文档视界 最新最全的文档下载
当前位置:文档视界 › 六自由度摇摆平台

六自由度摇摆平台

六自由度摇摆平台
六自由度摇摆平台

大黄蜂机器人六自由度摇摆台

大黄蜂机器人有限公司的六自由度平台系统由采用Stewart机构的六自由度运动平台、计算机控制系统、驱动系统等组成。六自由度运动平台(如下图)的下平台安装在地面上,上平台为运动平台,它由六只电动缸支承,运动平台与电动缸采用六个虎克铰连接,电动缸与固定基座采用六个虎克铰连接,六只电动缸采用伺服电机驱动的电动缸。计算机控制系统通过协调控制电动缸的行程,实现运动平台的六个自由度的运动,即笛卡尔坐标系内的三个平移运动和绕三个坐标轴的转动。

各主要部分简述如下:

本设备主要由以下部分组成:运动上平台、下平台(基座)、电动缸及伺服电机、驱动器系统、综合控制及监测系统。

各自功能如下:

上平台:是有效载荷的安装基面,提供六自由度的摇摆运动。

下平台:是六自由度摇摆台的安装基面,需要承受足够大的冲击力。

电动缸及伺服电机:通过控制电动缸活塞杆的行程,实现运动平台台体的六自由度运动,共6套。

驱动器系统:接收用户控制指令,通过控制伺服电机的输入,对伺服电机的输出转速和转角进行控制,达到控制电动缸活塞杆出速度和行程的目的,共6套。

综合控制监测系统:硬件为用户计算机,软件为研制方配合开发;同时,它还对平台的运动过程进行监测,预防和处理系统的异常情况。

平台总体运动能力指标如上表,具体表述如下:

a.平台定位精度及重复定位精度为0.5mm及0.1mm;

b.平台转动精度及重复转动精度为0.1°及0.05°;

c.行程回差小于0.2mm;

d.平台X方向运动速度可从0mm/s到250mm/s连续变化;YZ方向运动

速度可从0mm/s到250mm/s连续变化;

e.单支杆可承受轴向力不小于700N;

f.单支杆的运动速度可从0m/s到250mm/s连续变化;

g.平台中位位置固有频率:不小于40Hz;

h.机械组件需具有开放性,可拆卸组装;

i.机械设计安全系数不小于2.0,驱动裕度不小于3.0;

j.额定载荷下,全行程往复工作寿命不小于1×104次,存储寿命不小于48月;

k.运动系统频率:0HZ~10HZ

l.

系统功率需求:1500W

m.

漂移量:平台系统连续运行12h以上,任何一个电动缸的位置漂移不超过0.00025m。

n.

o.噪声:平台系统以40mm/s速度运动时,距平台系统1m处的噪声强度低于70dB。

p.

q.设计安全系数:平台系统所有机械组件的设计载荷大于额定载荷的3倍r.

s.运动限位:在电动缸极限位置设置有限位装置,防止电动缸出现超行程的现象。

t.

u.环境条件:

v. a. 工作温度:室内设备-10~50℃

室外设备-20~60℃

b. 储存温度: -40~65℃

c. 相对湿度: 95%±3%(40℃)

w.可靠性和可维修性:

x. a. 平台系统一次连续工作时间不低于24小时。

b. 使用寿命不小于10000小时。

c. 平均无故障时间MTBF≥1000小时。

d、平均维修时间MTBF<4小时。

y.供电条件要求:

a.电压220V,波动范围:-10%~+10%;

b.容量1500VA

z.电气性能:

aa.电源波动±20%或突然断电,平台系统能不受损坏,恢复供电重新启动后保证可正常工作。

bb.六自由度运动平台控制系统由带有CAN总线通讯和数字输入输出功能的运动控制器、全数字电机控制器、控制软件等组成。

cc.运动控制系统:

dd.定制全数字控制器

以太网接口

CAN总线接口

上位机控制软件

ee.

ff.全数字电机驱动器

gg.电机驱动器选用伺服控制系统。主要使用调频调压以及调整相位的方法,通过速度反馈和位置反馈监控,控制电机的高精度运行。该系统在硬件的快速拆装性、控制的精确性和安全性,以及通讯协议的兼容性等方面都有了跨越式的进步,其中向导式操作和图形化界面可以大大方便用户编程和调试。此外,伺服系统的模块化设计,也使现场总线协议、存储器容量和安全级别的选择更加灵活。高度的模块化还为将来的升级提供了保证。

伺服系统的指令给定方式,除了使用内置于的IO点和CANopen总线接口之外,还可以使用扩展的通信接口兼容Profibus、Profinet、EtherCAT、

DeviceNet、Ethernet、TCP/IP、Ethernet、Powerlink等总线系统进行通信。通过Ethernet(以太网),可以实现远程的调试和诊断。

hh.售后服务及保障能力:

设备验收合格后,保修期12个月。在产品的全寿命期提供良好服务。服务及维护人员12小时内响应,24小时内到达现场。

ii.平台升级服务:在六自由度平台设计阶段,充分考虑平台的硬件和软件的可维护性,以及升级接口。

jj.

kk.软件升级服务:控制软件采用先进面向对象的模块化设计方式,软件功能设计模块化,可快速替换及升级。

在平台保质期内,承诺平台软件功能免费升级。对用户提出新功能、新要求,经双方协商可行性及方案后,尽快完成。

ll.

mm.硬件升级服务:

平台中大量的硬件采用通用接口的模块化设计,平台电路部分按照板级维护和板级升级设计,可快速维护及升级。

对用户提出硬件升级要求,双方协商解决。

六自由度摇摆平台

大黄蜂机器人六自由度摇摆台 大黄蜂机器人有限公司的六自由度平台系统由采用Stewart机构的六自由度运动平台、计算机控制系统、驱动系统等组成。六自由度运动平台(如下图)的下平台安装在地面上,上 平台为运动平台,它由六只电动缸支承,运动平台与电动缸采用六个虎克铰连接,电动缸与固定基座采用六个虎克铰连接,六只电动缸采用伺服电机驱动的电动缸。计算机控制系统通过协调控制电动缸的行程,实现运动平台的六个自由度的运动,即笛卡尔坐标系内的三个平移运动和绕三个坐标轴的转动。

各主要部分简述如下: 本设备主要由以下部分组成:运动上平台、下平台(基座)、电动缸及伺服 电机、驱动器系统、综合控制及监测系统。 各自功能如下: 上平台:是有效载荷的安装基面,提供六自由度的摇摆运动。 下平台:是六自由度摇摆台的安装基面,需要承受足够大的冲击力。 电动缸及伺服电机:通过控制电动缸活塞杆的行程,实现运动平台台体的六自由度运动,共6套。 驱动器系统:接收用户控制指令,通过控制伺服电机的输入,对伺服电机的输出转速和转角进行控制,达到控制电动缸活塞杆出速度和行程的目的,共6套。 综合控制监测系统:硬件为用户计算机,软件为研制方配合开发;同时,它 还对平台的运动过程进行监测,预防和处理系统的异常情况。

平台总体运动能力指标如上表,具体表述如下: a.平台定位精度及重复定位精度为0.5mm及0.1mm; b.平台转动精度及重复转动精度为0.1°及0.05°; c.行程回差小于0.2mm; d.平台X方向运动速度可从0mm/s到250mm/s连续变化;YZ方向运动 速度可从0mm/s到250mm/s连续变化; e.单支杆可承受轴向力不小于700N; f.单支杆的运动速度可从0m/s到250mm/s连续变化; g.平台中位位置固有频率:不小于40Hz; h.机械组件需具有开放性,可拆卸组装; i.机械设计安全系数不小于 2.0,驱动裕度不小于 3.0; j.额定载荷下,全行程往复工作寿命不小于1×104次,存储寿命不小于48月;

六自由度运动模拟器

基于模型的阻抗控制六自由度电液斯图尔平台 摘要—本文详细描述了一个以模型为基础的阻抗控制六自由度电液斯图尔平台,刚体和电液伺服阀模型,包括所用伺服阀模型和一套完整的系统方程,也包括摩擦和泄漏液压原件。所设计的控制器是采用系统动力学和液压模型产生伺服阀电流。控制规则包括反馈和前馈两个单独的部分。根据指定的特性阻抗过滤器会修改所需的轨迹,修改后的轨迹被送入系统模型,以减少非线性液压动力的影响。提出了模拟的典型期望轨迹,并得到了拥有良好性能的控制器。 1.导言 最早的6自由度(DOF)斯图尔特高夫平台是在1954年发明的。在1965年,样机的平行机构被用做一个具有六自由度运动平台的飞行模拟器。此后,许多关于这种机构以及相关研究被发表,该机构可以是电动也可以是液动。许多研究人员已经研究了斯图尔特平台的动力学和运动学。然而驱动力却没有被考虑完全。虽然电动斯图尔平台已被广泛运用,但是很少有研究是关于包括驱动和控制的完整动力学。 阻抗控制被认为是一种积极的兼容的运动控制,主要需要行业应用并于周围环境相互作用,例如数控机床,铣床等。这种控制器同时具有安全性和灵活性,相对而言是首选。 液压科学与控制相结合,得到了新的液压系统的应用。这也是为什么液压系统会被作为一些工业和移动式应用机电驱动的首选。包括它们大批量快速生产的能力,它们的耐久性和刚度,还有他们的响应速度,液压体系不同于机电体系,在液压体系中力或例句输出与执行器的电流是不成真比的,因此,液压执行器不能作为力矩的来源模仿,但是可以作为受控阻抗,所以,要设计出了控制机器人的控制器。驱动力/力矩的虚拟设置在这里始终不可行。 控制技术被用来补偿电动液压伺服系统的非线性。研究人员已经提出了关于液压伺服系统的非线性自适应控制技术的假设、反推以及方式。一个强力的控制器是在非线性定量反馈理论的基础上设计的,已被工业液力执行机构所实现,同时考虑了系统和环境的不确定性。一个电动机械手控制的统一方式适用于任何提案。运动学约束议案,以及机机械臂及其环境之间的动态交互研究已经通过审查。制定所需的机械臂阻抗技术和对一个给定应用程序选择适当的阻抗的技术的最优化理论已经被提出。这里有两种控制机电驱动高夫斯图尔特并行平台机械阻抗的空间几何方法,第一种基于球形位置函数,第二种则是利用指数映射关联有限位移与扭转位移平衡的平台。 一个基于模型的高性能的压接头液压伺服系统前馈反馈阻抗控制器已经被提出,在这里,一个阻抗根据在自由空间或空间接触的行为来调整过滤器所需的轨迹,类似已提交的工作,其中基于位置阻抗控制器工业液压机械手已开发。此外,阻抗控制器研究已在遥控轮式液压伺服系统和重型工程中实施。 在这篇论文中,提及了一种基于模型的六自由度电液伺服斯图尔特关节对称平台阻抗控制器,用于描述刚体斯图尔特平台和液压驱动系统,对比其它方法,这里有伺服模型和摩擦模型。先进的控制方案在分析方案时,应用了刚体、驱动力学和伺服阀的输入电流矢量。控制规律包括两个信号,反馈信号和前馈信号。根据指定的行为阻抗过滤器会修改所需的轨迹。修改后的轨迹被送入系统模型,以减少非线性液压动力的影响。现金控制器的性能说明使用了典型的轨迹。拟议的方法可以扩展到串行或闭链机器人和模拟器。 2系统建模 在本节中,研究了六自由度电液伺服斯图尔特平台的动态模型,这是一个由支架和六个线性驱动器组成的闭环运动体系,该体系的原理如图1所示:

六自由度运动平台方案设计报告

编号 密级内部阶段标记 C 会签 校对 审核 批准六自由度运动平台 方案设计 名称

内容摘要: 针对YYPT项目在原理样机出现的问题,对YYPT原理样机从结构设计、伺服系统等方面进行优化设计,以满足设计及使用要求。 主 YYPT 优化 题 词 更改单号更改日期更改人更改办法 更 改 栏

1概述 YYPT原理样机用原库房留存的345厂的直流电机作为动力源,直流驱动器及工控机作为控制系统元件,采用VB软件进行控制软件的编制,因设计及器件选型的原因,导致YYPT原理样机,在速度、精度、运动规律上等几个技术指标无法满足原规定的指标要求,现在此基础上进行优化方案的设计。 2 原理样机技术状态 2.1 原理样机方案 2.1.1 组成 原理样机采用工控机作为系统的控制单元,工控机内配有研华PCI1716和PCI1723作为A/D和D/A模拟量卡,驱动器采用AMC公司的型号为12A8的伺服驱动器,并配有直流可调电源其输出电流可达到150A,采用KH08XX(3)电动缸作为运动平台的六条支腿,电动缸上安装有电阻尺作为位置反馈器件,上平台与电动缸连接采用球笼联轴器,下平台与电动缸连接采用虎克铰链方式。具体产品组成表见表2.1。 序号产品名称型号厂家数量备注 1 电动缸KH08XX(3)西安方元明 6 安装345厂电机 2 电阻尺LTS-V1-375 上海徳测 6 3 驱动器50A8 AMC 6 3 A/D卡PCI1716 研华 1 4 D/A卡PCI1723 研华 1 5 工控机610H 研华 1 6 直流电源 1 2.1.2 结构方案 六自由度运动平台是由六条电动缸通过虎克铰链和球笼万向节联轴器将上、下两个平台连接而成,下平台固定在基础上,借助六条电动缸的伸缩运动,完成上平台在三维空间六个自由度(X,Y,Z,α,β,γ)的运动,从而可以模拟出各种空间运动姿态。

六自由度平台说明书

技术领域 本发明涉及一种总线型并联六自由度平台,利用总线型控制方式控制伺服电机,经过虎克铰、伺服电动缸的传动使上平台可以模拟各种空间动作。 背景技术 传统的伺服电机控制技术是通过运动控制卡发出脉冲信号和方向信号,驱动伺服电机做不同动作。每一个伺服电机都需要一组对应的脉冲信号和方向信号控制,六自由度平台有六个伺服电机就需要六组信号。用CAN总线控制伺服电机,只需要一台计算机通过CAN总线通信适配卡向总线发送控制信息,伺服驱动器选择需要的信息接收来控制伺服电机,不再需要运动控制卡,节省了硬件和接线,实现了传输信号的数字化。一条CAN总线最多可以有128个节点,一个六自由度平台有六个伺服电机即六个节点,所以一条总线可以控制最多20个六自由度平台。并且总线抗干扰能力强,可以适应恶劣的工作环境。 六自由度运动平台是由六个伺服电机、六个伺服电动缸,上、下各六个虎克铰和上、下两个平台组成,下平台固定在基础上,借助六个伺服电动缸的伸缩运动,完成上平台在空间六个自由度(α,β,γ,X,Y,Z)的运动,从而可以模拟出各种空间运动姿态。六自由度运动平台涉及到机械、伺服电动缸、伺服电机、控制、计算机、传感器,空间运动数学模型、实时信号传输处理等一系列高科技领域,因此六自由度运动平台是控制领域水平的标志性象征。主要包括平台的空间运动机构、伺服系统、控制系统。 发明内容 本发明解决的技术问题是由总线型方式控制伺服电机使平台可以模拟各种空间运动姿态,并且达到精确控制和信息的反馈。 本发明为解决其技术问题采用的方案是:平台包括三部分,分别是控制系统、伺服系统和运动机构。控制模块包括一台计算机、一个CAN总线通信适配卡和一条CAN总线;伺服系统包括六个伺服驱动器和六个伺服电机;运动机构包括十二个虎克铰、六个伺服电动缸和上、下平台。所述上位机与总线通信适配卡连接,CAN总线通信适配卡与CAN总线连接,CAN总线与六台伺服驱动器连接,六台伺服驱动器分别与六台伺服电机连接,伺服电机与伺服电动缸连接,伺服电动缸与虎克铰连接,六个虎克铰和上平台连接,下平台与六个虎克铰连

六自由度工业机器人设计

六自由度工业机器人 对于工业机器人的设计与大多数机械设计过程相同;首先要知道为什么要设计机器人?机器人能实现哪些功能?活动空间(有效工作范围)有多大?了解基本的要求后,接下来的工作就好作了。 首先是根据基本要求确定机器人的种类,是行走的提升(举升)机械臂、还是三轴的坐标机器人、还是六轴的机器人等。选定了机器人的种类也就确定了控制方式,也就有了在有限的空间内进行设计的指导方向。 接下来的要做的就是设计任务的确定。这是一个相对复杂的过程,在实现这一复杂过程的第一步是将设计要求明确的规定下来;第二步是按照设计要求制作机械传动简图,分析简图,制定动作流程表(图),初步确定传动功率、控制流程和方式;第三步是明确设计内容,设计步骤、攻克点、设计计算书、草图绘制,材料、加工工艺、控制程序、电路图绘制;第四步是综合审核各方面的内容,确认生产。 下面我将以六轴工业机器人作为设计对象来阐明这一设计过程: 在介绍机器人设计之前我先说一下机器人的应用领域。机器人的应用领域可以说是非常广泛的,在自动化生产线上的就有很多例子,如垛码机器人、包装机器人、转线机器人;在焊接方面也有很例子,如汽车生产线上的焊接机器人等等;现在机器人的发展是非常的迅速,机器人的应用也在民用企业的各个行业得以延伸。机器人的设计人才需求也越来越大。

六轴机器人的应用范筹不同,设计形式也各不相同。现在世界上生产机器人的公司也很多,结构各有特色。在中国应用最多的如:ABB、Panasonic、FANUK、莫托曼等国外进口的机器人。 既然机器人的应用那么广泛,在我国却没有知名的生产公司。对于作为中国机械工程技术人员来说是一个值得思考的问题!有关机器人技术方面探讨太少了?从业人员还不能成群体?虽然在很多地方可以看到机器的论术,可是却没有真正形成普及的东西。 即然是要说设计,那我就从头一点一点的说起。力求讲的通俗简明一些,讲得不对的地方还请各位指正! 六轴机器人是多关节、多自由度的机器人,动作多,变化灵活;是一种柔性技术较高的工业机器人,应用面也最广泛。那么怎样去从头开始的设计它呢?工作范围又怎样去确定?动作怎样去编排呢?位姿怎样去控制呢?各部位的关节又是有怎么样的要求呢?等等。。。。。。让我们带着众多的疑问慢慢的往下走吧! 首先我们设定:机器人是六轴多自由度的机器人,手爪夹持二氧气体保护焊标准焊枪;完成点焊、连续焊等不同要求的焊接部件,工艺要求、工艺路线变化快的自动生线上。最大伸长量:1700mm;转动270度;底座与地平线水平固定;全电机驱动。 好了,有了这样的基本要求我们就可以做初步的方案的思考了。 首先是全电机驱动的,那么我们在考虑方案的时候就不要去考虑液压和气压的各种结构了,也就是传动机构只能用齿轮齿条、连杆机构等机械机构了。 机器人是用于焊接方面的,那么我们就去考察有人工行为下的各种焊接手法和方法。这里就有一个很复杂的东西在里面,那就是焊接工艺;即然焊艺定不下来,我们就给它区分一下,在常用焊接里有单点点焊、连续断点点焊、连续平缝焊接、填角焊接、立缝焊接、仰焊、环缝焊等等。。。。。。 搞清了各种焊方法,也就明白了要实现这些复杂的动作就要有一套可行的控制方式才行;在机械没有完全设计出来之前可以不做太多的控制方案思考,有一个大概的轮廓概念就行了,待机械结构做完,各方面的驱动功率确定下来之后再做详细的程序。 焊枪是用常用的标准的焊枪,也就是说焊枪是随时可以更换下来的,也就要求我们要做到对焊枪的夹持部分进行快速锁定与松开。 焊枪在焊接过程中要进行各种焊接姿态调整,那么机械手腕就要很灵活,在各个方位角度上都可调节。

(完整版)六自由度机器人结构设计

六自由度机器人结构设计、 运动学分析及仿真 学科:机电一体化 姓名:袁杰 指导老师:鹿毅 答辩日期: 2012.6 摘要 近二十年来,机器人技术发展非常迅速,各种用途的机器人在各个领域广泛获 得应用。我国在机器人的研究和应用方面与工业化国家相比还有一定的差距,因此 研究和设计各种用途的机器人特别是工业机器人、推广机器人的应用是有现实意义 的。 典型的工业机器人例如焊接机器人、喷漆机器人、装配机器人等大多是固定在 生产线或加工设备旁边作业的,本论文作者在参考大量文献资料的基础上,结合项 目的要求,设计了一种小型的、固定在AGV 上以实现移动的六自由度串联机器人。 首先,作者针对机器人的设计要求提出了多个方案,对其进行分析比较,选择

其中最优的方案进行了结构设计;同时进行了运动学分析,用D-H 方法建立了坐标变换矩阵,推算了运动方程的正、逆解;用矢量积法推导了速度雅可比矩阵,并计算了包括腕点在内的一些点的位移和速度;然后借助坐标变换矩阵进行工作空间分析,作出了实际工作空间的轴剖面。这些工作为移动式机器人的结构设计、动力学分析和运动控制提供了依据。最后用ADAMS 软件进行了机器人手臂的运动学仿真,并对其结果进行了分析,对在机械设计中使用虚拟样机技术做了尝试,积累了 经验。 第1 章绪论 1.1 我国机器人研究现状 机器人是一种能够进行编程,并在自动控制下执行某种操作或移动 作业任务的机械装置。 机器人技术综合了机械工程、电子工程、计算机技术、自动控制及 人工智能等多种科学的最新研究成果,是机电一体化技术的典型代表,是当代科技发展最活跃的领域。机器人的研究、制造和应用正受到越来越多的国家的重视。近十几年来,机器人技术发展非常迅速,各种用途的机器人在各个领域广泛获得应用。 我国是从 20 世纪80 年代开始涉足机器人领域的研究和应用的。1986年,我国开展了“七五”机器人攻关计划。1987 年,我国的“863”计划将机器人方面的研究列入其中。目前,我国从事机器人的应用开发的主要是高校和有关科研院所。最初我国在机器人技术方面的主要

六自由度

物体在空间具有六个自由度,即沿X、Y、Z三个直角坐标轴方向的移动自由度和绕这三个坐标轴的转动自由度。因此,要完全确定物体的位置,就必须清楚这六个自由度。 六自由度运动平台是由六支作动筒,上、下各六只万向铰链和上、下两个平台组成,下平台固定在基础上,借助六支作动筒的伸缩运动,完成上平台在空间六个自由度(X,Y,Z,α,β,γ)的运动,从而可以模拟出各种空间运动姿态。可广泛应用到各种训练模拟器如飞行模拟器、舰艇模拟器、海军直升机起降模拟平台、坦克模拟器、汽车驾驶模拟器、火车驾驶模拟器、地震模拟器以及动感电影、娱乐设备等领域,甚至可用到空间宇宙飞船的对接,空中加油机的加油对接中。在加工业可制成六轴联动机床、灵巧机器人等。由于六自由度运动平台的研制,涉及机械、液压、电气、控制、计算机、传感器,空间运动数学模型、实时信号传输处理、图形显示、动态仿真等等一系列高科技领域,因而六自由度运动平台的研制变成了高等院校、研究院所在液压和控制领域水平的标志性象征。 空间运动的目标是实现平台在空间运动的三个姿态角度和三个平动位移,即俯仰、滚转、偏航、上下垂直运动、前后平移和左右平移,及六个姿态的复合运动姿态。而空间目标是通过六个液压缸的行程实现的,这就需要一个空间的运动模型完成空间运动的转换,假设空间运动的目标俯仰、滚转、偏航、上下垂直位移、前后平移和左右平移用α,β,γ,X,Y,Z表示,六个油缸的行程用 L(i), (i=1、2、3、4、5、6)表示。整个运动模型如下: L(i)=TT(α,β,γ,X,Y,Z) 其中,TT是一个空间转换矩阵模型。由此实时算出每一运动时刻液压油缸的行程。液压油缸的理论行程再通过D/A接口的转换,给出实际行程值。 多自由度运动控制 多自由度控制系统中,自由度最多为六自由度,并且六自由度运动控制难度最大,设备及系统最复杂,下面主要介绍我公司设计、生产的六自由度运动台。 六自由度运动平台是由六支直线伺服电动缸,上、下各六只万向铰链和上、下两个平台组成,下平台固定在基础上,借助六只伺服电动缸)执行器)的伸缩运动,完成上平台在空间六个自由度(X,Y,Z,α,β,γ)的运动,从而可以模拟出

六自由度平台实验报告

六自由度平台实验报告 机械电子工程系张梦辉21525074 一、实验简介 实验对象为一个六自由度平台,每个自由度的运动均由一个永磁式直流电机驱动,实验要求对其中一个电动缸进行位置控制,位置由一个滑变电阻式的位移传感器反馈回的电压信号确定,驱动则是通过研华的PCI1716L的数字输出实现,控制软件采用Labview8.6。 二、实验装置 PC机一台 研华PCI1716L多功能板卡一个 PCI总线一根 固态继电器板一块 220V AC—24VDC变压器三个 直流电动机六个 三、实验台介绍 六自由度运动平台是由六支电动缸,上、下各六只万向铰链和上、下两个平台组成,下平台固定在基础上,借助六只电动缸的伸缩运动,完成上平台在空间六个自由度(α,β,γ,X,Y,Z)的运动,从而可以模拟出各种空间运动姿态。六自由度运动平台涉及到机械、液压、电气、控制、计算机、传感器,空间运动数学模型、实时信号传输处理等一系列高科技领域,因此六自由度运动平台是机电控制领域水平的标志性象征。主要包括平台的空间运动机构、空间运动模型、机电控制系统。 本实验台,PC机作为板卡和人的接口,通过在PC机上编程来控制板卡发送数字信号和采集位置信号。将PCI多功能卡设置为设备0,选择PCI板卡的模拟信号输入口AI4口来采集2号缸的位置信号,通过PORT1号口来控制2号缸对应直流电机的正转、反转和停止。通过数字信号输出口发送开关量来控制固态继电器的开和闭,固态继电器导通的话,则接通直流电动机,直流电动机开始运行,这时候,电动缸就会朝着指定方向运行,并且到达指定的位置。

实验中用到的接口的说明: AI0-AI5 模拟信号输入口,用来采集六个缸的位置信号;AIGND 模拟信号公共地 DO0-DO11 数字信号输出口,用来控制六个缸的运动 (其中DO11-DO10 分别控制1号缸的正反转 DO09-DO08 分别控制2号缸的正反转 DO07-DO06 分别控制3号缸的正反转 DO05-DO04 分别控制4号缸的正反转 DO03-DO02 分别控制5号缸的正反转 DO01-DO00 分别控制6号缸的正反转 DGND 数字输出信号公共地

并联六自由度运动平台

并联六自由度运动平台 1.概述 并联六自由度运动平台通过六个驱动缸(伺服缸或电动缸)的协调伸缩来实现平台在空间六个自由度的运动,即平台沿x、y、z向的平移和绕x、y、z轴的旋转运动(包括垂直、水平、横向、俯仰、侧倾和旋转六个自由度的运动),以及这些自由度的复合运动。并联六自由度运动平台可用于机器人、飞行模拟器、车辆驾驶模拟器、新型加工机床、及卫星、导弹等飞行器、娱乐业的运动模拟(动感电影摇摆台)、多自由度振动摇摆台的精确运动仿真等。 图0-1:六自由度及其坐标系定义图 我公司通过自行设计、安装调试,并开发控制软件,同时采用进口关键件对并联六自由度运动平台进行研究开发,目前已完成多套六自由度运动平台应用,典型应用有列车风档液压仿真试验台、F1国际赛车运动仿真台、汽车驾驶模拟器、飞机和飞碟运动模拟器、振动谱试验、海浪模拟试验等。 六自由度运动平台的研制,涉及机械、液压、电气、控制、计算机、传感器,空间运动数学模型、实时信号传输处理、图形显示、动态仿真等一系列高科技领域,是液压及控制技术领域的顶级产品。 2.系统组成 2.1液压伺服类 典型的液压式并联六自由度运动平台主要由机械系统、液压系统、控制系统硬件和控制系统软件四部分组成。

机械系统主要包括:承载平台、上下连接铰链、固定座。 液压系统主要包括:泵站系统、伺服阀、驱动器、伺服油缸和阀块管路。 控制系统硬件主要包括:实时处理器、伺服控制单元、信号调理单元、监控单元和泵站控制单元。 控制系统软件包括:实时信号处理单元、实时运算单元、伺服控制和特殊要求处理单元。 2.2 电动伺服类 电动式并联六自由度运动平台则将伺服油缸用电动缸代替,而伺服阀、泵站系统及阀块管路等则相应取消,增 加运动控制单元。具有系统简洁、响应速度快等优点,是多自由度平台今后重点发展的方向。 3.主要技术参数 以下参数为液压类平台典型值,具体可按用户要求设计制造。 3.1平台主要参数 平台最大负载:静态≥2000KG,动态≥3000KG。 上平台球铰分布园直径1400mm,相邻球心距离157mm; 下平台球铰分布园直径1600mm,相邻球心距离167mm; 伺服缸最小球铰球心距离800mm,最大长度1200mm;(采用Φ63/45~400缸体)。 平台初始高度约700mm。 3.2 泵站技术指标 额定流量:90L/min 最大系统压力:12Mpa; 泵站电机功率:22KW; 空间尺寸:1400×1200×1320 3.3 运动参数 伺服缸运动速度≥200mm/S;有效行程≥400mm。 主要运动参数如下表:

六自由度运动平台设计方案

六自由度运动平台设计 方案 1概述 YYPT原理样机用原库房留存的345厂的直流电机作为动力源,直流驱动器及工控机作为控制系统元件,采用VB软件进行控制软件的编制,因设计及器件选型的原因,导致YYPT原理样机,在速度、精度、运动规律上等几个技术指标无法满足原规定的指标要求,现在此基础上进行优化方案的设计。 2 原理样机技术状态 2.1 原理样机方案 2.1.1 组成 原理样机采用工控机作为系统的控制单元,工控机内配有研华PCI1716和PCI1723作为A/D和D/A模拟量卡,驱动器采用AMC公司的型号为12A8的伺服驱动器,并配有直流可调电源其输出电流可达到150A,采用KH08XX(3)电动缸作为运动平台的六条支腿,电动缸上安装有电阻尺作为位置反馈器件,上平台与电动缸连接采用球笼联轴器,下平台与电动缸连接采用虎克铰链方式。具体产品组成表见表2.1。 序号产品名称型号厂家数量备注 1 电动缸KH08XX(3)西安方元明 6 安装345厂电机 2 电阻尺LTS-V1-375 上海徳测 6 3 驱动器50A8 AMC 6 3 A/D卡PCI1716 研华 1 4 D/A卡PCI1723 研华 1 5 工控机610H 研华 1

6 直流电源 1 2.1.2 结构方案 六自由度运动平台是由六条电动缸通过虎克铰链和球笼万向节联轴器将上、下两个平台连接而成,下平台固定在基础上,借助六条电动缸的伸缩运动,完成上平台在三维空间六个自由度(X ,Y ,Z ,α,β,γ)的运动,从而可以模拟出各种空间运动姿态。 图1 六自由度平台外形图 a )球笼联轴器(如图2所示) 采用球笼铰链与上平面连接。球笼铰链结构简单、体积小、运转灵活、易于维护。 初选球笼铰链型号BJB (JB/T6139-1992),公称转矩Tn=2000N/m ,工作角度40度,外径D=68mm ,轴孔选用圆柱孔d=24mm ,总长度L1=148mm ,转动惯量为0.00008kg.m 2,重量5kg 。 球笼联轴器 电动缸 虎克铰链 上动平台 下静平台

六自由度运动平台正解(几何法)

六自由度运动平台正解(几何法) 1. 对上平台(运动平台)进行扩展,示意如下: Pic 1 上平台示意图 由于确定一个平面状态只需要三个点,因此获得C1,C2,C3坐标,即可确定平面状态。 如图,h1,h2均为已知量,设L h k /1=,212*h h L +=,),,(i i i i z y x C =。 设下平台各点坐标为),,(i i i i s n m B =,设各轴长为i i i l B A =。 于是问题简化为:已知:L k l B i i ,,,,求解i C 。 2. 建立方程组 2.1 i l 相关 对于1l ,分析如下:

Pic 2 单轴示意图 由图可知:向量3111111111*C C k C B A C C B A B +=+=, 即,1111111131313),,(),,(l s z n y m x z z y y x x k =---+--- 所以: )1......(0])1([])1([])1([21211321132113=---++--++--+l s z k kz n y k ky m x k kx 同理有: ) 6......(0])1([])1([])1([)5......(0])1([])1([])1([)4......(0])1([])1([])1([) 3......(0])1([])1([])1([) 2......(0])1([])1([])1([2626312631263125253225322532242423242324232323212321232122221222122212=---++--++--+=---++--++--+=---++--++--+=---++--++--+=---++--++--+l s z k kz n y k ky m x k kx l s z k kz n y k ky m x k kx l s z k kz n y k ky m x k kx l s z k kz n y k ky m x k kx l s z k kz n y k ky m x k kx 2.2 L 相关 ) 9......(0)()()()8......(0)()()()7......(0)()()(222322322322312312312221221221=--+-+-=--+-+-=--+-+-L z z y y x x L z z y y x x L z z y y x x 3. 求解 3.1 联立方程组(1)-(9),牛顿迭代法解方程组,即可求的i C , 取0>i z ,可得唯一解。 3.2 由i C 求出平台姿态 根据实际情况,建立坐标系如下

六自由度机器人运动分析及优化

本科毕业论文(设计) 题目(中文)六自由度机器人运动分析及优化 (英文) Motionanalysis and optimization of 6-DOF robot 学院信息与机电工程学院院 年级专业 2013级汽车服务工程(中德)) 学生姓名吴子璇正 学号 130154494 7 指导教师安康安 完成日期 2017 年 3 月

摘要 当今世界,工业化日趋成熟,机器人被广泛的应用于各行各业,最常用到的有四自由度,六自由度机器人。其中,自动化水平较高的汽车制造业和电子装配业经常常常要使用到六自由度机器人。因此对其实施运动学分析,是进行科学设计的基础,也是降低机器人生产成本,优化机器人运动轨迹的前提。此外,运动分析过程有效的模拟了机器人运动的真实情况,有助于提供有效可行的优化方案。本文主要探讨六自由度机器人的运动分析,基于经典运动学以及动力学的研究方法概念,首先通过solidworks做出机械臂各部分零件的三维图,然后通过SolidWorks装配出六自由度机器人机械臂的三维模型。通过该模型,选取其中一个关节和底座,并用SolidWorks进行运动学分析,对六自由度机器人的运动学和动力学计算方法进行了仿真验证。最后得到六自由度机器人的其中一个自由度的运动仿真实例。通过对该运动仿真实例的分析,得出最佳优化方案,优化机器人的运动轨迹提高机器人的工作效率,降低机器人生产成本。 关键词:六自由度机器人;运动分析;运动学;动力学;

目录 摘要................................................. I Abstract ............................... 错误!未定义书签。 1 绪论 (1) 1.1 课题背景及研究的目的和意义 (1) 1.2机器人国内外发展现状及前景展望--------------------------1 2 六自由度机器人运动学分析 (4) 2.1六自由度机器人的结构-------------------------------------1 2.2运动学分析----------------------------------------------1 3 六自由度机器人动力学分析 (6) 3.1综述----------------------------------------------------3 3.2机器人动力学研究方法------------------------------------3 3.2.1几项假设-------------------------------------------3 3.2.2目标-----------------------------------------------4 3.2.3数学工具-------------------------------------------5 3.3动力学原理----------------------------------------------3

六自由度电动运动平台

六自由度运动平台的仿真研究 天津工程机械研究院 杨永立 摘要:本文分析了六自由度运动平台分别采用球铰链和万向节铰链进行连接时的自由度,运用欧拉角、旋转变换的方法推导出位置反解方程,介绍了数值迭代法进行位置正解的过程。 关键词:并联,局部自由度,位置反解,位置正解。 1. 简介 运动平台按结构形式可分为串联和并联两大类。与串联形式相比,并联形式具有刚度大、承载能力强、结构简单、运动负荷小、能实现包括横移、纵移、升沉等多个自由度运动等特点。同时,串联形式的优点也很明显,其具有运动空间大,测量精度高,运动、受力分析相对简单、控制、测量的实现相对容易,且每个自由度都能独立运动等特点。 六自由度运动平台(如图1所示)是由六条油缸通过万向节铰链(或球铰链)将上、下两个平台连接而成,下平台固定在基础上,借助六条油缸的伸缩运动,完成上平台在三维空间六个自由度(X, Y,Z,α,β,γ)的运动,从而可以 模拟出各种空间运动姿态。 2. 自由度的确定 若在三维空间有n个完全不受约束 的物体,任选其中一个作为固定参照物, 因每个物体相对参照物都有6个运动自 由度,则n个物体相对参照物共有6(n-1) 个运动自由度。若在所有物体之间用运 动副联接起来组成机构,设第i个运动副 的约束为u i(1到5之间的整数),如果 运动副的总数为g,则机构的自由度M为:

∑=--=g i i u n M 1)1(6 利用上述公式计算一下如图1所示运动平台(采用球铰链)的自由度数。将油缸分解为缸筒和活塞杆,则总的构件数n=14,油缸与上下平台之间的连接为12个球铰链(约束为3),缸筒和活塞杆构成6个既可以相对移动,又可以相对转动的运动副(约束为4),则平台的自由度M 为: ∑=--=g i i u n M 1)1(6=6 (14-1)-(3×12+4×6)=18 计算结果出人意料,平台似乎无法只通过六条油缸进行驱动。但是,如果保持上平台和缸筒固定不动,由球铰链的特性可知,活塞杆仍然可以相对其轴线转动;同理,缸筒也具有同样的效应。实践证明,这种转动并不影响上平台的空间运动姿态,因此属于局部自由度。 在六自由度运动平台的实际设计中,由于球铰链 的刚度差,结构不稳定,所以一般采用万向节铰链(如 图2所示,约束为4)来代替图1中的球铰链,则自由 度M 为: ∑=--=g i i u n M 1)1(6=6 (14-1)-(4×12+4×6)=6 3. 六自由度运动平台空间姿态的解算 要实现对平台空间姿态的控制和测量,必须掌握它两个方向上的解算方法,即位置反解和位置正解。 3.1 位置反解(逆向解): 已知输出件的位置和姿态,求解输入件的位置称为机构的位置反解。在运动平台的实际应用当中,用户所给定的一般都是平台的六个空间姿态参数X ,Y ,Z ,α,β,γ,然而要实现对平台的控制,需要的是六条油缸的长度L 1、L 2…L 6,这正好是已知输出求输入,属于位置反解。也就是说,要实现对平台空间姿态的控制,就必需推导出平台的位置反解方程。 如图1所示,在上平台建立动坐标系o-xyz ,在下平台建立静坐标系O-XYZ , 图2 万向节铰链

六自由度运动平台方案设计分析报告doc

六自由度运动平台方案设计报告doc

————————————————————————————————作者:————————————————————————————————日期:

编号 密级内部阶段标记 C 会签 校对 审核 批准六自由度运动平台 方案设计 名称

内容摘要: 针对YYPT项目在原理样机出现的问题,对YYPT原理样机从结构设计、伺服系统等方面进行优化设计,以满足设计及使用要求。 主 YYPT 优化 题 词 更改单号更改日期更改人更改办法 更 改 栏

1概述 YYPT原理样机用原库房留存的345厂的直流电机作为动力源,直流驱动器及工控机作为控制系统元件,采用VB软件进行控制软件的编制,因设计及器件选型的原因,导致YYPT原理样机,在速度、精度、运动规律上等几个技术指标无法满足原规定的指标要求,现在此基础上进行优化方案的设计。 2 原理样机技术状态 2.1 原理样机方案 2.1.1 组成 原理样机采用工控机作为系统的控制单元,工控机内配有研华PCI1716和PCI1723作为A/D和D/A模拟量卡,驱动器采用AMC公司的型号为12A8的伺服驱动器,并配有直流可调电源其输出电流可达到150A,采用KH08XX(3)电动缸作为运动平台的六条支腿,电动缸上安装有电阻尺作为位置反馈器件,上平台与电动缸连接采用球笼联轴器,下平台与电动缸连接采用虎克铰链方式。具体产品组成表见表2.1。 序号产品名称型号厂家数量备注 1 电动缸KH08XX(3)西安方元明 6 安装345厂电机 2 电阻尺LTS-V1-375 上海徳测 6 3 驱动器50A8 AMC 6 3 A/D卡PCI1716 研华 1 4 D/A卡PCI1723 研华 1 5 工控机610H 研华 1 6 直流电源 1 2.1.2 结构方案 六自由度运动平台是由六条电动缸通过虎克铰链和球笼万向节联轴器将上、下两个平台连接而成,下平台固定在基础上,借助六条电动缸的伸缩运动,完成上平台在三维空间六个自由度(X,Y,Z,α,β,γ)的运动,从而可以模拟出各种空间运动姿态。

(完整版)六自由度机械手

目录 摘要 (2) 第一章绪论 (3) 1.1. 工业机器人概述 (3) 1.2机械手的组成和分类 (4) 1.2.1. 机械手的组成 (4) 1.2.2. 机械手的分类 (5) 第二章机械手的设计方案 (7) 2.1 机械手的“坐标形式”与“自由度” (7) 2.2 机械手的主要参数 (8) 第三章手部结构的设计 (9) 3.1 末端执行器的设计 (9) 3.1.1蜗杆蜗轮型号选择 (10) 3.1.2 驱动电机型号选择 (10) 3.1.3联轴器的选择 (11) 3.2 手腕回转装置设计 (11) 3.2.1 驱动电机的选择 (12) 3.2.2 锥齿轮的设计 (13) 第四章腕部结构设计 (16) 4.1 腕部俯仰结构设计 (16) 4.1.1 驱动电机的选择 (16) 4.1.2 内啮合齿轮的设计 (17) 4.2 手腕左右摆动结构设计 (18) 第五章肘部与肩部的设计 (19) 5.1 肘部结构设计 (19) 5.1.1 驱动电机的选择 (20) 5.1.2内啮合齿轮的设计 (21) 5.2 肩部结构设计 (22) 5.2.1驱动电机的选择 (22) 5.2.2 锥齿轮的设计 (23) 第六章底座的设计 (23) 6.1 驱动电机的选择 (24) 6.2 蜗轮蜗杆的选择 (24) 第七章:ADAMS 模型的建立与仿真 (25) 7.1 手部模型的建立 (25) 致谢 (29) 参考文献 (29)

摘要 本次所设计的作品是“六自由度机械手”。六自由度即:腰部回转、肩部摆动、肘部摆动、腕部左右摆、腕部俯仰摆和腕部回转,最终实现“末端执行器”的夹持动作。 方案一:所有传动均选用“齿轮传动”或者“蜗轮蜗杆传动”。总共需要7个伺服电机来驱动。首先,腰部电机主轴通过联轴器与蜗杆连接,蜗杆旋转带动蜗轮回转,从而蜗轮再带动底座实现360度回转。其次,肩部电机主轴通过联轴器与一个锥形齿轮连接,带动另外一个锥形齿轮进行双向旋转,从而实现肩部带动上臂的摆动动作。再者,肘部电机通过联轴器与一“内啮合”小齿轮连接,而大齿轮与前臂的端部通过平键来周向连接定位。从而电机带动小齿轮,小齿轮通过与大齿轮啮合旋转,带动前臂实现摆动动作。在前臂的末端连接手腕处,电机轴与手部直接连接,通过电机的正反转实现手腕的左右摆动。手腕的俯仰动作原理与肘部摆动原理类似,也是通过一对内啮合齿轮连接。腕部的回转与肩部的摆动原理相同,通过一对锥齿轮来实现。末端执行器通过蜗杆与一对扇形蜗轮进行双向旋转实现。 方案二:所有传动都通过“液压缸”来实现,其形式类似于挖掘机或推土机。最终实现“夹持功能”相同。这种方案优点是:可频繁换向,冲击小,可实现无级调速。不过相比第一种方案:需要专门的一套液压装置,结构复杂,容易漏油污染,而且其摆动角度较小。 因此综合考虑,选用第一种方案。

六自由度位姿调节平台控制系统设计

六自由度位姿调节平台控制系统设计 专业:机械设计制造及其自动化学生:徐瑞 指导老师:朱兴龙 完成时期:2015年6月1日 扬州大学机械工程学院

摘要 六自由度平台在生活和实验设备得到了广泛的应用,例如各种训练模拟器如飞行模拟器、舰艇模拟器、海军直升机起降模拟平台、坦克模拟器、汽车驾驶模拟器、火车驾驶模拟器、地震模拟器以及动感电影、娱乐设备等领域,甚至可用到空间宇宙飞船的对接,空中加油机的加油对接中,在加工业可制成六轴联动机床、灵巧机器人等。为其他试验设备提供了一个可以进行各种姿态调节的支撑平台,方便其他各种实验的展开。由于六自由度运动平台的研制,涉及机械、液压、电气、控制、计算机、传感器,空间运动数学模型、实时信号传输处理、图形显示、动态仿真等等一系列高科技领域,因而六自由度运动平台的研制变成了高等院校、研究院所在液压和控制领域水平的标志性象征。同时平台的姿态能够实时调节、精确度自动化程度高等优点。近些年来,对于六自由度平台的控制得到了关注和研究。本文将针对实验室现有的调节平台,设计其控制系统,使位置、姿态调节更加方便快捷。首先需要进行控制系统总体方案论证,确定可行的总体方案。同时在详细了解实验室现有的调节平台的结构的基础上,根据相应的性能要求确定电机、驱动器、控制器型式,建立了六自由度位姿调节平台的运动学模型,进而建立了六自由度位姿调节平台的运动学方程,设计控制系统线路图,重点考虑电机运动到极限位置时“卡死”问题,设置加以控制,最后采用VC++6.0开发工具,在Windows环境中对控制软件进行功能开发,实

现电动、自动功能,解决电机运动到极限位置时“卡死”问题。 关键字: 六自由度位姿调节平台;极限位置;运动学模型;行程开关 ABSTRACT Six degrees of freedom platform and experiment equipment has been widely used in life, such as all kinds of training simulator such as flight simulator, ship simulator, the navy helicopter landing simulation platform, the tank simulator, vehicle driving simulator, the train driving simulator, the earthquake simulator and action movies, entertainment and other fields, even available space spacecraft docking, refueling tanker docking.In processing can be made into six axis linkage

六自由度平台功率及推力计算

六自由度平台所需功率及推力计算 Sky16807@https://www.docsj.com/doc/2b14862756.html, QQ:44915263 一、单缸运动 A. 按功率计算 单缸运动,1秒内,单缸从行程0运作到行程100,造成平台的重心位置从614提高到631.2,六人平台加座椅,总重按照1吨计算。根据功能原理:电动缸所做的功= 平台重力势能的提高? P= mgh t ()3 310 ? ? - ? ? = 631 2. P- 10 614 10 1 P= 172 w B. 按受力分析计算 将平台看作杠杆,单缸的升起,顶动杠杆绕着支点转动。 支点,由于六自由度平台不是简单的杠杆,运动时,支点位置漂浮并转移,不好找。但是一个简单的道理,支点离该缸越近,该缸越省力,但是为了计算的可靠,我们认为,支点为离该缸最远的转动点。六个缸的头尾支点分布在直径800的圆周上,于是认为单缸的力臂为800,同时,缸与水平面成角46°,由杠杆平衡: = ? F0? ? sin46 400 mg 800 6950 F= N ÷ P3= ? = =- FS ? 695 t/ w 10 1 6950 100 单缸运动,行程刚开始时,为最费力的时刻。当单缸继续升起,该缸越趋于垂直状态,有效分力更大;另一方面,单缸运动,平台开始转动,重心也会朝支点方向移动,该缸将更加轻松,所需的力气减小。

二、双缸运动 双缸运作,分为相邻、相隔、相向三种情况。如果是相邻缸,则和单缸运作相比,势必更省力,所需功率更小。 A. 相向的两缸 对岸相向的两缸,同时运作,会造成平台的曲线平移,平移个过程中,既有水平移动又有垂直升高。 A-1 功能原理 mgh t P =? ()33106141.646101012P -?-??=? w 5.160P = A-2 按受力分析计算 相向两缸刚开始启动,两缸共承担也一直承担1/3的总重。 3/mg 46sin F 2=?? N 1031.2F 3?= w 2311101001031.2t /FS P 34=÷???==-

相关文档