效果,完成各种飞行姿态。直流无刷的电机所接收到的控制信号是PWM波所发出的。而结合DSP所发出的具

飞行操纵系统

飞行操纵系统

飞行操纵系统 ——飞机系统结课论文 指导老师:闫凤良 班级:080441D 学号:080441436 姓名:朱仕广 2010.6.25

摘要:飞行操纵系统是飞机在天空中自由飞行必不可少的系统。飞机飞行操纵系统是飞机上用来传递操纵指令,驱动舵面运动的所有部件和装置的总称,用于飞机飞行姿态、速度、轨迹的控制。此文对飞机的飞行操纵系统、空客A320的操纵系统和相关案例进行简单介绍。 关键词:飞行操纵系统空客A320的操纵系统相关案例 正文: 飞机要想在天空中自由自在的翱翔,飞行操纵系统是必不可少的。飞行操纵系统让飞机在空中能按照人的意愿自由改变飞行状态,从而飞抵人们想要飞去的地方。下面,我们简单介绍飞机的飞行操纵系统、空客A320的操纵系统和相关案例。 一、飞行操纵系统 定义:飞机飞行操纵系统是飞机上用来传递操纵指令,驱动舵面运动的所有部件和装置的总称,用于飞机飞行姿态、速度、轨迹的控制。

1.飞行操纵系统分类 按照操纵指令的来源分为:人工飞行操纵系统和自动飞行控制系统。 (1)人工飞行操纵系统:其操纵信号由驾驶员发出。包括主飞行操纵系统和辅助飞行操纵系统。 主飞行操纵系统:操纵升降舵、方向舵、副翼、三个主舵面,实现飞机的俯仰、偏航和滚转操纵;辅助飞行操纵系统:操纵襟翼、副翼、扰流板、调整片等增升、增阻及水平安定面配平、方向舵配平等系统。 (2)自动飞行控制系统:其操纵信号由系统本身发出。 对飞机实施自动和半自动控制,协助驾驶员工作或自动控制飞机对扰动的响应。 包括:自动驾驶、飞行指引和自动油门。 按照指令的执行方式来分: (1)机械式操纵系统 (2)电传操纵系统 2.基本飞行操纵原理 (1)飞机的纵向操纵是通过操纵驾驶杆或驾驶

典型飞行控制系统

三、典型飞行控制系统 1、已知某飞机的传递函数是: ) 69.19.0()4.0(5.1) () (2 +++-= ??Z s s s s s s δ?,其俯仰姿态角控制系统的 控制规律为:? Z Z Z ?K +?-?K =?+T ? ? ??δ? ? δ)()1(g s 。 (1)由控制规律画出相应的系统结构图; (2)要控制该飞机舵回路的时间常数应作何限制? (3)若飞机受到常值力矩92 .0=?M Z γ 公斤*米,已知 Z Z M δ=-1.15公斤*米/度,若要求 稳定后其静差 s θ?<0 1 ,应对Z K ? 作何限制; (4)若要保证该系统的动态性能,应如何选取Z ? K ? 的值。 (5)分析在垂直向上风干扰下,系统的动态相应过程以及稳态情况。 2、已知某飞机的传递函数是: ) 47.15.1()59.0(2.1) ()(2 +++-= ??Z s s s s s s δ?,其俯仰姿态角控制系统的控 制规律为:? Z Z Z ?K +?-?K =?+? ???δ? ? )()11.0(g s 。 (1)由控制规律画出相应的系统结构图; (2)求出内回路闭环传递函数,并绘制随参数? Z K ? 变化的根轨迹图,并求取 值时的使? Z K =? ξ87.0以及此时三个内回路闭环极点值; (3)求出外回路闭环传递函数,并绘制随参数?Z K 变化的根轨迹图,并求取 值时的使?ξZ K =8.0以及此时三个外回路闭环极点值; (4)采用根轨迹方法分析舵回路时间常数对飞行控制系统工作性能的影响; (5)分析参数? Z K ? 与?Z K 之间的关系。 ● 自动驾驶仪有哪几个工作回路? (1)同步回路 (2)舵回路 (3)稳定回路 (4)控制回路 ● 俯仰阻尼器的作用是什么? 用来改善飞机的纵向短周期运动的阻尼特性 ● 滚转阻尼器的作用是什么? 用来改善飞机—阻尼器系统的滚转特性 ● 什么是控制增稳系统?其作用是什么? 不牺牲操纵性来提高飞机的阻尼比和固有频率,又可以解决非线性操纵指令问题 ● 飞行高度控制系统需要 最基本的信号? 需要直接测量飞行高度,使用高度差传感器,根据高度差的信息来直接控制飞机的飞行姿态,从而改变航迹请教,以实现对飞行高度的闭环稳定和控制

飞行器姿态控制法综述

飞行器姿态控制方法综述 一.引言 经过一个世纪的发展,各种飞行器如雨后春笋般出现,从飞机、导弹到火箭、卫星,从宇宙飞船、航天飞机、空间站到月球探测器、火星探测器。这些飞行器能在空中按预定的轨迹运动总离不开它的姿态控制系统,飞行器在空间的运动是十分复杂的。为使问题简单化,总是将一飞行器的空间运动分解为铅锤平面的纵向运动和水平面内的侧向运动,将飞行器在空间的角运动分解成俯仰、偏航和滚动三个角运动。由于角运.动使飞行器的姿态发生变化,所以对角运动的控制就是对飞行器姿态的控制。对于飞行器姿态的控制,不同的飞行器需要不同的策略,本文主要就飞行器姿态控制方法的应用与发展作一一论述。 二.姿态控制的数学模型 要控制飞行器的姿态,就是要控制使飞行器三个姿态角发生变化的力矩大小。飞行器的姿态模型可以认为是一类不确定MIMO 仿射非线性系统,如式(1)所示: ()//()//()//(cos sin )/cos cos sin sin tan cos tan x y z y x x x x x z x x x y y y x x y x y z z z x x x z x y z I I I M I I I I M I I I I M I ωωωωωωωωωψωθωθ??ωθωθθωθ?ωωθ? =-+??=-+??=-+??=-??=+?=+-??&&&&&& (1) 式中,x 、y 、z 下标表示空间飞行器的三个主轴方向;I 表示相对于飞行器质心的惯量矩,设飞行器是主轴对称的,则惯量积可以忽略;ω表示飞行器相对于惯性空间的角速度;M 表示控制力矩;,,ψ?θ分别是飞行器的欧拉角。控制了M 的大小,就可以控制飞行器按我们期望的轨迹运动。M 由飞行器上的执行机构产生,常见的有空气舵、推力矢量发动机、反作用飞轮、喷气执行机构或由其它环境力执行机构。 三.飞行器姿态控制方法 3.1空气动力控制 根据运动的相对性原理和气体流动时的基本定律,当飞行器在大气中以一定

小型简易四旋翼飞行器的设计与实现

检索报告 小型简易四旋翼飞行器设计与实现 系所:电子工程系 专业:集成电路设计与制造 班级:集成12003班 姓名:段继蒙 学号:12160500309 检索日期: 2015年 5月 31日

前言: 四旋翼式飞行器因其起飞和降落所需空间较少,在障碍物密集环境下的操控性较高,以及飞行器姿态保持能力较强的优点,在民用和军事领域都有广泛的应用前景。其中,小型四旋翼飞行器的研究近年来日趋成熟,并为自动控制,先进传感技术以及计算机科学等诸多技术领域的融合研究提供了一个平台。在空中机器人智能控制,三维路径规划,多飞行器空中交通管理和碰撞规避等方面,小型四旋翼飞行器控制系统都具有很高的研究价值。本论文对小型四旋翼飞行器的多种飞行控制算法展开研究,并通过大量的计算机仿真加以验证。论文的主要工作和贡献如下: 1)小型四旋翼飞行器动力学建模:将四旋翼飞行器看作刚体,选取影响飞行器运动的关键受力和力矩,之后根据牛顿定律和欧拉方程,推导出关于三个平动位移量和三个转动位移量的动力学方程。 2)基于经典PID算法的四旋翼飞行器系统的控制:设计了一个基于经典PID算法的控制系统。在该系统中,将整个控制结构分为内环控制(姿态控制)和外环控制(飞行位置控制)两个闭合环路,分别进行设计。该控制系统可使飞行器准确飞抵目标位置,并在该位置保持盘旋状态下的稳定。 3)基于Backstepping方法的四旋翼飞行器系统的控制:根据四旋翼飞行器系统的状态方程,运用Backstepping方法推导出使系统稳定的控制量表达式。仿真结果显示,该控制器与基于经典PID算法的控制器相比,在系统响应超调,上升时间和稳定时间三个方面均有明显改善。 4)基于Backstepping方法的四旋翼飞行器系统的自适应控制:在之前设计的基于Backstepping方法的控制器的基础上,设计了分别针对未知质量和外界干扰的估计器,从而使新设计的控制器具有自适应性。仿真结果显示,该控制器在飞行器质量阶梯式递减和存在一定形式的外界小扰动的情况下,仍然能保持系统的稳定,从而验证了该控制系统的鲁棒性。纵观全文,在所建立的小型四旋翼飞行器动力学模型的基础上,本文在控制系统的设计过程中遵循了由简单到复杂的方法论,在前一步设计的控制系统基础上引入新的控制算法和结构,使飞行器最终在基于Backstepping方法的自适应控制系统的控制下,表现出良好的稳定性和鲁棒性,从而为四旋翼飞行器的实际工程应用提供了重要的理论基础。

飞行管理系统

第16章飞行管理系统 16.1飞行管理系统概述 随着飞机性能的不断提高,要求飞行控制系统实现的功能越来越多,系统变得越来越复杂,从而迫使系统系统设计师们在可用的技术条件、任务和用户要求,飞机可用空间和动力,飞机的气动力特性及规范要求等诸因素的限制下,把许多分系统综合起来,实施有效的统一控制和管理。于是便出现了新一代数字化、智能化、综合化的电子系统-飞行管理系统(FMS-Flight Management System)。在1981年12月,飞行管理系统首次安装在B767型飞机上。此后生产的大中型飞机广泛采用飞行管理系统。 16.2飞行管理系统的组成和功能 16.2.1飞行管理系统的组成 飞行管理系统由几个独立的系统组成。典型的飞行管理系统一般由四个分系统组成,如图16-1,包括: (1)处理分系统-飞行管理计算机系统(FMCS),是整个系统的核心; (2)执行分系统-自动飞行指引系统和自动油门,见自动飞行控制系统; (3)显示分系统-电子飞行仪表系统(EFIS),见仪表系统; (4)传感器分系统-惯性基准系统(IRS)、数字大气数据计算机(DADC)和无线电导航设备。 驾驶舱主要控制组件是自动飞行指引系统的方式控制面板(AFDS MCP)、两部控制显示组件(CDU)、两部电子飞行仪表系统(EFIS)控制面板。主要显示装置是CDU、电子姿态指引仪(EADI)、电子水平状态指示器(EHSI)和推力方式显示。各部分都是一个独立的系统,既可以单独使用,又可以有多种组合形式。飞行管理系统一词的概念是将这些独立的部分组成一个综合系统,它可提供连续的自动导航、指引和性能管理。

图16-1飞行管理系统 16.2.2飞行管理系统的功能 FMS的主要功能包括导航/制导、自动飞行控制、性能管理和咨询/报警功能。FMS实现了全自动导航,大大减轻了驾驶员的工作负担。另外,飞机可以在FMS的控制下,以最佳的飞行路径、最佳的飞行剖面和最省油的飞行方式完成从起飞直到进近着陆的整个飞行过程。 FMS在各飞行阶段的性能管理功能: (1)起飞前 通过FMS的控制显示组件人工向FMC输入飞行计划、飞机全重和外界温度。如果飞行计划已经存入FMC的导航数据库,则可直接调入。飞行计划包括起飞机场、沿途航路点和目的机场的经纬度、高度等。 (2)起飞 根据驾驶员输入的飞机全重和外界温度,FMC计算最佳起飞目标推力。 (3)爬升 根据驾驶员的选择,FMC计算最佳爬升剖面。FMC还根据情况向驾驶员提供阶梯爬升和爬升地点的建议,供驾驶员选择,以进一步节约燃油。 (4)巡航 FMC根据航线长短、航路情况等因素,选择最佳巡航高度和速度。结合导航设施,确定起飞机场至目的机场的大圆航线,以缩短飞行距离。 (5)下降 FMC根据驾驶员输入或存储的导航数据确定飞机下降的顶点。在下降阶段,FMC确定下降速度,最大限度利用飞机的势能,节约燃油。 (6)进近 FMS以优化速度引导飞机到达跑道入口和着陆点。 16.2.3飞行管理计算机系统 由飞行管理计算机(FMC)和控制显示组件(CDU)组成。

相关文档
相关文档 最新文档