文档视界 最新最全的文档下载
当前位置:文档视界 › 微波技术基础

微波技术基础

微波技术基础
微波技术基础

摘要

本文主要介绍了微波的基础知识,在第一章中介绍了微波的概念、基本特点以及微波在民用和军事上的应用,在第二章中介绍了微波传输线理论,主要介绍了TE型波的理论和传输特性。

10

This paper describes the basics of microwave in the microwave first chapter introduces the concept of the basic characteristics and microwave in the civilian and military applications, in the second chapter describes the microwave transmission line theory, introduces the theory and the type of wave Transmission characteristics.

微波技术基础

第一章微波简介

1.1 什么是微波

微波是频率非常高的电磁波,就现代微波理论的研究和发展而论,微波是指频率从GHz

300的电磁波,其相应的波长从1m~0.1mm,这段电磁频谱包~

MHz3000

括分米波(频率从300MHz~3000MHz),厘米波(频率从3GHz~30GHz),毫米波(频率从30GHz~300GHz)和亚毫米波(频率从300GHz~3000GHz)四个波段。

下图为电磁波谱分布图:

1.2微波的基本特点

1.似光性和似声性

微波波段的波长和无线电设备的线长度及地球上的一般物体的尺寸相当或小的多,当微波辐射到这些物体上时,将产生显著地反射、折射,这和光的反射折射一样。同时微波的传播特性也和几何光学相似,能够像光线一样直线传播和容易集中,即具有似光性。这样利用微波就能获得方向性极好、体积小的天线设

备,用于接收地面上或宇宙空间中各种物体发射或反射的微弱信号,从而确定该物体的方向和距离,这就是雷达及导航技术的基础。

微波的波长与无线电波设备尺寸相当的特点,使得微波又表现出与声波相似的特征,即具有似声性。例如:微波波导类似预声学中的传声筒;喇叭天线和缝隙天线类似于声学中的喇叭、萧和笛,微波谐振腔类似于声学中的共鸣腔。2.分析方法的独特性

由于微波的频率很高,波长很短,使得在低频电路中被忽略了的一些现象和效应(如趋肤效应、辐射效应、相位滞后现象等)在微波波段不可以忽略。这样低频电路常用的集总参数元件电阻、电感、电容已不再适用,电压、电流在微波波段甚至失去了唯一性意义,因此用它们已经无法对微波传输系统进行完全描述,而要求建立一套新的能够描述这些现象的理论分析方法——电磁场理论的场与波传输的分析方法,用新的装置(如传输线、波导、谐振腔等)代替那些我们已经熟悉了的电容、电感、电阻。

3.共度性

电子真空管的度越时间与微波震荡周期相当的这一特点称为共度性。共度性是给予微波电子学巨大影响的非常重要的物理因素。利用这种共度性可以做成各种微波电子真空器件,得到微波振荡源。而这种度越效应在静电控制的电子管中是忽略不计的。

4.穿透性

微波辐射与介质物体时,能深入到该物体内部的特性称为穿透性。如微波是射频波谱中除光波外唯一能穿透电离层的电磁波,因而成为人类探测外层空间的重要手段,微波能穿透云雾、雨、植被、积雪和地表层,具有全天候和全天时工作的能力,成为遥感技术的重要手段;微波能穿透生物体,成为医学热透疗法的重要手段;毫米波还能穿透离子体,是远程导弹末端制导和航天器重返大气层时实现通讯的重要手段。

5.信息性

微波波段可载的信息容量是非常大的,即使是很小的相对带宽,其可用的频带也是非常宽的,可以达到数百甚至上千兆赫。所以现在多路通讯系统,包括卫星通讯系统,几乎都是工作在微波频段。此外微波信号还可以提供相应信息、极化信息、多普勒频率信息,这在目标探测、遥感目标特征分析等应用中是十分重要的。

6.非电离性

微波的量子能量不够大,因而不会改变物质分子的内部结构或破坏分子的化学键,所以微波和物质的作用是非电离的。由物理学可知,分子、原子和原子核在外加周期电磁场的作用下所呈现的共振现象都发生在微波范围,因此微波为探测物体的内部结构和其基本特性提供了有效地研究手段。

1.3微波技术的应用

1.3.1微波技术的发晨

微波技术是近代科学技术发展的重大成就之一,微波技术是在雷达、通信和其他科学等领域等各个方面应用和实际需要促进发展起来的.发展十分迅速,其发展过程可以分为以下阶段:第一阶段:1940年前,是实验早期研究阶段,主要研究微波的产生方法。第二阶段:1940年到1945年,足微波技术迅速发展并应用

与实际的阶段,这个阶段正式第二次世界大战期间,在军事应用的迫切需要下,促进了微波技术的迅猛发展,在这一阶段内,大多数微波电子器件都应运而生,并采用了波导和空腔振荡器。第三阶段:1945年至今,是微波技术广泛发展和应用阶段,在这一阶段中,不仅开辟了新波段.而且扩展了应用范围,并逐步形成了一系列的科学领域,如微波波普学、射电天文学、微波气象学等。同时建立了一整套微波电子学理论,为微波技术的进一步发展和提高打下了理论基础。1965年以后,出现了微波固体器件,固体集成电路和同体平面电路.使微波技术向着固体化和小型化方向发展.微波技术的迅速发展和它的应用密切相关。其应用范围也愈加广泛。微波技术的发展至今已有60余年的历史。几十年来,微波的发展相当迅速,应用领域也相当广泛,更有新的领域层出不穷。

1.3.2 微波技术应用

1)微波通讯。通讯是微波技术的传统应用领域。最重要的应用之一

就是多路通信.由于微波的频率很高,频带很宽,比短波频带宽好几十倍甚至数百倍左右,能够承载的信息量很大.因而用微波作为载波应用与多路通信、微波中波通信、散射通信、卫星通信、移动通信等领域。

2)雷达应用。微波最早应用于雷达.正是由于第一次世界大战人们

把微波应用于雷达中,才促使微波技术的迅猛发展。现在雷达仍然主要用于军事目的。这方面的雷达有预警雷达、舰载雷达、机载雷达等。除了军用雷达外,民用雷达发展也较快,如导航、气象、防盗、遥感雷达等。

3)科学研究。在科学研究中,微波技术也有着重要应用。如原子钟

的研制,就是微波技术的应用和发展的结果.微波应用在物理学、天文学、化学、医学、气象学等各个学科领域,如射电天文学学、微波波普学、量子电子学、微波生物学、微波化学、微波医学等。此外,如天文观察,电子直线加速器,等离子体参量测量,频谱分析以及遥感技术等方面都要用到微波。

4)微波加热。在生产生活方面,微波被作为一种能源加以利用。利用

微波加热物体,就是利用物体吸收微波产生的热效应进行加热的。微波加热的特点是:①对被加热的物体内外一起加热,瞬时可以达到高温。热损耗小、热能利用率高、节约热能。②对介质材料的穿透深度要远比红外加热的穿透深度强,可达几十厘米。③微波加热的预热时间短,微波管预热15秒就能工作。④均匀加热:常规加热为提高加热速度,就需要升高加热温度,容易产生外焦内生现象。微波加热时,物体各部位通常都能均匀渗透电磁波,产生热量,因此均匀性大大改善。⑤安全无害:在微波加热、干燥中,无废水、废气、废物产生,也无辐射遗留物存在,其微波泄漏也确保大大低于国家制定的安全标准,是一种十分安全无害的高新技术。

5)微波杀菌。微波杀菌是利用了微波对细菌的热效应使之蛋白质产

生变化。使细菌失去营养,繁殖和生存的条件而死亡。微波对细菌的生物效应是微波电场改变细胞膜的电位分布,影响细胞膜周围电子和离子浓度,从而改变细胞膜的通透性能,细菌因此营养不良,不能正常新陈代谢,细胞结构功能紊乱,生长发育受到抑制而死亡。

6)其他领域。微波在医学。军事上也发挥着重要作用。微波可以对

人体内的炎症,溃疡、肿瘤和其他病变产生抑制或治疗作用。微波武器的高能微波束可以干扰敌方人员的神经系统和大脑思维.可以灼伤人的眼睛和人体组织:可以引爆地方的炮弹、导弹甚至核武器等:可以干扰甚至摧毁地方的各种电子设备等.

第二章 微波传输线理论

2.1 Maxwell 方程组及边界条件 电磁波在无源(p,J=0)空气波导中(0ε、0μ为常数标量)传播时(见图3-18), 随时间变化是简谐的,即t j e E E ω0=、t j e H H ω0=,则Maxwell 方程组在SI 单位制中为:

(3-5)

(3-6)

(3-7)

(3-8)

在微波波段,随着工作频率的升高,由于导线的趋肤效应和辐射效应增大,使得普通的双导线不能完全传输微波能量,常用的微波传输线有平行双线、同轴线、带状线、微带线、金属波导管及介质波导等多种形式的传输线。

2.2波导管中的10TE 型波

波导管是一种空心金属管,其截面形状有圆形、矩形、椭圆形等,用得最多的是矩形波导管,简称波导,见下图

根据电磁场的普遍规律——麦克斯韦方程组或由它导出的波动方程——及具体

波导的边界条件,严格求解得出矩形波导中不能传输TEM 波,只能传输TE 波(横电波)和TM 波(横磁波)。TE 波的电矢量只有横向分量,而磁矢量的横向和纵向分量都有;TM 波的磁矢量只有横向分量,而电矢量的纵向、横向两个分量都有。在实际应用中,一般让波导中存在一类波型,而且只传其中一种波型,例如0TE 波就是矩形波导中常用的一种波型。

考虑一个截面为a×b 的矩形波导(见图3-18),其管壁为理想导体,则沿z方向传播的0TE 型波的各个场分量为:

(3-33)

(3-34)

(3-35)

(3-36)

(3-37)

(3-38) 式中ω为角频率,μεπω2=;β为相位常数,g λπβ2=;

g λ为波导波长:

(3-21)

其中a c 2=λ,称为波导截止波长。因此,波导中只能传播c λλ<的电磁波,λ是自由空间电磁波的波长。

波导内10TE 波电场和磁场的分布即所谓场结构,可用图3-19表示:

图(a)说明电矢量只位于XY 平面内(在Z=0处,上为负,下为正),起止于上下两个宽边,宽边中间电场最强,两侧减弱,呈正弦分布。它的磁力线在宽边相平行的平面内形成闭合线如图(b),并表明y E 、x H 和z H 在Z 方向各有π/2的相位差。图(c)表示10TE 型波场结构的空间分布。

2.3 10TE 波的传输特性 波导中电磁波的传输,由于不是TEM 波,因而它具有很多不同于长线的传输特点。只有掌握了波导中传输特性,我们才能正确运用它。

(1)相位常数

β表现了电磁波在波导中传输的基本特性。由式(3-20)和(3-27)可得:

对于10TE 波有

为自由空间平面波的相位常数,即k=2π/λ,则

(3-39)

可见,波导中的相位常数卢β和自由空间的相位常数k 是不同的,由此就带来了电磁波在波导中传输的一系列特点,下面我们分别讨论它们的物理意义。

(2)波导波长g λ与相速度g V 、群速u

同样一个波源,电磁波在自由空间传播时,测量出的波长为λ,它以光速c 传播的电磁波为横电磁波;但在波导内传输电磁波的波长g λ不同于λ,由相位常数的定义则有:

(3-40)

将(3-39)式代人(3-40)式,注意k=2π/λ,即得

(3-41)

可见波导波长g λ大于自由空间波长λ。

与波导波长相对应的相速度(等位面向前传播的速度)为g V

(3-42)

所以,波导中电磁波的扣速度是大于光速c 的,而且还与电磁波的频率有关,不再是常数。由相速度g V ,群速度u 和光速c 的关系式

(3-43)

可以看出电磁波能量沿波导管轴传播的速度(群速度u)小于光速。

(3)波阻抗(或称特性阻抗)

波阻抗是波导的一个重要参量,定义为:波导截面上的电场强度与磁场强度的比值,以0Z 表示。对于10TE 波,由式(3-34)和式(3-36)得

(3-44)

可见,对于一定的频率,特性阻抗是与时间和空间位置无关的常数。

(4)临界波长(又称截止波长)c λ

在式()()21221a k --=λβ中,当λ<2a 时,β为大于零的实数,这时波能在

波导中传输,并有g λ>λ。当λ>2a 时,β变为虚数,这时z z j e e ββ--=,表示

沿波传播方向不再有相位变化,而只有幅度沿传播方向按指数迅速衰减,以致波在波导中很快消失(截止),这时波称消失波。

当λ=2a 时,价于上面二种情况之间,所以2a 被称为10TE 波的临界波长c λ,只有在电磁波的工作波长小于c λ时,这个波才能在波导中传输。这现象在TEM 波中是没有的。因此在设计波导时,首先必须考虑10TE 波的传输条件λ<2a ,而选择尺寸时,必须使a>λ/2。

不同波型有不同临界波长其临界波长都比10TE 波的c 短,故称10TE 波为最低型(又称主波型),这样就使实现传输单一波型的电磁波有了可能。但还必须采用合适的激励方法。通常激励10TE 波的装置如图3-21所示。将波导宽边中点开孔,用电偶极子激励(电偶极子可以是同轴线的内导体的延长部分,象一根小天线),因电偶极子中,高频电流方向是轴向的,所以自然诱导出与波导上下宽边垂直的电场,并在宽边中央最强,在靠近左、右边壁处电场强度为零

微波技术基础试题三

一.简答:(50分) 1.什么是色散波和非色散波?(5分) 答:有的波型如TE 波和TM 波,当波导的形状、尺寸和所填充的介质给定时,对于传输某一波形的电磁波而言,其相速v p 和群速v g 都随频率而变化的,把具有这种特性的波型称为色散波。而TEM 波的相速v p 和群速v g 与频率无关,把具有这种特性的波型称为非色散波。 2.矩形波导、圆波导和同轴线分别传输的是什么类型的波?(5分) 答:(1)矩形波导为单导体的金属管,根据边界条件波导中不可能传输TEM 波,只能传输TE 波和TM 波。 (2)圆波导是横截面为圆形的空心金属管,其电磁波传输特性类似于矩形波导不可能传输TEM 波,只能传输TE 波和TM 波。 (3)同轴线是一种双导体传输线。它既可传输TEM 波,也可传输TE 波和TM 波。 3.什么是TE 波、TM 波和TEM 波?(5分) 答:根据导波系统中电磁波按纵向场分量的有无,可分为三种波型: (1)横磁波(TM 波),又称电波(E 波):0=H Z ,0≠E Z ; (2)横电波(TE 波),又称磁波(H 波):0=E Z ,0≠H Z ; (3)横电磁波(TEM ):0=E Z ,0=H Z 。 4.导波系统中的相速和相波长的含义是什么?(5分) 答:相速v p 是指导波系统中传输电磁波的等相位面沿轴向移动的速度。 相波长λp 是指等相位面在一个周期T 内移动的距离。 5.为什么多节阶梯阻抗变换器比单节阻抗变换器的工作频带要宽?(5分) 答:以两节阶梯阻抗变换器为例,设每节4 λ阻抗变换器长度为θ,三个阶

梯突变的电压反射系数分别为 Γ ΓΓ2 1 ,,则点反射系数为 e e U U j j i r θ θ 42210--ΓΓΓ++==Γ,式中说明,当采用单节变换器时只有两 个阶梯突变面,反射系数Γ的表达式中只有前两项,若取ΓΓ=10,在中心频率处,2/πθ=这两项的和为零,即两突变面处的反射波在输入端相互抵消,从而获得匹配;但偏离中心频率时,因2/πθ≠,则两个反射波不能完全抵消。然而在多节阶梯的情况下,由于多节突变面数目增多,参与抵消作用的反射波数量也增多,在允许的最大反射系数容量Γm 相同的条件下, 使工作频带增宽。 6.请简述双分支匹配器实现阻抗匹配的原理。(7分) 答: B A Z L 如图设:AA’,BB’两个参考面分别跨接两个短截线,归一化电纳为jB 1,jB 2 A A’,BB’两参考面处的等效导纳,在考虑分支线之前和之后分别为 y iA ',y A A '' y iB ',y B B ' ' ,从负载端说起,首先根据负载导纳在导纳圆图上找 到表示归一化负载导纳的点,以此点到坐标原点的距离为半径,以坐标原点为圆心画等反射系数圆,沿此圆周将该点顺时针旋转(4πd 1)rad ,

微波技术基础实验指导书讲解

微波技术基础实验报告 所在学院: 专业班级: 学生姓名: 学生学号: 指导教师: 2016年5月13日

实验一微波测量系统的了解与使用 实验性质:验证性实验级别:必做 开课单位:学时:2学时 一、实验目的: 1.了解微波测量线系统的组成,认识各种微波器件。 2.学会测量设备的使用。 二、实验器材: 1.3厘米固态信号源 2.隔离器 3.可变衰减器 4.测量线 5.选频放大器 6.各种微波器件 三、实验内容: 1.了解微波测试系统 2.学习使用测量线 四、基本原理: 图1。1 微波测试系统组成 1.信号源 信号源是为电子测量提供符合一定技术要求的电信号的设备,微波信号源是对各种相应测量设备或其它电子设备提供微波信号。常用微波信号源可分为:简易信号发生器、功率信号发生器、标准信号发生器和扫频信号发生器。 本实验采用DH1121A型3cm固态信号源。 2.选频放大器

当信号源加有1000Hz左右的方波调幅时,用得最多的检波放大指示方案是“选频放大器”法。它是将检波输出的方波经选频放大器选出1000Hz基波进行高倍数放大,然后再整为直流,用直流电表指示。它具有极高的灵敏度和极低的噪声电平。表头一般具有等刻度及分贝刻度。要求有良好的接地和屏蔽。选频放大器也叫测量放大器。 3.测量线 3厘米波导测量线由开槽波导、不调谐探头和滑架组成。开槽波导中的场由不调谐探头取样,探头的移动靠滑架上的传动装置,探头的输出送到显示装置,就可以显示沿波导轴线的电磁场的变化信息。 4.可变衰减器 为了固定传输系统内传输功率的功率电平,传输系统内必须接入衰减器,对微波产生一定的衰减,衰减量固定不变的称为固定衰减器,可在一定范围内调节的称为可变衰减器。衰减器有吸收衰减器、截止衰减器和极化衰减器三种型式。实验中采用的吸收式衰减器,是利用置入其中的吸收片所引起的通过波的损耗而得到衰减的。一般可调吸收式衰减器的衰减量可在0到30-50分贝之间连续调节,其相应的衰减量可在调节机构的度盘上读出(直读式),或者从所附的校正曲线上查得。 五、实验步骤: 1.了解微波测试系统 1.1观看如图装置的的微波测试系统。 1.2观看常用微波元件的形状、结构,并了解其作用、主要性能及使用方法。常用元件如:铁氧体隔离器、衰减器、直读式频率计、定向耦合器、晶体检波架、全匹配负载、波导同轴转换器等。2.了解测量线结构,掌握各部分功能及使用方法。 2.1按图检查本实验仪器及装置。 2.2将微波衰减器置于衰减量较大的位置(约20至30dB),指示器灵敏度置于较低位置,以防止指示电表偶然过载而损坏。 2.3调节信号源频率,观察指示器的变化。 2.4调节衰减器,观察指示器的变化。 2.5调节滑动架,观察指示器的变化。 六、预习与思考: 总体复习微波系统的知识,熟悉各种微波元器件的构造及原理特点。 实验二驻波系数的测量

微波技术基础考试题一

一、填空题(40分,每空2分) 1、微波是指波长从1米到0.1毫米范围内的电磁波。则其对应的频率范围从___ ___赫兹 到___ __赫兹。 2、研究电磁波沿传输线的传播特性有两种分析方法。一种是 的分析方法, 一种是 分析方法。 3、微波传输线种类繁多,按其传输的电磁波型,大致可划分为三种类 型 、 、 。 4、测得一微波传输线的反射系数的模2 1=Γ,则行波系数=K ;若特性阻抗Ω=750Z ,则波节点的输入阻抗=)(波节in R 。 5.矩形波导尺寸cm a 2=,cm b 1.1=。若在此波导中只传输10TE 模,则其中电磁波的工作 波长范围为 。 6.均匀无耗传输线工作状态分三种:(1) (2) (3) 。 7.微波传输系统的阻抗匹配分为两种: 和 。阻抗匹配的方法中最基本 的是采用 和 作为匹配网络。 8.从传输线方程看,传输线上任一点处的电压或电流都等于该处相应的 波 和 波的叠加。 9. 阻抗圆图是由等反射系数圆和__ ___组成。 二、简答或证明题(20分,第1题8分,第2题6分,第3题6分) 1、设特性阻抗为0Z 的无耗传输的行波系数为K ,第一个电压波节点到负载的距离min l 证明:此时终端负载阻抗为:min min 0tan K 1tan j K l j l Z Z L ββ--= (8分)

2、若想探测矩形波导内的驻波分布情况,应在什么位置开槽?为什么?(请用铅笔画出示意图)(6分) 3、微波传输线的特性阻抗和输入阻抗的定义是什么? (6分) 三、计算题(40分) 1、如图所示一微波传输系统,其 0Z 已知。求输入阻抗in Z 、各点的反射系数及各段的电压驻 波比。(10分)

微波技术基础 简答题整理

第一章传输线理论 1-1.什么叫传输线?何谓长线和短线? 一般来讲,凡是能够导引电磁波沿一定方向传输的导体、介质或由它们共同体组成的导波系统,均可成为传输线;长线是指传输线的几何长度l远大于所传输的电磁波的波长或与λ可相比拟,反之为短线。(界限可认为是l/λ>=0.05) 1-2.从传输线传输波形来分类,传输线可分为哪几类?从损耗特性方面考虑,又可以分为哪几类? 按传输波形分类: (1)TEM(横电磁)波传输线 例如双导线、同轴线、带状线、微带线;共同特征:双导体传输系统; (2)TE(横电)波和TM(横磁)波传输线 例如矩形金属波导、圆形金属波导;共同特点:单导体传输系统; (3)表面波传输线 例如介质波导、介质镜像线;共同特征:传输波形属于混合波形(TE波和TM 波的叠加) 按损耗特性分类: (1)分米波或米波传输线(双导线、同轴线) (2)厘米波或分米波传输线(空心金属波导管、带状线、微带线) (3)毫米波或亚毫米波传输线(空心金属波导管、介质波导、介质镜像线、微带线) (4)光频波段传输线(介质光波导、光纤) 1-3.什么是传输线的特性阻抗,它和哪些因素有关?阻抗匹配的物理实质是什么? 传输线的特性阻抗是传输线处于行波传输状态时,同一点的电压电流比。其数值只和传输线的结构,材料和电磁波频率有关。 阻抗匹配时终端负载吸收全部入射功率,而不产生反射波。 1-4.理想均匀无耗传输线的工作状态有哪些?他们各自的特点是什么?在什么情况的终端负载下得到这些工作状态?

(1)行波状态: 0Z Z L =,负载阻抗等于特性阻抗(即阻抗匹配)或者传输线无限长。 终端负载吸收全部的入射功率而不产生反射波。在传输线上波的传播过程中,只存在相位的变化而没有幅度的变化。 (2)驻波状态: 终端开路,或短路,或终端接纯抗性负载。 电压,电流在时间,空间分布上相差π/2,传输线上无能量传输,只是发生能量交换。传输线传输的入射波在终端产生全反射,负载不吸收能量,传输线沿线各点传输功率为0.此时线上的入射波与反射波相叠加,形成驻波状态。 (3)行驻波状态: 终端负载为复数或实数阻抗(L L L X R Z ±=或L L R Z =)。 信号源传输的能量,一部分被负载吸收,一部分反射回去。反射波功率小于入射波功率。 1-5.何谓分布参数电路?何谓集总参数电路? 集总参数电路由集总参数元件组成,连接元件的导线没有分布参数效应,导线沿线电压、电流的大小与相位,与空间位置无关。分布参数电路中,沿传输线电压、电流的大小与相位随空间位置变化,传输线存在分布参数效应。 1-6.微波传输系统的阻抗匹配分为两种:共轭匹配和无反射匹配,阻抗匹配的方法中最基本的是采用λ/4阻抗匹配器和支节匹配器作为匹配网络。 1-7.传输线某参考面的输入阻抗定义为该参考面的总电压和总电流的比值;传输线的特征阻抗等于入射电压和入射电流的比值;传输线的波阻抗定义为传输线内横向电场和横向磁场的比值。 1-8.传输线上存在驻波时,传输线上相邻的电压最大位置和电压最小位置的距离相差λ/4,在这些位置输入阻抗共同的特点是纯电阻。 第二章 微波传输线 2-1.什么叫模式或波形?有哪几种模式?

微波技术基础

摘要 本文主要介绍了微波的基础知识,在第一章中介绍了微波的概念、基本特点以及微波在民用和军事上的应用,在第二章中介绍了微波传输线理论,主要介绍了TE型波的理论和传输特性。 10 This paper describes the basics of microwave in the microwave first chapter introduces the concept of the basic characteristics and microwave in the civilian and military applications, in the second chapter describes the microwave transmission line theory, introduces the theory and the type of wave Transmission characteristics.

微波技术基础 第一章微波简介 1.1 什么是微波 微波是频率非常高的电磁波,就现代微波理论的研究和发展而论,微波是指频率从GHz 300的电磁波,其相应的波长从1m~0.1mm,这段电磁频谱包~ MHz3000 括分米波(频率从300MHz~3000MHz),厘米波(频率从3GHz~30GHz),毫米波(频率从30GHz~300GHz)和亚毫米波(频率从300GHz~3000GHz)四个波段。 下图为电磁波谱分布图: 1.2微波的基本特点 1.似光性和似声性 微波波段的波长和无线电设备的线长度及地球上的一般物体的尺寸相当或小的多,当微波辐射到这些物体上时,将产生显著地反射、折射,这和光的反射折射一样。同时微波的传播特性也和几何光学相似,能够像光线一样直线传播和容易集中,即具有似光性。这样利用微波就能获得方向性极好、体积小的天线设

微波技术基础期末试题一

《微波技术基础》期末试题一 选择填空题(共30分,每题3分) 1.下面哪种应用未使用微波() (a)雷达(b)调频(FM)广播 (c)GSM移动通信(d)GPS卫星定位 2.长度1m,传输900MHz信号的传输线是() (a)长线和集中参数电路(b)长线和分布参数电路 (c)短线和集中参数电路(d)短线和分布参数电路 3.下面哪种传输线不能传输TEM模() (a)同轴线(b)矩形波导(c)带状线(d)平行双线 4.当矩形波导工作在TE10模时,下面哪个缝不会影响波的传输() 5.圆波导中的TE11模横截面的场分布为() (a)(b)(c) 6.均匀无耗传输线的工作状态有三种,分别为,和。

7.耦合微带线中奇模激励的对称面是壁,偶模激励的对称面是壁。 8.表征微波网络的主要工作参量有阻抗参量、参量、参量、散射参量和参量。 9.衰减器有衰减器、衰减器和衰减器三种。 10.微波谐振器基本参量有、和三种。 二.(8分)在特性阻抗Z0=200?的传输线上,测得电压驻波比ρ=2,终端为 U0V,求终端反射系数、负载阻 =1 电压波节点,传输线上电压最大值 max 抗和负载上消耗的功率。 三.(10分)已知传输线特性阻抗Z0=75?,负载阻抗Z L=75+j100?,工作频率为900MHz,线长l=0.1m,试用Smith圆图,求距负载最近的电压波腹点的位置和传输线的输入阻抗(要求写清必要步骤)。 四.(10分)传输线的特性阻抗Z0=50Ω,负载阻抗为Z L=75Ω,若采用单支节匹配,求支节线的接入位置d和支节线的长度l(要求写清必要步骤)。五.(15分)矩形波导中的主模是什么模式;当工作波长为λ=2cm时,BJ-100型(a*b=22.86*10.16mm2)矩形波导中可传输的模式,如要保证单模传输,求工作波长的范围;当工作波长为λ=3cm时,求λp,vp及vg。 六.(15分)二端口网络如图所示,其中传输线的特性阻抗Z0=200Ω,并联阻抗分别为Z1=100Ω和Z2=j200Ω,求网络的归一化散射矩阵参量S11和S21,网络的插入衰减(dB形式)、插入相移与输入驻波比。

电磁场与微波技术实验指导书(新)

电磁场与微波技术实验指导书 XXXXXXXXXXXXXXXXXXX XXXXX

注意事项 一、实验前应完成各项预习任务。 二、开启仪器前先熟悉实验仪器的使用方法。 三、实验过程中应仔细观察实验现象,认真做好实验结果记录。 四、培养踏实、严谨、实事求是的科学作风。自主完成实验和报告。 五、爱护公共财产,当发生仪器设备损坏时,必须认真检查原因并按规 定处理。 六、保持实验室内安静、整洁和良好的秩序,实验后应切断所用仪器的 电源 ,并将仪器整理好。协助保持实验室清洁卫生, 带出自己所产生的赃物。 七、不迟到,不早退,不无故缺席。按时交实验报告。 八、实验报告中应包括: 1、实验名称。 2、实验目的。 3、实验内容、步骤,实验数据记录和处理。 4、实验中实际使用的仪器型号、数量等。 5、实验结果与讨论,并得出结论,也可提出存在问题。 6、思考题。

实验仪器 JMX-JY-002电磁波综合实验仪 一、概述 电磁波综合实验仪,提供了一种融验证与设计为一体的电磁波实验的新方法和装置。它能使学生通过应用本发明方法和装置进行电磁场与电磁波实验,透彻地了解法拉第电磁感应定律、电偶极子、天线基本结构及其特性等重要知识点,使学生直观形象地认识时谐电磁场,深刻理解电磁感应的原理和作用,深刻理解电偶极子和电磁波辐射原理,掌握电磁场和电磁波测量技术的原理和方法,帮助学生建立电磁波的形象化思维方式,加深和加强学生对电磁波产生、发射、传输和接收过程及相关特性的认识,培养学生对电磁波分析和电磁波应用的创新能力。《JMX-JY-002电磁波综合实验仪》在001型基础上,添加了对天线不同极化角度的测量,学生通过测量,可绘制不同极化天线的方向图,使得学生对电磁波的感受更加深刻。 二、特点 1、理论与实践结合性强 2、直接面向《电磁场与波》的课程建设与改革需要,紧密配合教学大纲,使课堂环节与实验环节紧密结合。 3、针对重要知识点“电磁场与电磁波”课堂教学环节长期存在难于直观表达的困难,形象地体验抽象的知识。 4、实验内容的设置,融综合性、设计性与验证性与一体,帮助学生建立一套电磁波的形象化思维方式,加深和加强对电磁波产生、发射、传输、接收过程及相关特性的认识。 5、培养学生对电磁波分析和电磁波应用的创新能力。 三、系统配置及工作原理 (1)系统配置 1、JMX-JY-002电磁波教学综合实验仪主机控制系统:通过常规控制仪表与微波功率信号发生器、功率信号放大器构成电磁波教学综合实验仪主机控制系统,实现了对被控电磁场与波信号发射控制。 2、测试支架平台:包括支撑臂、测试滑动导轨、测量尺、天线连接杆件、感应器连接杆件、反射板连接杆件、微安表等组件。 3、测试套件:包括多极化天线(垂直极化、水平极化、左右螺旋极化)、射频连接电缆套件、感应器、感应器连接电缆、极化尺、标准测试天线板、反射板等构成测试套件。 (2)工作原理 实验仪主机控制系统的微波信号源产生微波信号,经由微波功率放大器放大后输出至OUTPUT端口,通过射频电缆将输出信号传送给发射天线向空间发射电磁波信号作为实验测试

微波技术基础实验指导书

微 波 技 术 基 础 实 验 指 导 书 电子信息工程学院微波技术基础实验课程组编 2013.02

实验一 微波测量系统的认识与调试 一、实验目的与要求 应用所学微波技术的有关理论知识,理解微波测量系统的工作原理,掌握调整和使用微波信号源的方法,学会使用微波测量系统测量微波信号电场的振幅。了解有关微波仪器仪表,微波元器件的结构、原理和使用方法。 二、实验内容 1.掌握下列仪器仪表的工作原理和使用方法 三厘米标准信号发生器(YM1123)、三厘米波导测量线(TC26)、选频放大器(YM3892)。 2.了解下列微波元器件的原理、结构和使用方法 波导同轴转换器(BD20-9)、E-H 面阻抗双路调配器(BD20-8)、测量线(TC26)和可变短路器(BD20-6)等。 三、实验原理 本实验的微波测试系统的组成框图如图一所示 图 1 它主要由微波信号源、波导同轴转换器、E-H 面阻抗双路调配器、测量线和选频放大器主要部分组成。下面分别叙述各部分的功能和工作原理,其它一些微波元器件我们将在以后的实验中一一介绍。 1.微波信号源(YM1123) 1.1基本功能 1.1.1提供频率在7.5~1 2.5GHz 范围连续可调的微波信号。 1.1.2该信号源可提供“等幅”的微波信号,也可工作在“脉冲”调制状态。本系统实验中指示器为选频放大器时,信号源工作在1KHz “”方波调制输出方式。 信号源 波导同轴转换器 单螺钉调配器 功率探头 数字功率计 微波频率计 E-H 面调配器 魔T 定向耦合器 H 面弯波导 晶体检波器 测量线 选频放大器 可变衰减器

1.2工作原理 1.2.1本信号源采用体效应振荡器作为微波振荡源。体效应振荡器采用砷化镓体效应二极管作为微波振荡管。振荡系统是一个同轴型的单回路谐振腔。微波振荡频率的范围变化是通过调谐S型非接触抗流式活塞的位置来实现的,是由电容耦合引出的功率输出。 1.2.2本信号源采用截止式衰减器调节信号源输出功率的强弱。截止式衰减器用截止波导组成,其电场源沿轴线方向的幅度是按指数规律衰减。衰减量(用dB 表示)与轴线距离L成线性关系,具有量程大的特点。 1.2.3本信号源用微波铁氧体构成隔离器。 在微波测量系统中,一方面信号源需要向负载提供一个稳定的输出功率;另一方面负载的不匹配状态引起的反射破坏信号源工作的稳定性,使幅、频发生改变、跳模等。为了解决这个问题,往往在信号源的输出端接一“单向传输”的微波器件。它允许信号源的功率传向负载,而负载引起的反射却不能传向信号源。这种微波器件称之“隔离器”。 这类隔离器在3cm波段可以做到正向衰减小于0.5dB,反向衰减25dB。驻波比可达1.1左右。隔离器上箭头指示方向即为微波功率的正向传输方向。 1.2.4本信号源采用PIN管作控制元件,对微波信号进行方波、脉冲波的调制。 1.2.5本信号源功率输出端接有带通滤波器。它滤去7.5~12.5GHz频率范围的谐波,使信号源输出信号频谱更纯净。 注1:打开信号源的上盖板,即可看到信号源的同轴谐振腔、截止式衰减器、PIN调制器和带通滤波器等结构。 注2:有些单位采用本公司生产的YM1124信号发生器。它是9.37GHz点频信号源,采用介质振荡技术。频率稳定度高、输出功率大、有“等幅”和“1KHz”方波两种工作状态。输出为BJ100波导口。 2.波导同轴转换器(BD20-9) 2.1基本功能 提供从同轴输入到波导输出的转换。 2.2工作原理 波导同轴转换器是将信号由同轴转换成波导传输。耦合元件是一插入波导内的探针,等效于一电偶极子。由于它的辐射在波导中建立起微波能量。探针是由波导宽边中线伸入,激励是对称的。选择探针与短路面的位置,使短路面的反射与探针的反射相互抵消,达到较佳的匹配。 3.E-H面阻抗双路调配器(BD20-8) 3.1基本功能 微波传输(测量)系统中,经常引入不同形式的不连续性,来构成元件或达到匹配的目的。 E-H面阻抗调配器是双支节调配器。在主传输波导固定的位置上的E面(宽边)和H面(窄边)并接两个支节。通过调节二个支节的长度以达到系统调配。 3.2结构和工作原理 E-H面阻抗调配器是由一个双T波导和两只调节活塞组成。调节活塞是簧片式的接触活塞。调节E面活塞,等于串联电抗变化,调节H面活塞等于并联电纳的变化(两者配合使用)。

微波技术实验指导_报告2017

Harbin Institute of Technology 微波技术 实验报告 院系: 班级: 姓名: 学号: 同组成员: 指导老师: 实验时间: 哈尔滨工业大学

实验一短路线、开路线、匹配负载S 参量的测量 一、实验目的 1、通过对短路线、开路线的S 参量S11的测量,了解传输线开路、短路的特性。 2、通过对匹配负载的S 参量S11及S21的测量,了解微带线的特性。S11 二、实验原理 (一)基本传输线理论 在一传输线上传输波的电压、电流信号会是时间及传递距离的函数。一条单位长度传输线之等效电路可由R 、L 、G 、C 等四个元件来组成,如图1-1(a )所示。假设波传输播的方向为+Z 轴的方向,则由基尔霍夫电压及电流定律可得下列二个传输线方程式。 其中假设电压及电流是时间变量t 的正弦函数,此时的电压和电流可用角频率ω的变数表示。亦即是 而两个方程式的解可写成 z z e V e V z V γγ--++=)( (1-1) z z e I e I z I γγ--+-=)((1-2) 其中V + ,V -,I +,I - 分别是波信号的电压及电流振幅常数,而+、-则分别表示+Z,-Z 的传输方向。 γ则是[传输系数](propagation coefficient ),其定义如下。 ))((C j G L j R ωωγ++= (1-3) 而波在z 上任一点的总电压及电流的关系则可由下列方程式表示。 I L j R dz dV ?+-=)(ωV C j G dz dI ?+-=)(ω (1-4) 将式(1-1)及(1-2)代入式(1-3)可得 C j G I V ωγ +=++ t j e z V t z v ω)(),(=t j e z I t z i ω)(),(=

电子科技大学中山学院07微波技术基础考试试卷A

一、填空题(共28分,每空2分) 1、长线和短线的区别在于:前者为 ____参数电路, 后者为 参数电路。 2、导波系统中传输电磁波德等相位面沿着轴向移动的速度,通常称为_________,而传输信号电磁波是多种频率成分构成一个“波群”进行传播,其速度通常称为 。 3、矩形波导传输的主模是 ,圆波导传输的主模是 。 4、用散射参量表示非可逆四端口定向耦合器的耦合度C= ______,隔离度D= _ _______。 5、测得一微波传输线的反射系数模为|г|=1/2,则行波系数K =________,若特性阻抗Z 0=75Ω,则波节点的输入阻抗为Rin=____________。 6、一波导匹配双T ,其③端口为E 臂,④端口为H 臂,若③端口输入功率为P ,则①端口输出功率为_______,若①端口理想短路,②理想开路,则④端口输出功率为_________。 7、按传输模式分类,光纤分为 ___和_____________。 二、圆图完成(要求写出必要的步骤)(共20分,每小题10分)) 1、特性阻抗为50Ω的长线,终端负载不匹配,沿线电压波腹∣U ∣max =20V ,波节∣U ∣min =12V ,离终端最近的电压波腹点距终端的距离为0.37λ,求负载阻抗Z L =?(10分) 2、耗传输线特性阻抗Z 0=50Ω,长度为10cm ,f =800MHz ,假如输入阻抗Z in =j60Ω 求出负载阻抗Z L ; 三、如图为波导扼流式短路活塞,说明原理。(7分)

四、如图所示一微波传输系统,其Z 0已知,求输入阻抗Z in ,各点的反射系数和各段电压驻波比。(17分) 五、矩形波导的尺寸为a =22.86mm ,b=10.16mm ,波导中传输电磁波的频率为15GHz ,试问波导中可能传输哪些波型?(18分) 六、已知二端口网络的散射矩阵[]??? ?????=2/32/31.095.095.01.0ππππj j j j e e e e S 求该网络的插入衰减L (dB )、插入相移、电压传输系数T 、驻波比ρ。(10分)

微波技术基础实验一

华中科技大学 《微波技术基础》实验报告 实验名称:矢量网络分析仪的使用及传 输线的测量 院(系):电子信息与通信学院 专业班级: 姓名: 学号:

一、实验目的 1、学习矢量网络分析仪的基本工作原理; 2、初步掌握AV36580矢量网络分析仪的操作使用方法; 3、掌握使用矢量网络分析仪测量微带传输线不同工作状态下的S参数; 4、通过测量认知1/4波长传输线阻抗变换特性 二、实验内容 1. 矢量网络分析仪操作实验 ?初步运用矢量网络分析仪AV36580,熟悉各按键功能和使用方法 以RF带通滤波器模块为例,学会使用矢量网络分析仪AV36580测量微波电路的S 参数。 2. 微带传输线测量实验 ?使用网络分析仪观察和测量微带传输线的特性参数。 ?测量1/4波长传输线在不同负载情况下的频率、输入阻抗、驻波比、反射系数。

观察1/4波长传输线的阻抗变换特性。 三、系统简图 四、步骤简述 实验一:矢量网络分析仪操作实验 步骤一按【复位】调用误差校准后的系统状态 步骤二选择测量参数 设置频率范围: 按【起始】【600】【M/μ】:设置起始频率600 MHz。 按【终止】【1800】【M/μ】:设置终止频率1800 MHz。 设置源功率: 按鼠标点击菜单栏的激励,在下拉菜单功率,设置矢网合成源的功率大小,单位是dBm。 将功率电平设置为-10dBm。

步骤三连接待测件测量S参数 ①按照装置图连接待测器件; ②测量待测器件的S参数: 按【测量】选择正向传输测量S21。 按【光标】调出可移动光标,光标位置的读数位于屏幕右上角。 按【格式】[相位]:测量待测器件插入相位响应,即S21的相位。 按【格式】[对数幅度]:选择对数dB形式测量S21的幅值。 按【搜索】[最小值]:测量待测器件的正向插入损耗,读出此时光标的读数,为待测器件的最小正向插入损耗。 按【搜索】[最大值]:测量待测器件的正向插入损耗,读出此时光标的读数,为待测器件的最大正向插入损耗。 按【测量】选择反向传输测量。观察此时的曲线与S21曲线的关系。 按【搜索】[最小值]:测量待测器件的反向插入损耗,读出此时的读数,为待测器件的最小反向插入损耗。观察与最小正向插入损耗的关系 按【搜索】[最大值]:测量待测器件的反向插入损耗,读出此时读数,为待测器件的最大反向插入损耗。观察与最大正向插入损耗的关系 按【测量】选择正向反射测量S11。 按【格式】[对数幅度]:选择对数dB形式测量S11的幅值。 按【格式】[驻波比]:选择以驻波比形式测量S11的幅值。

微波技术基础实验报告

微波技术基础实验报告实验一矢量网络分析仪的使用及传输线的测量 班级: 学号: 姓名: 华中科技大学电子信息与通信工程学院

一实验目的 学习矢量网络分析仪的基本工作原理; 初步掌握AV365380矢量网络分析仪的操作使用方法; 掌握使用矢量网络分析仪测量微带传输线不同工作状态下的S参数; 通过测量认知1/4波长传输线阻抗变换特性。 二实验内容 矢量网络分析仪操作实验 A.初步运用矢量网络分析仪AV36580,熟悉各按键功能和使用方法 B.以RF带通滤波器模块为例,学会使用矢量网络分析仪AV36580测量微波电路的S参数。 微带传输线测量实验 A.使用网络分析仪观察和测量微带传输线的特性参数。 B.测量1/4波长传输线在开路、短路、匹配负载情况下的频率、输入阻抗、驻波比、反射系数。 C.观察1/4波长传输线的阻抗变换特性。

三系统简图 矢量网络分析仪操作实验 通过使用矢量网络分析仪AV36580测试RF带通滤波器的散射参数(S11、S12、S21、S22)来熟悉矢量网络分析仪的基本操作。 微带传输线测量实验 通过使用矢量网络分析仪AV36580测量微带传输线的端接不同负载时的S 参数来了解微波传输线的工作特性。连接图如图1-10所示,将网络分析仪的1端口接到微带传输线模块的输入端口,另一端口在实验时将接不同的负载。

四实验步骤 矢量网络分析仪操作实验 步骤一调用误差校准后的系统状态 步骤二选择测量频率与功率参数(起始频率600 MHz、终止频率1800 MHz、功率电平设置为-10dBm) 步骤三连接待测件并测量其S参数 步骤四设置显示方式 步骤五设置光标的使用 微带传输线测量实验 步骤一调用误差校准后的系统状态 步骤二选择测量频率与功率参数(起始频率100 MHz、终止频率400 MHz、功率电平设置为-25dBm) 步骤三连接待测件并测量其S参数 1.按照装置图将微带传输线模块连接到网络分析仪上; 2.将传输线模块接开路负载(找老师要或另一端空载),此时,传输线终端呈开路。选择测量S11,将显示格式设置为史密斯原图,调出光标,调节光标位置,使光标落在在圆图的短路点。

西安电子科技大学微波技术基础07期末考试考题

西安电子科技大学 考试时间 120 分钟 试 题(A ) 1.考试形式:闭 卷; 2.本试卷共 五 大题,满分100分。 班级 学号 姓名 任课教师 一、简答题(每题3分,共45分) 1、 传输线解为z j z j e U e U U ββ21+=-,上面公式中哪个表示+z 方向传输波?哪个表示-z 方向传输波?为什么? 2、 若传输线接容性负载(L L L jX R Z +=,0

第2页 共4页 5、矩形波导和圆波导的方圆转换中各自的工作模式是什么? 6、带线宽度W ,上下板距离b ,当W 增大时,带线特性阻抗如何变化?为什么? 7、 微带或者带线的开口端是否相当于开路端?为什么?如果不是,如何等效? 8、 一段矩形波导,尺寸b a ?, TE 10模的散射矩阵如下,写出其传输TE 20模时的散射矩阵。 []?? ? ???=--00θ θj j e e s 9、 金属圆波导的模式TE mnp 和TM mnp ,下标m, n, p 各自代表什么含义? 10、 写出如图双口网络的输入反射系数in Γ的表达式。 11、 环行器的端口定义和散射矩阵如下,该环行器环行方向是顺时针还是逆时针? 12、 说明下图E 面T 的工作特点 13、 写出如图理想两端口隔离器的S 矩阵

电磁场与微波技术实验

实验三对称天线和天线阵的方向图 实验目的:1、熟悉对称天线和天线阵的概念; 2、熟悉不同长度对称天线的空间辐射方向图; 3、理解天线阵的概念和空间辐射特性。 实验原理:天线阵就是将若干个单元天线按一定方式排列而成的天线系统。排列方式可以是直线阵、平面阵和立体阵。实际的天线阵多用相似元组成。所谓相似元,是指各阵元的类型、尺寸相同,架设方位相同。天线阵的辐射场是各单元天线辐射场的矢量和。只要调整好各单元天线辐射场之间的相位差,就可以得到所需要的、更强的方向性 方向图乘积定理 f(θ,φ)=f1(θ,φ)×fa(θ,φ) 上式表明,天线阵的方向函数可以由两项相乘而得。第一项f1(θ,φ)称为元因子(Primary Pattern),它与单元天线的结构及架设方位有关;第二项fa(θ,φ)称为阵因子(Array Pattern),取决于天线之间的电流比以及相对位置,与单元天线无关。方向函数(或方向图)等于单元天线的方向函数(或方向图)与阵因子(或方向图)的乘积,这就是方向图乘积定理。 已知对称振子以波腹电流归算的方向函数为 实验步骤:1、对称天线的二维极坐标空间辐射方向图 (1)建立对称天线二维极坐标空间辐射方向函数的数学模型 (2)利用matlab软件进行仿真 (3)观察并分析仿真图中不同长度对称天线的空间辐射特性 E面方向函数: 2、天线阵—端射阵和边射阵 (1)建立端射阵和边射阵空间辐射方向函数的数学模型 (2)利用matlab软件进行仿真 (3)观察并分析仿真图中两种天线阵的空间辐射特性 实验报告要求:(1)抓仿真程序结果图 (2)理论分析与讨论 1、对称天线方向图 01)clc clear lambda=1;%自由空间的波长 L0=1; %改变L0值,得到不同长度对称阵子的方向图 L=L0*lambda; %分别令 L=λ/4,λ/2,3λ/4,λ,3λ/2,2λ k=2*pi/lambda;%自由空间的相移常数theta0=[0.0001:0.1:360]; theta=theta0*pi/180; 90 270 0 L=λ时对称阵子天线的方向图

10微波技术基础A卷

一、填空题(共26分,每空2分) 1.微波传输线是一种分布参数电路, 其线上的电压电流分布规律可由 来描述。 2.矩形波导传输的主模是 ,圆波导传输的主模是 。 3.按传输模式分类,光纤分为 ___和_____________。 4.微带线中出现的高次模种类有 和 。 5、测得一微波传输线的反射系数模为|г|=1/2,则行波系数K =________,若特性阻抗Z 0=75Ω,则波节点的输入阻抗为Rin=____________。 6.阻抗匹配的方法中最基本的是采用 和 作为匹配网络。 7.一波导匹配双T ,其③端口为E 臂,④端口为H 臂,若③端口输入功率为1W ,则①端口输出功率为_______,若①端口理想短路,②理想开路,则④端口输出功率为_________。 二、如图为波导扼流式短路活塞,试说明原理。(7分) 三、圆图完成(要求写出必要的步骤,并在圆图上标示出来)(21分) 1.已知传输线的特性阻抗为Z 0,工作波长λ0=8cm ,负载阻抗Z L =(0.2-j0.5)Z 0,求第一个电压波节 电子科技大学中山学院考试试卷 课程名称: 微波技术基础 试卷类型: A 卷 2012—2013 学年第 1 学期 期末 考试 考试方式: 闭卷 拟题人: 袁海军 日期: 2012-12-22 审 题 人: 学 院: 电子信息学院 班 级: 10无线技术 学 号: 姓 名: 提示:考试作弊将取消该课程在校期间的所有补考资格,作结业处理,不能正常毕业和授位,请诚信应考。

点至终端的距离l,驻波比ρ,行波系数K。(12分) 2.特性阻抗为50Ω的长线,终端负载不匹配,沿线电压波腹∣U∣max=20V,波节∣U∣min=10V,离终端最近的电压波腹点距终端的距离为0.3λ,求负载阻抗Z L=?(9分) 四、(11分)有一特性阻抗为Z0=75Ω的无耗均匀传输线,导体间的媒质参数为εr=2.25,μr=1,终端接有R l=50Ω的负载。当f=2GHz时,其线长度为3λg/4。试求:①传输线实际长度;②负载终端反射系数;③输入端反射系数;④输入端阻抗。

西安电子科技大学微波技术基础08年考题

第1页 共2页 西安电子科技大学 考试时间 120 分钟 试 题(A ) 1.考试形式:闭 卷; 2.本试卷共五大题,满分100分。 班级 学号 姓名 任课教师 一、简答题(每题3分,共30分) 1、 微波无耗传输线特性阻抗Ω=500Z ,负载Ω=25l R ,则负载反射系数为( ),驻波比为( );终端为电压( )点,距终端4/λ处为电压( )。 2、 理想无耗传输线工作状态有哪些?各种工作状态下终端负载有哪些特点? 3、 写出A 参数阻抗变换定理;写出双口网络,无耗时,A 参数的关系。 Z L Z 3题图 4、 如图单枝节匹配,可调参数为两段传输线的长度l和d,简要说明两段传输线的作用。当我们用Smith 圆图来研究时,在Smith 圆图上找到归一化负载所对应的点,应该向( )方向转到与( )圆相交。【单枝节匹配的两个可调长度,和Smith 原图做没有关系,描述欠妥】

第2页 共2页 Z L 4题图 5、 试写出耦合带状线偶模阻抗e Z 0和奇模阻抗o Z 0的概念和意义,偶模阻抗和奇模阻抗哪个大,为什么? 6、 矩形波导、圆形波导、同轴线中传输的主模分别是什么? 7、 说明矩形波导的单模传输条件。 8、 写出魔T 的S 矩阵,并分析1,2端口分别同相、反相输入时各个端口的输出特性。 8题图 9、 互易无耗三端口网络能否同时匹配;举出三端口可以同时匹配的元件例子,并写出其S 矩阵。 10、 什么是谐振,谐振腔的三个主要指标是什么? 二、(15分)微带线的直角拐角的等效电路如图示。如果设归一化的 1,2==B X ,试求其二端口接匹配负载时,一端口的反射系数,对应的驻波比和归一化输入阻抗。

微波技术基础试卷A

一、填空题(每空2分,共40分) 1.从传输线方程看,传输线上任一点处的电压或电流都等于该处相应的 波和 波的叠加。 2.当传输线的负载为纯电阻R L >Z 0时,第一个电压波腹点在 ;当负载为感性阻抗时,第一个电压波腹点距终端的距离在 范围内。 3.阻抗圆图的正实半轴为 的轨迹,负实半轴为 的轨迹。 4.导波系统中的电磁波按纵向场分量的有无,一般分为三种波型(或模); 波; 波; 波。 5. 矩形波导中的主模为: ;圆型波导中的主模为:_ __; 波导具有 滤波器的特性。 6. 表征微波网络的参量有 ;导纳参量; ; ;传输参量。 7. 若一两端口微波网络互易,则网络参量[Z]的特征为 ;网络参量[S]的特征分别 为 。 8. 无耗传输线的工作状态分为: ; ; 。 二、简答题 (10分) 试证明无耗传输线上任意相距1/4波长的两点处的阻抗的乘积等于传输线特性阻抗的乘积,相距1/2波长的两点处的阻抗相等。 三、(16分)电路如图1所示,已知Z 01=600欧姆,Z S =Z 02=450欧姆,R =900欧姆,Z L =400欧姆 (1) 画出沿线电压、电流和阻抗的振幅分布,并求其最大值和最小值。 (2)求负载吸收的总功率和Z L =吸收的功率。 四、圆图完成(要求写清必要步骤)(10分) 已知传输线特性阻抗为Ω=500Z ,线长λ82.1=l ,V U 50max =,V U 13min =,距离始端最近的 电压波腹点至始端距离为λ032.01max =d 。求in Z 和l Z 。 五、(10分)若矩形波导截面尺寸cm b a 82==,试问当频率为GHz 5和2GHz 时,波导中将分别能传输哪些模式?若要只传输主模,工作频率的应当如何选择? 六、(14分)如图所示电路,设两段传输线的特性阻抗分别为01Z 和02Z 。试求由参考面T 确定的网络的散射参量。 A

微波技术基础期末复习题

《微波技术基础》期末复习题 第2章 传输线理论 1. 微波的频率范围和波长范围 频率范围 300MHz ~ 3000 GHz 波长范围 1.0 m ~ 0.1mm ; 2. 微波的特点 ⑴ 拟光性和拟声性; ⑵ 频率高、频带宽、信息量大; ⑶ 穿透性强; ⑷ 微波沿直线传播; 3. 传输线的特性参数 ⑴ 特性阻抗的概念和表达公式 特性阻抗=传输线上行波的电压/传输线上行波的电流 0Z = ⑵ 传输线的传播常数 传播常数 j γαβ=+的意义,包括对幅度和相位的影响。 4. 传输线的分布参数: ⑴ 分布参数阻抗的概念和定义 ⑵ 传输线分布参数阻抗具有的特性 ()()()in V d Z d I d =00 ch sh sh ch L L L L V d I Z d V d I d Z γγγγ+=+000th th L L Z Z d Z Z Z d γγ+=+

① 传输线上任意一点 d 的阻抗与该点的位置d 和负载阻抗Z L 有关; ② d 点的阻抗可看成由该点向负载看去的输入阻抗; ③ 传输线段具有阻抗变换作用; 由公式 ()in Z d 000th th L L Z Z d Z Z Z d γγ+=+ 可以看到这一点。 ④ 无损线的阻抗呈周期性变化,具有λ/4的变换性和 λ/2重复性; ⑤ 微波频率下,传输线上的电压和电流缺乏明确的物理意义,不能直 接测量; ⑶ 反射参量 ① 反射系数的概念、定义和轨迹; ② 对无损线,其反射系数的轨迹?; ③ 阻抗与反射系数的关系; [] []in ()1()()()1()V d d Z d I d d +++G =-G [][] 01()1()d Z d +G =-G ⑷ 驻波参量 ① 传输线上驻波形成的原因? ② 为什么要提出驻波参量? ③ 阻抗与驻波参量的关系; 5. 无耗传输线的概念和无耗工作状态分析 ⑴ 行波状态的条件、特性分析和特点; ⑵ 全反射状态的条件、特性分析和特点; ⑶ 行驻波状态的条件、特性分析和特点; 6. 有耗传输线的特点、损耗对导行波的主要影响和次要影响

西安电子科技大学微波技术基础08年考题教程文件

西安电子科技大学微波技术基础08 年考 题

西安电子科技大学 考试时间120分钟 试题(A) 1.考试形式:闭卷; 2.本试卷共五大题,满分100分。 班级______________ 学号________________ 姓名 _________________ 任课教师 一、简答题(每题3分,共30分) 1、微波无耗传输线特性阻抗Z。50 ,负载R 25 ,则负载反射系数为(),驻波比为();终端为电压()点,距终端/4处为电压()。 2、理想无耗传输线工作状态有哪些?各种工作状态下终端负载有哪些特点? 3、写出A参数阻抗变换定理;写出双口网络,无耗时,A参数的关 系。 ?_ -1 [A] |JZ L 3题图 4、如图单枝节匹配,可调参数为两段传输线的长度1和d,简要说明两 段传输线的作用。当我们用Smith圆图来研究时,在Smith圆图上找到归- 化负载所对应的点,应该向()方向转到与()圆相交。【单枝节匹配的两个可调长度,和Smith原图做没有关系,描述欠妥】 收集于网络,如有侵权请联系管理员删除

收集于网络,如有侵权请联系管理员删除 5、 试写出耦合带状线偶模阻抗Z °e 和奇模阻抗Z oo 的概念和意义,偶模 阻抗和奇模阻抗哪个大,为什么? 6 矩形波导、圆形波导、同轴线中传输的主模分别是什么? 7、 说明矩形波导的单模传输条件。 8、 写出魔T 的S 矩阵并分析1,2端口分别同相、反相输入时各个端口 的输出特性。 8题图 9、 互易无耗三端口网络能否同时匹配;举出三端口可以同时匹配的元件 例子,并写出其S 矩阵。 10、 什么是谐振,谐振腔的三个主要指标是什么? 二、(15分)微带线的直角拐角的等效电路如图示。如果设归一化的 X 2,B 1,试求其二端口接匹配负载时,一端口的反射系数,对应的驻 波比和归一化输入阻抗。 Z L

相关文档
相关文档 最新文档