文档视界 最新最全的文档下载
当前位置:文档视界 › 作物分子育种

作物分子育种

作物分子育种

一、作物分子育种

作物育种基本任务:1.在研究和掌握作物形状遗传变异规律的基础上,发掘研究和利用作物种植资源;2.选育优良品种或杂种以及新作物;3.繁殖生产用种。

作物分子育种:即在经典遗传学和分子生物学等理论指导下,将现代生物技术手段整合于传统育种方法中,实现表现型和基因型选择的有机结合,培育优良新品种。

分子标记育种:又称为分子标记辅助选择,是利用与目标基因紧密连锁的分子标记,在杂交后代中准确鉴别不同个体基因型,从而进行辅助选择育种。特点:能有效结合基因型与表现型鉴定,显著提高选择的准确性。转基因育种:利用基因重组DNA技术,将功能明确的基因通过遗传转化手段导入受体品种的基因组,并使其表达期望形状的育种方法。特点:能打破基因不同物种交流障碍,克服传统育种的困难问题。

分子设计育种(刚起步):目的——通过各种技术的集成与整合,在育种家的田间试验之前,对育种程序中的各种因素进行模拟、筛选和优化,确立目标基因型,提出最佳亲本选配和后代选择策略,提高育种试验可见性。我国作物分子育种中存在的问题:1.基因资源挖掘力度有待加强;2.实用分子标记和具重要育种价值的基因十分贫乏;3.作物分子育种技术尚待突破;4.通过分子育种培育的突破性品种不多,产业化程度不高;5.作物分子育种的组织体系和实施机制需要创新。

作物分子育种意义:1.发展作物分子育种是保障国家安全的重大需求;2.全面实现作物分子育种相关技术突破;3.加速作物分子育种研发和产业化。

常规育种和分子育种比较:1.常规育种表现型选择时,会受时空因素影响,而分子育种不会;2.常规育种来源广,育种亲本贫乏;分子育种基因来源广,基因资源丰富。3.常规育种基因局限于种内,少数局限于亚种间;分子育种基因交流不受物种限制。4.常规育种目标性状有不明确性;分子育种目的基因功能已知,目标性状明确。5.最明显特征:常规育种选择时间长;分子育种选择时间短,可调控基因及其产物的功能、表达。

分子育种与传统育种关系:分是传的延伸和发展,二者是互补、嫁接、结合的关系,常规育种与分子育种形成了现代作物育种。

二、作物分子标记育种

遗传标记:指可追踪染色体,染色体某一节段,某个基因座在家系中传递的任何一种遗传特性。两个特点:可遗传性、可识别性。

在植物遗传育种研究中可被应用的遗传标记应具备以下四个条件:1.多态性高;2.最好表现为共显性,能够鉴别出纯合基因型和杂合基因型;3.对主要农艺性状影响小;4.经济方便,容易观察记载。

植物中常用的遗传标记:

形态学标记:即植物的外部形态特征,主要包括肉眼可见的外部特征,如:矮秆、紫鞘、卷叶等;也包括色素、生理特性、生殖特性、抗病虫性等有关的一些特性。

细胞学标记:即植物细胞染色体的变异:包括染色体核型(染色体数目、结构、随体有无、着丝粒位置等)和带型(C带、N带、G带等)的变化。生化标记:利用电泳技术对蛋白质、酶等生物大分子进行鉴定。主要包括同工酶和等位酶标记。

分子标记

分子标记的类型:RFLP、RAPD、AFLP、SSR

分子标记:在生物系统和进化研究中,每个能反应遗传变异的,能提供系统学信息的多态位点称为一个分子标记,在遗传育种研究中每个与感兴趣的性状或目的基因链锁的多态性位点也称为一个分子标记。特点:1.表现稳定(DNA形式);2.数量多;3.多态性高;4.表现中性,不影响目标性状表达;5.区别Aa和AA;6.成本不太高。

分子标记技术:能提供分子标记的分子生物学技术。特点(优点):1.分子标记技术选用的分子信息比较稳定;2.提供遗传信息量是无限的;3.能很好区分同源性和相似性;4.能提供物种间比较共同的尺度;5.打开了遗传学研究的大门。

三、DNA

PEX(异基磺原甲酸)提取方法的具体步骤包括:1.研磨:加入液氮研磨后,放入液氮预冷的离心管,尽量用2ml管,研碎材料不超过离心管一半;2.水浴:加800ul的PEX提取液,充分混匀,65℃水浴45分钟,期间混匀3次,动作不能剧烈;3.离心:12000rpm室温离心10分钟,取灭过菌管,将上清液转入,再次离心;4.沉淀DNA:离心后上清液再次转移,在装有转入上清液的离心管中加1/10体积的3mol/l醋酸钠和1倍体积的异丙醇,混匀,放入-20℃的冰箱中至少沉淀30分钟;5.洗DNA:离心15分钟,倒掉上清液,70%酒精洗所得的DNA,分两次进行;6.室温干燥:用适量的TE溶解DNA;7.再次离心:DNA中的杂质和不溶物会

沉于离心管底部,将上清转移到5ml的离心管中,管壁标记材料名称;

8.检测DNA质量及浓度,放入冰箱。

DNA提取注意事项:1.提取材料尽量要幼嫩叶片;2.整个提取过程应低温,

一般利用液氮、冰浴;3.当DNA处于溶解状态,尽量减弱溶液涡旋,动

作要柔缓。

DNA降解的外源因素:1.外界物理因素:温度、湿度;2.化学因素:PH

值、水解反应、氧化反应;3.生物因素:酶解及微生物侵染等作用。这些

因素都直接与DNA的构型分子组成有关。

四、植物DNA的分子和检测

在琼脂糖凝胶电泳中影响DNA迁移的因素:DNA分子质量、DNA分子

构型、琼脂糖、凝胶浓度、电场强度、EB影响。

聚丙烯酰胺凝胶电泳电泳板的制备:①清洗电泳板②处理电泳板③组装

电泳板④电泳板灌胶。电泳板灌胶是最关键的一步。

影响泳动速度的因素:①电场强度②缓冲溶液的PH③缓冲溶液的离子强

度④电渗⑤焦耳热⑥筛孔

五、RAPD标记

RAPD标记技术的实验原理:

RAPD标记技术的应用:①RAPD标记可用于植物亲缘关系及种质资源遗

传多样性分析②RAPD标记构建分子标记遗传连锁图谱③对优异基因定

位及优异性状的选择④构建DNA指纹图谱及品种鉴定⑤鉴定及标记外援

染色体片段⑥分子标记辅助育种

RAPD标记技术的特点:1.优点:①RAPD标记技术中使用的随机引物,

不需要预先了解目的基因和相应的序列,引物价格便宜,成本较低;②

RAPD标记技术操作技术简单,试验周期短、能在较短时间筛选大量样品

③选用引物没有种属限制④需要模板量较少⑤无需借助于有伤害性的同

位素,耗费的人力物力少⑥灵敏度高⑦可以覆盖整个基因组⑧RAPD产物

有大于50%的条带扩增于单拷贝区。2.缺点:①用于二倍体生物时,不能

很好的区别杂合子和纯合子②在某种情况下,实验重复性不高,实验结果

可靠性低③使用效果受生物种类的影响

如何简单设计一个实验,运用RAPD标记分析植物间的遗传多样性?

六、SSR标记

SSR标记技术实验原理:SSR即简单重复序列,又称微卫星DNA,根据

微卫星DNA两端的单拷贝序列设计一堆特异引物,利用PCR技术,扩

增每个位点的微卫星序列,通过电泳分析核心序列的长度多态性。一般的,

同一类微卫星DNA可分布于整个基因组的不同位置上,而通过其重复的

次数不同以及重复程度的不完全而造成每个座位的多态性。SSR标记的

多态性丰富,重复性好,其标记呈共显性,且在基因组中分散分布,因此

可作为遗传标记。

SSR标记技术的应用:SSR标记技术已被广泛用于遗传图谱构建,品种

指纹图谱绘制及品种纯度检测,以及目标性状基因标记等领域。特别在人

类和哺乳动物的分子连锁图谱中,微卫星标记已成为取代RFLP标记的第

二代分子标记。

SSR标记技术特点:1.优点:①数量丰富,覆盖整个基因组,揭示的多态

性高②具有多等位基因的特性,提供的信息量高③以孟德尔方式遗传,呈

共显性,可鉴别出杂合子和纯合子④每个位点由设计的引物顺序决定⑤结

果重复性高,稳定可靠⑥DNA用量少,对DNA质量要求不高,操作简

单⑦SSR标记一般检测到的是一个单一的多等位基因位点⑧SRR序列的

两侧序列常较保守,在同种而不同遗传型间多相同⑨需要事先知道重复序

列两侧的DNA序列的信息来设计引物,因此引物开发成本高,但一旦开

发,同行受益无穷。2.缺点:①开发和合成新的SRR引物投入高、难度

大②现有的SSR标记数量有限,不能标记所有的功能基因,不能构建饱

和的SRR遗传图谱③SSR多态性的检测和应用很大程度上依赖PCR扩增

的效果④SSR座位突变率高,对变异反应非常敏感等。

SSR标记如何设计引物:①建立基因组DNA的质粒文库②根据欲得到的

SRR类型设计并合成寡聚核苷酸探针,通过菌落杂交筛选所需重组克隆

③对阳性克隆DNA插入序列测序④根据SSR两侧序列设计并合成引物⑤

以待研究的植物DNA为模板,用合成的引物进行PCR扩增反应⑥高浓

度琼脂糖凝胶,非变性或变性聚丙烯酰胺凝胶电泳检测其多态性。

七、AFLP

AFLP标记技术的原理:AFLP技术是基于PCR反应的一种选择性扩增限

制性片段的方法。由于不同物种的基因组DNA大小不同,基因组DNA

经限制性内切酶完全消化后,在限制性片段两端连接上人工接头作为扩增

的模板。实际的引物与接头和酶切位点互补,并在3’加上2~3个选择性

碱基,因此在基因组被酶切后的无数片段中,只有一小部分限制性片段被

扩增,即只有那些与引物3’端互补的片段才能进行扩增,称为选择性扩

增。为了对扩增片段的大小进行灵活的调节,一般采用两个限制性内切酶。

扩增产物经放射性同位素标记、聚丙烯酰胺凝胶电泳分离,可产生数量丰

富的带型标记,然后根据凝胶上DNA指纹的有无来检测多态性。分辨率

高,是一种十分理想和高效的遗传标记。

所用的两种酶:酶切频率较高的限制性酶,酶切频率较低的稀有酶;(4

个识别位点的Mse I,6个识别位点的EcoR I)

AFLP引物包括3部分:5’端的与人工接头序列互补的核心序列,限制性

内切酶特定序列和3’端的选择性碱基。

AFLP的应用:①可用于构建分子遗传连锁图谱②可用于构建指纹图谱,

进行品种鉴定③可用于种内和种间的遗传多样性研究④可用于分子标记

辅助选择育种⑤可用于基因定位基因克隆的研究。

AFLP标记技术特点;1.优点:AFLP不需要预先知道DNA序列的信息,

因此可以用于没有任何分子生物学研究基础的物种,概括其特点如下:①

用于AFLP分析的限制性内切酶与选择性碱基组合的数目和种类很多②

AFLP多态性远远超过其他分子标记③多数表现孟德尔方式遗传④模板

用量少,且对模板浓度的变化不敏感⑤AFLP标记中由于扩增片段较短,

其分辨率很高⑥由于利用特定引物扩增,退火温度高,因而假阳性低,可

靠性高⑦AFLP分析的大多数扩增片段与基因组的单一位置相对应,可用

于分析基因组DNA及克隆相应的DNA片段,可作为遗传图谱和物理图

谱的位标和联系两者的桥梁。2.缺点:①AFLP标记技术试验中对样品

DNA的质量要求较高②内切酶质量要求比较高③技术难度高,成本比较

昂贵④很难鉴别等位基因⑤受专利保护,目前用于分析的试剂盒价格昂

贵,分析成本高⑥实验中产生的大量谱带,对其分析和解释有时存在困难,

需要借助计算机软件的帮助。

DNA甲基化:是由DNA甲基化酶催化的一种天然修饰方式。甲基化是

基因组DNA的一种主要的表观遗传修饰方式,是调控基因组功能的重要

手段。本质上只影响表型而不影响基因型改变。

RFLP标记:限制性片段长度多态性标记

PCR:聚合酶链式反应

RAPD标记:随机扩增多态性DNA标记

AFLP标记:扩增片段长度多态性标记

SSR标记:简单序列重复标记

作物分子设计育种(精)

目前,对大多数作物的育种来说,育种家可供利用的亲本材料有几百甚至上千份,可供选择的杂交组合有上万甚至更多。由于试验规模的限制,一个育种项目所能配置的组合一般只有数百或上千,育种家每年花费大量的时间去选择究竟选用哪些亲本材料进行杂交;对配制的杂交组合,一般要产生2000个以上的 F2 分离后代群体,然后从中选择1%~2%的理想基因型,中选的 F2 个体在遗传上是杂合体,需要做进一步的自交和选择,每个中选的 F2 个体一般需产生100个左右的重组近交家系才能从中选择到存在比例低于1%的理想重组基因型。育种早期选择一般建立在目测基础上,由于环境对性状的影响,选择到优良基因型的可能性极低,统计表明,在配制的杂交组合中,一般只有1%左右的组合有希望选出符合生产需求的品种,考虑到上述分离群体的规模,最终育种效率一般不到百万分之一。因此常规育种存在很大的盲目性和不可预测性,育种工作很大程度上依赖于经验和机遇。 生物个体的表型是基因型和环境共同作用的结果,植物育种的主要任务是寻找控制目标性状的基因,研究这些基因在不同目标环境群体下的表达形式,聚合存在于不同材料中的有利基因,从而为农业生产提供适宜的品种。生物数据可以来自生物的不同水平,如群体水平、个体水平、孟德尔基因水平和 DNA 分子水平等,各类生物数据为作物育种提供了大量的信息。尤其随着分子生物学和基因组学的飞速发展,生物信息数据库积累的数据量极其庞大,但由于缺乏必要的数据整合技术,可资育种工作者利用的信息却非常有限,作物重要农艺性状基因( quantitative trait locus,QTL )的定位结果也难以用于指导作物育种实践。作物分子设计育种将在庞大的生物信息和育种家的需求之间搭起一座桥梁,在育种家的田间试验之前,对育种程序中的各种因素进行模拟筛选和优化,提出最佳的亲本选配和后代选择策略,从而大幅度提高育种效率。 1 作物分子设计育种相关基础研究现状及发展趋势

作物育种学试题5_作物育种学

专业《作物育种学》课程试题5 一填空题(每空0.5分,共10分) 1.品种的主要类型包括自交系品种、、群体品种和。 2.选择育种的基本原理是作物品种的变异现象和学说。 3.作物授粉方式的分类是根据自然异交率高低而定的,一般自然异交率在4%以下的是典型的授粉作物;自然异交率在50%-100%的是典型的授粉作物;常异花授粉作物的自然异交率介于二者之间,一般为4%-50%。 4.引种的基本原理是指相似性原理,生态条件和相似性原理。 5.杂交育种按其指导思想可分为两种类型,一种是育种,另一种是育种。 6.在回交育种中用于多次回交的亲本称亲本,因为他是有利性状(目标性状)的接受者,又称为受体亲本;只有一次杂交时应用的亲本称为亲本,他是目标性状的提供者,故称供体亲本。 7.远缘杂种夭亡和不育的根本原因是由于其遗传系统的破坏,包括核质互作不平衡; 不平衡; 不平衡和组织不协调。 8.按照雄性不育花粉败育发生的过程,雄性不育可分为 不育和不育两种类型 9.作物群体改良是通过鉴定选择、人工控制下的自由交配等一系列育种手段,改变基因、基因型频率,增加优良基因的重组,从而达到提高 和的频率。 10.普通小麦是倍体,有42条染色体;玉米是倍体,有20条染色体。 二、单项选择题(本大题共10小题,每小题1分,共10分) 1.作物育种学的涵义是() A)研究遗传和变异的科学B) 一门人工进化的科学 C)研究选育和繁育优良品种的理论与方法的科学 D)一门综合性强的应用科学 2.选择育种中选择的基本方法有() A) 系谱法和混合法 B) 单株选择和混合选择 C) 一粒传和混合选择 D) 定向选择和分裂选择 3.稳定不分离的株系称为( ) A) 品种 B) 株行

作物育种学课后思考题题目及部分答案

绪论 1.作物品种的概念是什么?它在农业生产中有什么作用? 作物品种(Variety)概念:指某一栽培作物适应于一定的自然生态和生产经济条件,具有相对稳定的遗传性和相对一致的生物学特性和形态特征,并与同一作物的其它类似群体相区别的生态类型。(品种属性:生产资料属性;经济类型属性;地区性时间性。作物品种的类型:纯系品种、杂种品种、综合品种、无性系品种等。) 优良品种的作用:提高单位面积产量;改进产品品质;保持稳产性和产品品质;扩大作物种植面积。 2.作物育种学的任务和主要内容是什么?它与哪些学科关系密切?你打算如何学好作物育种学这门课程? 作物育种学(crop breeding)研究选育和繁育作物优良品种的原理与方法的科学。 主要任务:研究育种规律;培育新品种,实现品种良种化;繁育良种,实现种子标准化。 作物育种学的主要内容 ?育种目标的制订及实现目标的相应策略; ?种质资源的搜集、保存、研究、创新与利用; ?选择的理论与方法; ?人工创新变异的途径、方法及技术; ?杂种优势利用的途径与方法 ?目标性状的遗传、鉴定及选育方法 ?作物育种各阶段的田间试验技术; ?新品种的审定、推广及种子生产 3.常规育种技术的主要任务和特点是什么? 主要任务:提高产量、改进品质和增强抵抗不良环境的能力(抗病、虫、草害和抗旱、寒、碱等)。 特点: 综合多个优良基因; 同步改良作物的产量、品质、抗性水平; 盲目性大; 育种是科学艺术。4.现代作物育种发展动向的主要表现是什么? 1.进一步加强种质资源研究 2.深入开展育种理论与方法的研究 3.加强多学科的综合研究和育种单位间的协作 4.种子产业化 5.调查了解农作物优良品种在提高单位面积产量、改善农产品品质等方面的具体表现。 第1章作物繁殖方式与品种类型 名词解释:

中国农业大学作物育种与栽培(作物栽培部分)专业课考试大纲

中国农业大学大学2015年硕士研究生入学考试 专业课考试大纲 作物栽培学部分(考试大纲) 第一章作物生产与作物栽培 第一节作物生产概况 一、种植业在农业生产中的地位 二、世界和我国的作物生产概况 知识点:了解种植业在农业生产中的重要地位;了解世界和我国作物生产的概况及其发展变化趋势。 第二节作物栽培学的性质、任务和研究法 一、我国作物栽培学的演进和发展 二、作物栽培学的性质和任务 三、作物栽培学研究法 知识点:了解我国作物栽培学的发展历程、现状;掌握作物栽培学的性质、任务、研究对象,以及作物栽培学研究方法。 第二章作物的起源、分类和分布 第一节作物的起源与传播 一、栽培作物的起源和起源中心 二、作物的传播 知识点:了解作物的起源和起源中心,以及主要作物的传播过程;掌握主要粮食、经济作物的起源中心。 第二节作物的分类 一、作物分类的依据和方法 二、作物分类别简述 知识点:掌握作物分类的依据和方法及其类别划分;熟悉各类作物的主要特征。 第三节作物的适应性、分布和我国种植业分区 一、作物的适应性 二、作物的分布 三、我国种植业分区 知识点:掌握作物适应性、品种生态型的概念;掌握影响作物分布的因素,熟悉主要作物的分布以及我国作物的种植业分区。 第三章作物的生长发育与器官建成 第一节作物的生长发育 一、生长发育的概念及其相互关系 二、作物生长发育的基本规律 三、作物的阶段发育 知识点:掌握生长、发育的概念及其相互关系;掌握作物生长发育的阶段性、节奏性、

相关性、局限性和无限性等基本规律;掌握作物的感温性、感光性、基本营养生长性等概念及其在生产中的应用。 第二节作物的生育期和生育时期 一、生育期 二、生育时期及其划分 知识点:掌握作物的生育期、生育时期的概念,作物生育期与产量的关系以及主要作物的生育时期划分。 第三节作物种子萌发与器官发育 一、作物种子萌发 二、根的生长 三、茎的生长 四、叶的生长 五、生殖器官的分化发育 知识点:熟悉作物种子萌发的过程,掌握影响种子萌发的影响因素。掌握种子休眠的概念、原因及其克服方法;掌握作物根、茎、叶的主要功能,单子叶植物和双子叶植物根、茎、叶的特征以及影响其生长的因素;掌握禾谷类作物穗的分化和发育特征,双子叶作物花芽的分化和发育特征。 第四节作物器官生长的相关性 一、营养生长与生殖生长的关系 二、地上部生长与地下部生长的关系 三、作物器官的同伸关系 知识点:掌握营养生长与生殖生长的关系;地上部生长与地下部生长的关系;禾谷类作物营养器官间的同伸关系,幼穗与营养器官的同伸关系。了解双子叶作物器官间的同伸关系。 第四章作物的产量形成 第一节作物产量及其构成因素 一、作物产量 二、作物产量构成因素 三、作物产量形成和产量成分的补偿 知识点:掌握作物的经济产量、生物产量、收获指数等的概念,明确生物产量与经济产量之间的关系;明确作物产量构成因素的概念以及主要作物产量构成因素的组成;掌握主要作物产量构成因素形成的特点及其之间的关系。 第二节作物的源-库-流理论及其应用 一、源 二、库 三、流 四、源、库、流的协调及其应用 知识点:掌握作物源、库、流的概念;熟悉描述作物源、库、流强度的主要指标及其相关概念;掌握影响作物源、库、流的因素;掌握作物源、库、流之间的关系及其应用。 第三节作物群体及其生产结构 一、作物群体 二、作物群体的层次结构与光能利用 三、作物群体结构的影响因素 知识点:掌握作物群体、群体结构的概念;掌握作物群体层次结构的内涵、特征及其变化;掌握作物群体叶层结构与光能利用和物质生产的关系;掌握影响作物群体结构的因素。

水稻抗逆、优质分子设计育种创新团队

团队创新助力中国农业科研 --水稻优质、抗逆分子设计育种创新团队 团队首席科学家黎志康(左三) 2003年8月,作为中国农业科学院国外引进人才,黎志康带领他实验室的团队一起回国,成为近年来中国农科院团队整体引进回国的杰出代表。5年来,以黎志康博士为首席科学家,万建民、王健康、赵开军、徐建龙等农科院一、二级人才为骨干队伍的“水稻抗逆、优质分子设计育种创新团队”,集中优势研究力量和科技资源,充分发挥多学科综合交叉优势,围绕国家重大需求,以近年来国内外倍受关注的“分子育种理论与技术”为生长点和切入点,重点攻克抗逆、优质分子育种理论与技术体系,对水稻抗逆、优质等复杂性状进行深层次基因挖掘和种质创新,分离重要功能基因和进行品种分子设计,取得一系列突破性进展。 团队还充分发挥骨干成员在知识结构上的互补性,以及研究方向相对集中的特点,开展水稻抗逆复杂性状的遗传网络解析和植物分子育种新方法等研究。提出的种质资源大规模回交导入结合DNA分子标记技术高效发掘优异隐蔽基因的分子育种策略,已成为国内外种质资源有利基因挖掘和育种利用的主导方法,居国际领先水平。 该团队依托于农作物基因资源与遗传改良国家重大科学工程,拥有分子育种和分子设计的高效平台及全国水稻分子育种协作网;目前主持国家973、863、农业部948、转基因专项、支撑计划、行业科技及盖茨基金、国际挑战计划等国内外重大项目32项,年均合同经费达5034万元。在北京昌平和海南南滨建有规模化试验场,为本团队研究工作顺利的开展提供全方位的保障。 团队力争在3~5年内在多方面取得重要进展,创建水稻抗逆、优质的分子育种理论与技术体系,研制选择导入系QTL和品种分子设计的计算机软件,克隆优质、抗逆基因,通过分子设计培育高产、优质、抗逆新品种,大力促进我国水稻分子育种的发展和进一步提升我国在这一领域的国际竞争优势,将团队建设成为一支在国内外有影响的一流团队。 “宝剑锋从磨砺出,梅花香自苦寒来”。水稻抗逆、优质分子设计育种创新团队将继续发扬“严谨、勤奋、开放、创新”的团队精神,在复杂数量性状遗传机理剖析及分子设计改良上勇于创新,从而在育种实践中向“知其然,又知其所以然”的方向迈出重要的一步。

作物育种原理与方法

作物育种原理与方法 1.作物育种工作的主要环节有哪些? 2.作物育种的主要方法有哪些? 3.目前生产上大面积推广应用的小麦、玉米、水稻、棉花、花生、大豆、油菜、甘薯等作物的主要育种途径? 4.你认为制约突破性品种培育的关键因素是什么? 一. 作物育种的主要环节。 1.制定育种目标。结合自身种质资源、硬件水平、技术经验等条件制定一个合适的育 种目标。 2.选择合适的育种方法。根据自己做育种的作物选择合适的育种方法。如:玉米选择 杂种优势利用的方法;小麦主要的育种方法是杂交育种;水稻可以选择杂种优势的利用或杂交育种,等等。 3.进行品种审定。育种家育出的新品种需要通过区域试验、生产试验才能通过审定。 需要育种家了解自己品种的优缺点,将其在不同的区域审定,以提高通过的机会。 二.作物育种的主要方法 1.杂交育种。不同品种间杂交获得杂种,继而在杂种后代中进行选择以育出符合生产要求的新品种。 2.杂交优势利用。一般是指杂种在生长势、生活力、抗逆性、繁殖力、适应性、产量、品质等方面优于其亲本的现象。 3.分子标记辅助选择育种。传统育种主要依赖于对植株的表现型的选择。其受环境条件、基因间的互作、基因与环境间的互作等因素的影响。而分子标记辅助选择是对DNA进行标记,通过对其后代基因标记的选择,就可以选择到含有该基因的植株,其选择效率更高。 4.倍性育种。主要是通过单倍体育种使后代快速达到纯合状态。 5.回交育种。对优良品种进行改造。一个优良的品种具有一中小缺点,可以通过回交的方法以使其缺点得到改善。 6.诱变育种。通过物理、化学等方法,使植物变异,以拓宽种质资源,如若得到优良变异,可以通过其他育种方法,将其引入到品种中。 三.小麦、玉米、水稻、棉花、花生、大豆、油菜、甘薯等作物的主要育种途径? 小麦:主要的通过杂交育种(选择优良的栽培种杂交,经过选择,得到目标品种);远缘

(完整版)作物育种学总论复习题及答案

作物育种学总论复习题及答案 1、作物育种学、品种的概念 作物育种学:是研究选育及繁殖作物优良品种的理论与方法的科学 品种:是人类在一定的生态条件和经济条件下,根据人类的需要所选育的某种作物的一定群体;这种群体具有相对稳定的遗传特性,在生物学、形态学及经济性状上的相对一致性,与同一作物的其他群体在特征、特性上有所区别;这种群体在相应地区和耕作条件下种植,在产量、抗性、品质等方面都能符合生产发展的需要。 2、简述作物育种学的特点和任务 作物育种学的特点:作物育种学是作物人工进化的科学,是一门以遗传学、进化论为主要基础的综合性应用科学,它涉及植物学、植物生理学、植物生态学、生物化学、病理学、生物统计与实验设计、生物技术、农产品加工学等领域的知识与研究方法。作物育种学与作物栽培学有着密切的联系。 作物育种学的任务:(1)研究作物遗传性状的基本规律;(2)搜索、创造和研究育种资源,培育优良新品种;(3)繁育良种,生产优良品种的种子。 3、简述作物品种的概念和作用 4、基本概念:自然进化、人工进化 自然进化:由自然变异和自然选择演变发展的进化过程。 人工进化:是指由于人类发展生产的需要,人工创造变异并进行人工选择的进化,其中也包括有意识的利用自然变异和自然选择的作用。 5、生物进化的三大要素及其相互关系 三大要素:变异、遗传和选择 相互关系:遗传变异是进化的内因和基础,选择决定进化的基本方向。 第一章作物的繁殖方式及品种类型 1、说明作物繁殖方式的种类和各类作物群体遗传特点及代表作物 作物遗传方式的种类:一类是有性繁殖,凡是由雌配子(卵子)和雄配子(精子)相互结合,经过受精过程,最后形成种子繁衍后代的,称为有性繁殖。第二种是无性繁殖,凡不经过两性细胞受精过程的方式繁殖后代的统称为无性繁殖。 有性繁殖主植物主要有自花授粉作物、异花授粉作物、常异花授粉作物: (1)自花授粉是指同一朵花的花粉传到同一朵花的雌蕊柱头上,代表作物有水稻、大麦、小麦、大豆、豌豆、花生、烟草、绿豆、亚麻等。自花授粉作物的天然异交率一般低于1%,不超过4%。 (2)异花授粉是指雌蕊柱头接受异株或异花花粉,代表作物有玉米、黑麦、向日葵、白菜型油菜、甘蔗、甜菜、大麻、三叶草等。异花授粉的天然异交率至少在50%以上。 (3)常异花授粉是指一种作物同时依靠自花授粉和异花授粉两种方式繁殖后代的,代表作物是棉花、甘蓝型油菜、芥菜型油菜、高粱、蚕豆等,常异花授粉的天然异交率在5%-50%之间。 2、论述作物品种的类型和各类作物的育种特点 作物品种的类型: (1)自交系品种:又称纯系品种,是对突变或杂合基因型经过连续多代的自交加选择而得到的同质结合群体。

作物育种学的主要内容

1、作物育种学的主要内容 答:1、育种目标的制定及实现育种目标的相应策略。2、种质资源的搜集、保存、研究评价、利用和创新。3选择额理论与方法。4人工变异的途径、方法和技术。5杂种优势的利用与方法。6目标性状的遗传、鉴定及选育方法。7作物育种各个阶段的田间试验技术。8新品种的审定、推广和生产。 2、转基因育种:根据育种目标,从供体生物中分离目的基因,经DNA重组与遗传转化或 直接运载进入受体作物,经过筛选获得稳定表达的遗传工程体,并经过田间试验与大田选择育成转基因新品种或种质资源。 3、作物育种目标:指在一定的自然栽培和经济条件下,对计划选育的新品种提出应具备的 优良特征特性,也就是对育成品种在生物学和经济学上的具体要求。 4、种质资源:一般是指具有特定种质或基因可供育种及其相关研究利用的各种生物类型。 5、作物:是指野生植物经过人类的不断的选择和训化,利用和演化而来的具有经济价值的 栽培植物。 6、作物品种:是人类在一定的生态条件和经济条件下,根据人类的需要所选用的某种作物 的一定群体。 7、长距离引种应注意哪些原则? 答:高纬度的作物引向低纬度1常日照植物北种南引开花推迟选早熟品种 南种北引开花提前选晚熟品种 2短日照植物则相反 8、远缘杂交的作用? 答:1 培育新品种和种质系 2 创造新作物类型 3 创造异染色体系:通过远缘杂交,导入异源染色体或其片段,可创造出异附加系、异替换系和易位系,用以改良现有品种。4 诱导单倍体:诱导孤雌生殖产生单倍体 5 利用杂种优势 6 研究生物的进化。 9、抗病虫育种在现代农业生产中的主要作用? 10、转基因技术对粮食生产的贡献以及存在的争议是什么?你如何看待转基因技术? 答:自古以来人们就从不断繁殖的动植物群体中有目的的选择自己所需要的食物,通过有性杂交、观察和选择具有优良性状的品种进行扩大繁殖、改良,以满足人们摄取更高食物水平的需要。然而传统的杂交育种耗时时间长,通常需要8-10年的时间,虽然发展中国家已在解决贫穷、饥饿和疾病等方面取得了较大的进步,但仍有成千上万的人营养不良,人口的大幅度增长,对粮食产量=提出了更高要求。人们迫切需要一种能提高品质和产量、增加营养含量的新技术,由此转基因技术应运而生。据统计,1996年转基因农产品的销售额达到36亿美元,而且逐年上涨。 尽管有关转基因食品安全的争论未曾平息,转基因技术研究的步伐却从未停止过,在各种媒体上有关转基因的报道可谓铺天盖地,转基因技术进入农业领域的趋势将无法逆转,要解决日益膨胀的人口吃饭问题,转基因技术似乎必不可少,尽管人们对转基因技术的产品还有这样那样的担忧,有关转基因技术的安全性评价还存在许多的不确定性,比如影响人类生育,发生基因突变等。但有一点可以确定的是转基因技术已与我们的生活密不可分。目前还没有有关转基因技术有害方面的报道,有关转基因技术的安全性问题可能并没有想象中的那么可怕。与其安全性相比,转基因技术带给人类的好处缺失显而易见的,它不仅能够生产出口味更佳的食品,而且培育出的作物新品种抗逆性分常强、产量高并且便于储存和运输。

作物分子育种

一、作物分子育种 作物育种基本任务:1.在研究和掌握作物形状遗传变异规律的基础上,发掘研究和利用作物种植资源;2.选育优良品种或杂种以及新作物;3.繁殖生产用种。 作物分子育种:即在经典遗传学和分子生物学等理论指导下,将现代生物技术手段整合于传统育种方法中,实现表现型和基因型选择的有机结合,培育优良新品种。 分子标记育种:又称为分子标记辅助选择,是利用与目标基因紧密连锁的分子标记,在杂交后代中准确鉴别不同个体基因型,从而进行辅助选择育种。特点:能有效结合基因型与表现型鉴定,显著提高选择的准确性。转基因育种:利用基因重组DNA技术,将功能明确的基因通过遗传转化手段导入受体品种的基因组,并使其表达期望形状的育种方法。特点:能打破基因不同物种交流障碍,克服传统育种的困难问题。 分子设计育种(刚起步):目的——通过各种技术的集成与整合,在育种家的田间试验之前,对育种程序中的各种因素进行模拟、筛选和优化,确立目标基因型,提出最佳亲本选配和后代选择策略,提高育种试验可见性。我国作物分子育种中存在的问题:1.基因资源挖掘力度有待加强;2.实用分子标记和具重要育种价值的基因十分贫乏;3.作物分子育种技术尚待突破;4.通过分子育种培育的突破性品种不多,产业化程度不高;5.作物分子育种的组织体系和实施机制需要创新。 作物分子育种意义:1.发展作物分子育种是保障国家安全的重大需求;2.全面实现作物分子育种相关技术突破;3.加速作物分子育种研发和产业化。 常规育种和分子育种比较:1.常规育种表现型选择时,会受时空因素影响,而分子育种不会;2.常规育种来源广,育种亲本贫乏;分子育种基因来源广,基因资源丰富。3.常规育种基因局限于种内,少数局限于亚种间;分子育种基因交流不受物种限制。4.常规育种目标性状有不明确性;分子育种目的基因功能已知,目标性状明确。5.最明显特征:常规育种选择时间长;分子育种选择时间短,可调控基因及其产物的功能、表达。 分子育种与传统育种关系:分是传的延伸和发展,二者是互补、嫁接、结合的关系,常规育种与分子育种形成了现代作物育种。 二、作物分子标记育种 遗传标记:指可追踪染色体,染色体某一节段,某个基因座在家系中传递的任何一种遗传特性。两个特点:可遗传性、可识别性。 在植物遗传育种研究中可被应用的遗传标记应具备以下四个条件:1.多态性高;2.最好表现为共显性,能够鉴别出纯合基因型和杂合基因型;3.对主要农艺性状影响小;4.经济方便,容易观察记载。 植物中常用的遗传标记: 形态学标记:即植物的外部形态特征,主要包括肉眼可见的外部特征,如:矮秆、紫鞘、卷叶等;也包括色素、生理特性、生殖特性、抗病虫性等有关的一些特性。 细胞学标记:即植物细胞染色体的变异:包括染色体核型(染色体数目、结构、随体有无、着丝粒位置等)和带型(C带、N带、G带等)的变化。生化标记:利用电泳技术对蛋白质、酶等生物大分子进行鉴定。主要包括同工酶和等位酶标记。 分子标记 分子标记的类型:RFLP、RAPD、AFLP、SSR 分子标记:在生物系统和进化研究中,每个能反应遗传变异的,能提供系统学信息的多态位点称为一个分子标记,在遗传育种研究中每个与感兴趣的性状或目的基因链锁的多态性位点也称为一个分子标记。特点:1.表现稳定(DNA形式);2.数量多;3.多态性高;4.表现中性,不影响目标性状表达;5.区别Aa和AA;6.成本不太高。 分子标记技术:能提供分子标记的分子生物学技术。特点(优点):1.分子标记技术选用的分子信息比较稳定;2.提供遗传信息量是无限的;3.能很好区分同源性和相似性;4.能提供物种间比较共同的尺度;5.打开了遗传学研究的大门。 三、DNA PEX(异基磺原甲酸)提取方法的具体步骤包括:1.研磨:加入液氮研磨后,放入液氮预冷的离心管,尽量用2ml管,研碎材料不超过离心管一半;2.水浴:加800ul的PEX提取液,充分混匀,65℃水浴45分钟,期间混匀3次,动作不能剧烈;3.离心:12000rpm室温离心10分钟,取灭过菌管,将上清液转入,再次离心;4.沉淀DNA:离心后上清液再次转移,在装有转入上清液的离心管中加1/10体积的3mol/l醋酸钠和1倍体积的异丙醇,混匀,放入-20℃的冰箱中至少沉淀30分钟;5.洗DNA:离心15分钟,倒掉上清液,70%酒精洗所得的DNA,分两次进行;6.室温干燥:用适量的TE溶解DNA;7.再次离心:DNA中的杂质和不溶物会 沉于离心管底部,将上清转移到5ml的离心管中,管壁标记材料名称; 8.检测DNA质量及浓度,放入冰箱。 DNA提取注意事项:1.提取材料尽量要幼嫩叶片;2.整个提取过程应低温, 一般利用液氮、冰浴;3.当DNA处于溶解状态,尽量减弱溶液涡旋,动 作要柔缓。 DNA降解的外源因素:1.外界物理因素:温度、湿度;2.化学因素:PH 值、水解反应、氧化反应;3.生物因素:酶解及微生物侵染等作用。这些 因素都直接与DNA的构型分子组成有关。 四、植物DNA的分子和检测 在琼脂糖凝胶电泳中影响DNA迁移的因素:DNA分子质量、DNA分子 构型、琼脂糖、凝胶浓度、电场强度、EB影响。 聚丙烯酰胺凝胶电泳电泳板的制备:①清洗电泳板②处理电泳板③组装 电泳板④电泳板灌胶。电泳板灌胶是最关键的一步。 影响泳动速度的因素:①电场强度②缓冲溶液的PH③缓冲溶液的离子强 度④电渗⑤焦耳热⑥筛孔 五、RAPD标记 RAPD标记技术的实验原理: RAPD标记技术的应用:①RAPD标记可用于植物亲缘关系及种质资源遗 传多样性分析②RAPD标记构建分子标记遗传连锁图谱③对优异基因定 位及优异性状的选择④构建DNA指纹图谱及品种鉴定⑤鉴定及标记外援 染色体片段⑥分子标记辅助育种 RAPD标记技术的特点:1.优点:①RAPD标记技术中使用的随机引物, 不需要预先了解目的基因和相应的序列,引物价格便宜,成本较低;② RAPD标记技术操作技术简单,试验周期短、能在较短时间筛选大量样品 ③选用引物没有种属限制④需要模板量较少⑤无需借助于有伤害性的同 位素,耗费的人力物力少⑥灵敏度高⑦可以覆盖整个基因组⑧RAPD产物 有大于50%的条带扩增于单拷贝区。2.缺点:①用于二倍体生物时,不能 很好的区别杂合子和纯合子②在某种情况下,实验重复性不高,实验结果 可靠性低③使用效果受生物种类的影响 如何简单设计一个实验,运用RAPD标记分析植物间的遗传多样性? 六、SSR标记 SSR标记技术实验原理:SSR即简单重复序列,又称微卫星DNA,根据 微卫星DNA两端的单拷贝序列设计一堆特异引物,利用PCR技术,扩 增每个位点的微卫星序列,通过电泳分析核心序列的长度多态性。一般的, 同一类微卫星DNA可分布于整个基因组的不同位置上,而通过其重复的 次数不同以及重复程度的不完全而造成每个座位的多态性。SSR标记的 多态性丰富,重复性好,其标记呈共显性,且在基因组中分散分布,因此 可作为遗传标记。 SSR标记技术的应用:SSR标记技术已被广泛用于遗传图谱构建,品种 指纹图谱绘制及品种纯度检测,以及目标性状基因标记等领域。特别在人 类和哺乳动物的分子连锁图谱中,微卫星标记已成为取代RFLP标记的第 二代分子标记。 SSR标记技术特点:1.优点:①数量丰富,覆盖整个基因组,揭示的多态 性高②具有多等位基因的特性,提供的信息量高③以孟德尔方式遗传,呈 共显性,可鉴别出杂合子和纯合子④每个位点由设计的引物顺序决定⑤结 果重复性高,稳定可靠⑥DNA用量少,对DNA质量要求不高,操作简 单⑦SSR标记一般检测到的是一个单一的多等位基因位点⑧SRR序列的 两侧序列常较保守,在同种而不同遗传型间多相同⑨需要事先知道重复序 列两侧的DNA序列的信息来设计引物,因此引物开发成本高,但一旦开 发,同行受益无穷。2.缺点:①开发和合成新的SRR引物投入高、难度 大②现有的SSR标记数量有限,不能标记所有的功能基因,不能构建饱 和的SRR遗传图谱③SSR多态性的检测和应用很大程度上依赖PCR扩增 的效果④SSR座位突变率高,对变异反应非常敏感等。 SSR标记如何设计引物:①建立基因组DNA的质粒文库②根据欲得到的 SRR类型设计并合成寡聚核苷酸探针,通过菌落杂交筛选所需重组克隆 ③对阳性克隆DNA插入序列测序④根据SSR两侧序列设计并合成引物⑤ 以待研究的植物DNA为模板,用合成的引物进行PCR扩增反应⑥高浓 度琼脂糖凝胶,非变性或变性聚丙烯酰胺凝胶电泳检测其多态性。 七、AFLP AFLP标记技术的原理:AFLP技术是基于PCR反应的一种选择性扩增限 制性片段的方法。由于不同物种的基因组DNA大小不同,基因组DNA 经限制性内切酶完全消化后,在限制性片段两端连接上人工接头作为扩增 的模板。实际的引物与接头和酶切位点互补,并在3’加上2~3个选择性 碱基,因此在基因组被酶切后的无数片段中,只有一小部分限制性片段被 扩增,即只有那些与引物3’端互补的片段才能进行扩增,称为选择性扩 增。为了对扩增片段的大小进行灵活的调节,一般采用两个限制性内切酶。 扩增产物经放射性同位素标记、聚丙烯酰胺凝胶电泳分离,可产生数量丰 富的带型标记,然后根据凝胶上DNA指纹的有无来检测多态性。分辨率 高,是一种十分理想和高效的遗传标记。 所用的两种酶:酶切频率较高的限制性酶,酶切频率较低的稀有酶;(4 个识别位点的Mse I,6个识别位点的EcoR I) AFLP引物包括3部分:5’端的与人工接头序列互补的核心序列,限制性 内切酶特定序列和3’端的选择性碱基。 AFLP的应用:①可用于构建分子遗传连锁图谱②可用于构建指纹图谱, 进行品种鉴定③可用于种内和种间的遗传多样性研究④可用于分子标记 辅助选择育种⑤可用于基因定位基因克隆的研究。 AFLP标记技术特点;1.优点:AFLP不需要预先知道DNA序列的信息, 因此可以用于没有任何分子生物学研究基础的物种,概括其特点如下:① 用于AFLP分析的限制性内切酶与选择性碱基组合的数目和种类很多② AFLP多态性远远超过其他分子标记③多数表现孟德尔方式遗传④模板 用量少,且对模板浓度的变化不敏感⑤AFLP标记中由于扩增片段较短, 其分辨率很高⑥由于利用特定引物扩增,退火温度高,因而假阳性低,可 靠性高⑦AFLP分析的大多数扩增片段与基因组的单一位置相对应,可用 于分析基因组DNA及克隆相应的DNA片段,可作为遗传图谱和物理图 谱的位标和联系两者的桥梁。2.缺点:①AFLP标记技术试验中对样品 DNA的质量要求较高②内切酶质量要求比较高③技术难度高,成本比较 昂贵④很难鉴别等位基因⑤受专利保护,目前用于分析的试剂盒价格昂 贵,分析成本高⑥实验中产生的大量谱带,对其分析和解释有时存在困难, 需要借助计算机软件的帮助。 DNA甲基化:是由DNA甲基化酶催化的一种天然修饰方式。甲基化是 基因组DNA的一种主要的表观遗传修饰方式,是调控基因组功能的重要 手段。本质上只影响表型而不影响基因型改变。 RFLP标记:限制性片段长度多态性标记 PCR:聚合酶链式反应 RAPD标记:随机扩增多态性DNA标记 AFLP标记:扩增片段长度多态性标记 SSR标记:简单序列重复标记

作物分子育种习题答案

一、名词解释 1 作物分子育种: 直接从分子水平上改变某一作物品种基因组成而创造可稳定遗 传变异来进行新品种培育的过程,称为作物分子育种。 2 基因组: 一个物种单倍体细胞所含有的整套染色体,物种全部遗传信息的总和, 包括核基因组和细胞器基因组。 3 人工染色体: 人工组建的具有染色体功能的DNA分子。 4 功能标记: 称诊断标记,是基于生物功能已知的引起表型变异的基因内部序列多 态性位点开发的分子标记。 5 分子设计育种: 利用作物基因组学蛋白质组学和代谢组学的生物数据,借助生物信息学的方法和手段,对整个基因组控制作物重要农艺性状的基因及基因网络进行 分子水平上的设计和操作,进而培育作物新品种的过程。 6 基因组学: 研究基因组结构、功能和进化的科学。 7 染色体工程:按照人们预定目标,采用一定的方法和步骤,通过染色体操纵改变 生物染色体组成并进而改变其遗传性的过程。 8 物理图谱:用分子生物学方法直接检测DNA标记在染色体上的实际位置绘制成的图谱。 9 序列图谱:以某一染色体上所含的全部碱基顺序绘制的图谱。

10 遗传图谱:指基因或DNA标记在染色体上的相对位置与遗传距离。通常用cM表示(基因或DNA片段在染色体交换过程中分离的频率)。 11 转录图谱:以EST为位标,根据转录顺序的位置和距离绘制的图谱,它是染色 体DNA某一区域内所有可转录序列的分布图,是基因图的雏形。 12 同源:如果两条或多条序列拥有共同祖先,则称它们同源。 13 直系同源:不同物种间,功能相同或相似的序列来源于共同祖先的现象。 14 并系同源:同一物种中,由于基因倍增事件产生相似序列的现象。 15 异同源:指物种间遗传物质平行转移的现象。 16 染色体转导:(染色体介导的基因转移技术)将同特定基因表达有关的染色体 或染色体片段转入受体细胞,是该基因得以表达,并能在细胞分裂中一代一代地传 递下去,又称染色体转导。 17 序列比对:通过比较生物分子序列,发现它们的相似性,找出序列之间共同的 区域,同时辨别序列之间的差异,从而揭示生物序列的功能、结构和进化的信息。 二、填空 1国际作物分子育种领域主要争夺的焦点是生物基因资源。 2作物分子育种大致经历了常规育种阶段、生物技术渗透阶段和分子育种阶段。 3TRAP标记是利用生物信息工具和EST数据库信息, 产生目标候选基因区多态性标

作物育种学

作物育种学总论复习资料 绪论 1、作物育种学:是研究选育及繁殖作物优良品种的理论与方法的科学。 2、作物品种:是人类在一定的生态条件和经济条件下,根据人类的需要所选育的某种作物的一定群体;这种群体具有相对稳定性的遗传特性,在生物学、形态学及经济学性状上的相对一致性,与同一作物的其他群体在特征,特性上有所区别;这种群体在相应的地区和耕作条件下种植,在产量、抗性、品质等方面都有符合生产发展的需要。 3、简述作物育种学的特点和任务:答:(1)特点:作物育种学是作物人工进化的科学,是一门以遗传学、进化论为主要基础的综合性应用科学,它涉及植物学、植物生理学、生物化学、病理学、生物统计与实验设计、生物技术、农产品加工学等领域的只是与研究方法。作物育种学与作物栽培学有着紧密的联系。(2)任务:A、研究作物遗传性状的基本规律;B、搜集创造和研究育种资源,培育优良新品种; C、繁育良种,生产优良品种的种子。 3、自然进化:由自然变异和自然选择突变发展的进化过程。 4、人工进化:是指由于人类发展生产的需要,人工创造变异并能进行人工选择的进化,之中包括有意的利用自然变异及自然选择的作用。 5、生物进化的三大要素及相互关系:变异、遗传和选择遗传和变异是进化的内因和基础,选择决定进化的发展方向。 6、品种:是指某种一栽培作物适应于一定的自然生态和生产经济条件具有相对的稳定的遗传性和充分一直的生物学特性与形态学特征,并以此与同一作物的其他类似群体相区别的生态类型。 第一章作物的繁育方式及品种类型 1、说明作物繁殖方式的种类和各类作物群体遗传特点及代表作物:(1)作物繁殖的方式有:有性生殖和无性生殖。 (2)有性繁殖植物主要有自花授粉作物、异花授粉作物和常异花授粉作物: A、自花授粉是指痛一朵花的花粉传到同一花朵的雌蕊柱头上,代表的作物有水稻、大麦、小麦、大豆、豌豆、花生、烟草、绿豆亚麻等,自花授粉作物的自然异交率一般低于1%,不超过4%。 B、异花授粉是雌蕊柱头接受异株或异花花粉授粉的,代表作物有玉米、黑麦、向日葵、白菜型油菜、甘蔗、甜菜、大麻、三叶草的呢过,异花授粉的自然异交率至少在50%以上。 C、常异花授粉是指一种作物同时依靠自花授粉和异花授粉两种

(完整版)作物育种学总论整理

作物育种学总论整理 绪论 1.作物品种的概念:是人类在一定的生态条件和经济条件下,根据人类的需要所选育的某种作物的一定群体。具有三性(DUS):特异性(Distinctness) 、一致性(Uniformity)、稳定性(Stability)。 2.作物品种类型:纯系品种、杂种品种、综合品种、无性系品种。 3.优良品种:指在一定地区和耕作条件下能符合生产发展要求,并具有较高经济价值的品种。生产上所谓的良种,包括具有优良品种品质和优良播种品质的双重含义。 第一章作物的繁殖方式与品种类型 1.不同作物的授粉方式: 自花授粉作物(<4%): 水稻、小麦、大麦、大豆等 异花授粉作物(>50%): 玉米、黑麦、甘薯、白菜型油菜 常异花授粉作物(5-50%): 棉花、甘蓝型油菜、高粱、蚕豆等 2.自交不亲和性:具有完全化并可形成正常雌雄配子,但却上自花授粉结实能力的一种自交不育性。 3.雄性不育性:植物的雌蕊正常而花粉败育,不产生有功能的雄配子的特性。 4.无性系:由营养体繁殖的后代。 5.无融合生殖:植物的雌雄性细胞不经过正常受精和两性配子的融合过程而直接形成种子以繁衍后代的方式,包括无孢子生殖、二倍体孢子生殖、不定胚生殖、孤雌生殖、孤雄生殖。 6.自交的遗传效应 ①保持纯合基因型 ②使杂合后代基因型趋于纯合、并发生性状分离Xmn=(1-1/2n)m ③自交引起杂合基因型的后代生活力衰退 7.异交的遗传效应 ①异交形成杂合基因型(杂交) ②异交增强后代的生活力 8.自交系品种(纯系品种):突变或杂合基因型连续自交和选择育成的基因型同质纯合群体。 9.杂交种品种:在严格选择亲本(自交系)和控制授粉的条件下生产的杂交组合的F1植株群体。 10.群体品种:遗传基础复杂、群体内植株基因型有一定程度的杂合或异质性的一群植株群体。 11.无性系品种:由一个或几个近似的无性系经过营养器官的繁殖而成的一个群体。

作物遗传育种学科简介

作物遗传育种学科简介 作物遗传育种学科,是原华南热带农业大学与中国热带农业科学院有机结合共建的学科,最初是以国家战略物资——橡胶为主要研究对象,现在拓宽到几乎所有的热带作物领域的研究,具有显著的“热带”特色。该学科点1984年获硕士学位授予权,1993年获博士学位授予权,1997年建立作物学一级学科博士后流动站,1999年被评为海南省和农业部重点学科,2000年获作物学一级学科博士学位授予权,2002年被评为国家重点学科,2004年建立国家橡胶树育种中心,2006年又建立了博士后科研工作站和国家重要热带作物工程技术研究中心。 学科研究方向本学科以热带作物(主要包括橡胶树等热带经济作物,木薯、甘蔗等生物质能源作物,香蕉、芒果、荔枝、番木瓜等热带果树,热带牧草和南药等)和主要农作物(如水稻等)为研究对象,主要在以下4个研究方向开展科学研究与教学工作。 (1)作物育种原理与方法:主要探索热带作物育种新原理与方法,利用常规育种技术与分子辅助育种技术相结合培育高产、优质、抗逆的热带作物新品种,研发能充分发挥新品种作用的配套技术。 (2)植物细胞与分子生物学:主要研究热带作物主要经济性状、抗逆性的形成机制,分子标记鉴定和功能基因克隆等,为新品种选育

提供有效的新分子标记和新功能基因。 (3)农业生物技术:主要建立热带作物遗传转化体系和遗传转化方法,通过遗传转化技术培育新品种。 (4)热带作物种质资源学:主要进行热带种质资源(包括橡胶、木薯、牧草、甘蔗、旱稻等)的挖掘、保存、创新利用,并建立种质资源共享网络平台,为细胞与分子生物学研究和新品种选育提供有效材料。 人才队伍该学科点现有讲师以上科教人员65人,其中校内专职人员25人、中国热带农业科学院人员40人;有教授/研究员34人(含热科院,下同),副教授/副研究员22人。有研究生导师50名,学科人员平均年龄42岁。 学科点先后引进8名博士,在本学科在职培养硕士或博士12人次,在国内做博士后5名。在国外留学或进修8名。目前47人具有博士学位。 科学研究7年来共计获得省部级以上科研项目105项,经费达5687.3万元;横向及国际合作项目5项,经费为345元;院校科研基金253.2万元。国家级项目主要为:“973”前期、“973”计划、“863”计划、国家自然科学基金、国家转基因植物研究开发专项、国家科技成果重点推广计划、国家科技基础条件平台工作项目、国家科技基础性工作专项、中央级科研院所技术开发研究专项、国家农业科技成果转化资金、科研院所社会公益研究专项、国家现代产业体系。 部级项目主要为:教育部科技研究重点项目、教育部“新世纪优秀人

我国大豆分子设计育种成果与展望

我国大豆分子设计育种成果与展望 田志喜1* 刘宝辉2 杨艳萍3 李 明1 姚 远4 任小波4 薛勇彪1 1 中国科学院遗传与发育生物学研究所 北京 100101 2 中国科学院东北地理与农业生态研究所 哈尔滨 150081 3 中国科学院文献情报中心 北京 100190 4 中国科学院 重大科技任务局 北京 100864 摘要 大豆是重要的粮油兼用作物,同时也是人类优质蛋白及畜牧业饲料蛋白的主要来源,在我国粮食结构中占有 重要地位。目前,我国育种技术主要以常规育种为主,大豆科学研究和生产水平明显落后于美国。通过中国科学院战略性先导科技专项(A 类)“分子模块设计育种创新体系”的实施,已经鉴定到若干高产、优质分子模块,解析了部分重要农艺性状的模块耦合效应,创制了一批大豆优异种质材料,成功培育多个高产、优质的初级模块大豆新品种,初步建立了大豆分子模块设计育种体系。未来,应继续加强种质资源的系统评价、挖掘利用和创制,推动自主性整合公共数据库构建,健全数据共享机制,大力开展大豆高产稳产突破性技术和豆粕替代饲料的研究,加快分子设计育种和人工智能育种创新体系建设,培育具有突破性的大豆新品种,创制绿色高效栽培技术,增强我国大豆自产能力,缓解大豆需求缺口。 关键词 大豆,育种技术,分子模块设计育种,分子模块,模块耦合与组装 DOI 10.16418/j.issn.1000-3045.2018.09.004 *通讯作者 资助项目:中国科学院战略性先导科技专项(A 类)(XDA 08000000)修改稿收到日期:2018年8月27日 ① USDA. https://https://www.docsj.com/doc/2f5387564.html,/psdonline/app/index.html#/app/advQuery. 专题:分子模块设计育种 Designer Breeding by Molecular Modules 1 我国大豆产业与科研现状 1.1 大豆是我国食用油和饲料的主要来源,供需矛盾日 益突出 大豆是重要的粮食作物和经济作物,为人类提供丰富优质的油脂和蛋白资源。无论大豆油还是作为饲 料的豆粕,我国一直都是消费大国,消费量居世界第一 位。仅 2017 年,我国消费大豆油 1 740 万吨,占全球消费总量的 30.9%;消费豆粕 7 407 万吨,占全球消费总量的 31.7%①。 随着人口增长、人民生活水平提高和饮食结构的变化,我国对大豆的需求逐年增加,供求矛盾日益突出。

植物分子育种复习题

植物分子育种复习题 分子植物育种:依据分子遗传学,遗传学和植物育种学的理论,利用DNA重组技术和DNA标记技术来改良植物品种的新型学科。 分子标记:DNA水平上遗传多态性的直接反映,是直接以DNA多态性为基础的遗传标记。 SSR:微卫星或简单序列重复,以2-6个核苷酸为基本单元的简单串联重复序列。 InDel:插入缺失标记,指的是两种亲本中在全基因组中的差异,相对另一个亲本而言,其中一个亲本的基因组中有一定数量的核苷酸插入或缺失。根据基因组中插入缺失位点,设计一些扩增这些插入缺失位点的PCR 引物,就是InDel。 CAPS:先对样品DNA进行专化性扩增,再用限制性内切酶对扩增产物进行酶切检测其多态性,称为CAPS 标记。 SNP:具有单核苷酸差异引起的遗传多态性特征的DNA区域,可以作为一种DNA标记,即SNP。 基因功能标记:根据已克隆的基因序列开发的分子标记,标记和基因共分离,能完全准确地跟踪和识别基因。 显性标记:仅能检测显性等位基因,不能够区分纯合和杂合基因型的遗传标记。有RAPD、AFLP、ISSR、STS。 共显性标记:同时能检测出显性和隐性等位基因,能够区分纯合和杂合基因型的遗传标记。有RFLP、RAPD、AFLP、SSR、ISSR、SCAR、STS、CAPs。 特异引物PCR标记:针对已知序列的DNA区段而设计的,具有特定核苷酸序列,引物长度通常为18-24核苷酸。常用的特异引物PCR标记主要有SSR标记、SCAR标记、STS标记及RGA标记等。 随机引物PCR标记:所用引物的核苷酸序列是随机的,其扩增的DNA区段是事先未知的。常用的随机引物PCR标记主要有RAPD、AP-PCR、DAF、ISSR等。 基于PCR的分子标记有:1. 特异引物PCR标记主要有SSR标记、SCAR标记、STS标记及RGA标记;2. 随机引物PCR标记主要有RAPD、AP-PCR、DAF、ISSR。 基于限制性酶切和PCR相结合的分子标记有AFLP标记和CAPS标记。 RIL群体:杂种后代经过多代自交而产生的一种作图群体。通常从F2代开始,采用单粒传代的方法来建立。 DH群体:单倍体经过染色体加倍形成的二倍体称为加倍单倍体或双单倍体(DH),由它们组成的群体为DH 群体。 LOD值:假设两座位间存在连锁(r < 0.5)的概率与假设没有连锁(r = 0.5)的概率。这两种概率之比可以用似然比统计量来表示,即L(r)/L(0.5),其中L()为似然函数。为了计算方便,常将L(r)/L(0.5)取以10为底的对数,称为LOD值。 BSA:将高值和低值两组个体的DNA分别混合,形成两个DNA池,然后检验两池间的遗传多态性。 RCA:源于BSA的方法,可用于隐性分析。

相关文档