文档视界 最新最全的文档下载
当前位置:文档视界 › 离心泵气蚀的主要原因分析

离心泵气蚀的主要原因分析

离心泵气蚀的主要原因分析
离心泵气蚀的主要原因分析

离心泵气蚀的主要原因分析

影响离心泵气蚀的因素是设计与使用离心泵所必须考虑的问题,近年来国内外对其进行了大量的研究。但由于研究的侧重点不同,且大多都是针对影响离心泵气蚀的某一参数进行的研究,造成研究成果较为分散,且部分观点之间相互矛盾。本文综合国内外大量文献,对离心泵气蚀影响因素的相关研究结果进行比较、分析,得出目前较为全面的影响离心泵气蚀的主要因素。

1.流体物理特性方面的影响

流体物理特性对离心泵气蚀的影响主要包括:所输送流体的纯净度、pH值和电解质浓度、溶解气体量、温度、运动黏度、汽化压力及热力学性质。

(1)纯净度(所含固体颗粒物浓度)的影响流体中所含固体杂质越多,将导致气蚀核子的数量增多。从而加速气蚀的发生与发展。

(2)pH值和电解质浓度的影响输送极性介质的离心泵(如一般的水泵)与输送非极性介质的离心泵(输送苯、烷烃等有机物的泵),其气蚀机理是不同的。输送极性介质的离心泵的气蚀损伤可能包括机械作用、化学腐蚀(与流体PH值有关)、电化学腐蚀(与流体电解质浓度有关);而输送非极性介质的离心泵的气蚀损伤可能只有机械作用。

(3)气体溶解度的影响国外研究表明流体内溶解的气体含量对气蚀核子的产生与发展起到促进作用。

(4)气化压力的影响研究表明随着气化压力的增高,气蚀损伤先升高后降低。因为随着气化压力的升高,流体内形成的不稳定气泡核的数量也不断升高,从而引起气泡破裂数量的增多,冲击波强度增大,气蚀率上升。但如果气化压力继续增大,使气泡数增加到一定限度,气泡群形成一种“层间隔”的作用,阻止了冲击波行进,削弱其强度,气蚀的破坏程度反而会逐渐降低。

(5)温度的影响在流体中温度的改变将导致气化压力、气体溶解度、表面张力等其他影响气蚀的物理性质出现较大改变。由此可见,温度对气蚀的影响机制较为复杂,需结合实际情况进行判断。

(6)表面张力的影响当其他因素保持不变,降低流体表面张力可以减少气蚀损伤。因为随着流体表面张力的减小,气泡溃灭所产生冲击波的强度减弱,气蚀速率降低。

(7)液体黏度的影响流体黏度越大,流速越低,达到高压区的气泡数越少,气泡破灭所产生冲击波的强度就减小。同时,流体黏度越大,对冲击波削弱也越大。因此,流体的黏度越低,气蚀损伤越严重。

(8)液体的可压缩性和密度的影响随着流体密度的增加,可压缩性降低,气蚀损失增加。 2.过流部件材质特性方面的影响

由于泵的气蚀损伤主要体现为对过流部件材质的损坏。因此,过流部件的材料性能也将在一定程度上对离心泵的气蚀产生影响,采用抗气蚀性能良好的材料制造

过流部件是减少离心泵气蚀影响的有效措施。

(1)材料的硬度以AISI304材质的叶轮为例,气蚀会造成叶轮材料的加工硬化和相变诱发马氏体钢,这种变化将反过来阻止材料的进一步气蚀。而加工硬化和相变诱发马氏体钢的抗气蚀性主要依赖于叶轮材质的硬度。

(2)加工硬化与抗疲劳性能材料加工硬化指数越高,抗疲劳性能越好,则材料抗气蚀性能越好。

(3)晶体结构的影响在其他条件确定的情况下,抗气蚀率是显微结构的函数。在立方晶系中,由于体心立方晶格的金属具有较高的应变速率敏感性,当应变速率上升时,会引起快速的穿晶脆性断裂和解理断裂,并导致点蚀形成,从而产生较大的磨蚀率。对于密排六方晶格的金属,当接近于理想的轴比且处于气蚀环境时,六个滑移系全部开动,迅速转变成稳定态FCC,吸收气蚀应力所做的功(公众号:泵管家),使磨蚀率下降。对于面心立方晶格的金属,滑移系较多,在高应力作用下,将发生塑性流变。因此,孕育期长,磨蚀率降低。总之,在气蚀过程中,发生由BCC向HCP或FCC向HCP转变,都将提高抗气蚀性。

(4)晶粒大小的影响叶轮所使用金属材料的晶粒尺寸越小,抗气蚀性能越好。因为金属的晶粒尺寸越小,细晶使晶界增多,位错滑移受阻,裂纹在扩展中受阻力增大,延长了磨蚀寿命。

2.离心泵结构设计方面的影响

在离心泵结构设计方面对泵气蚀特性起主要影响的可以分为泵体设计和叶轮设计两个方面。研究表明影响离心泵气蚀性能的直接因素是叶轮进口的局部流动均匀性,因此叶轮结构设计比泵体的设计对离心泵气蚀的影响大,是主要影响因素。(1)叶轮结构对离心泵气蚀性能的影响

离心泵叶轮结构对泵的气蚀性能有着重要的影响,合理的叶轮结构可以改善泵的气蚀性能。1)叶片进口厚度。叶片的排挤作用使得进口处流体速度增加而产生压力损失。选择较小的叶片进口厚度,可以减少叶片对液流的冲击,增大叶片进口处的过流面积,减少叶片的排挤,从而降低叶片进口的绝对速度和相对速度,提高泵的抗气蚀性能。

2)叶轮进口流道表面粗糙度。离心泵的叶轮进口流道的表面粗糙度可以分为二类:一类是孤立粗糙突体(如明显的突出流道表面的夹渣或明显的机加工与非加工过渡棱等),另一类是沿整个表面某一部份均匀分布的粗糙突体。研究表明孤立粗糙突体会在液流中引起额外的冲击和漩涡,因此沿整个表面均匀分布的粗糙突体与同样高度的孤立粗糙突体比较,其气蚀发生的危险性要小得多。由此可见,对粗糙流道的表面,尤其是存在孤立粗糙突体的表面,进行必要的打磨是提高离心泵抗气蚀性能的有效措施。

3)叶片进口喉部面积。叶片进口的喉部面积对离心泵气蚀性能的影响非常之大。如果叶片入口喉部面积较小,即使叶片进口处过流面积与叶轮进口断面面积之比

设计的较为合理,但仍旧很可能无法达到理想的气蚀性能。叶轮叶片进口喉部面积过小,将导致叶片进口液流的绝对速度增大,从而造成离心泵抗气蚀性能下降。4)叶片数。离心泵叶轮内叶片的数量对于泵的扬程、效率、气蚀性能都有较大影响。固然,采用较少的叶轮叶片数量能减少的摩擦面,制造简单,但是它对流体的导向作用却变差了(公众号:泵管家);而采用较多的叶片数可以减少叶片负荷,改善初生气蚀特性,但是叶片数过多会造成排挤程度的增加,并使相邻叶片之间的宽度减小,从而容易形成汽泡群堵塞流道,致使机泵气蚀性能变差。因此,在选择叶轮叶片数时,一方面要尽量减少叶片的排挤与摩擦面,另一方面又要使叶道有足够的长度,以保证液流的稳定性和叶片对液体的充分作用。目前,对于叶片数的取值并没有一个确定的、公认的规则。但大量的研究表明,针对具体的离心泵设计,应用CFD流场数值模拟的方法可以有效的确定叶轮叶片数的最佳范围。(2)叶轮吸入口参数对离心泵气蚀性能的影响

叶轮吸入口参数即决定叶轮叶片进口面积的相关结构参数,其包括:叶片进口冲角、叶轮进口直径、叶片进口流道宽度以及轮毂直径。

1)叶片进口冲角Δβ一般取正冲角(3°~10°)。由于采用正冲角,增大了叶片进口角,从而能够有效减小叶片的弯曲,增大叶片进口过流面积,减小叶片的排挤。这些因素都将减小v0和ω0,提高泵的抗气蚀性能。并且离心泵的流量增加时,进口相对液流角增大,采用正冲角可以避免泵在大流量下运转时出现负冲角,造成λ2急剧上升(如下图所示)。大量研究表明增大叶片进口角,保持正冲角,能提高泵的抗气蚀性能,而且对效率影响不大。但冲角的选择对离心泵的抗气蚀性能则存在一个最优值,并不是冲角越大越好,应结合实际情况进行分析、选择。2)叶轮进口直径。在流量恒定的情况下,叶轮进口处液流的绝对速度和相对速度都是吸入管径的函数。因此,对于提高离心泵的抗气蚀特性,叶轮进口直径存在一个最佳值。当叶轮进口直径小于此最佳值时,随着叶轮直径的增大,进口处的流速减小,离心泵气蚀性能不断提高。但当叶轮直径的取值超过最佳值之后,对于给定流量来说,随着进口直径的增大,在叶轮进口部分将形成停滞区和反向流,使离心泵气蚀性能逐渐恶化。

3)叶片进口流道宽度。在离心泵的工况不变的情况下,增大叶片进口处流道的宽度会使液流绝对速度的轴面分速度减小,从而改善离心泵的气蚀特性,并且对离心泵的水力效率和容积效率影响较小。

4)轮毂直径。减小叶轮的轮毂直径会增大叶轮流道的实际进口面积,从而使离心泵的气蚀性能得到改善。

5)叶轮前盖板的曲率半径。流体在流经离心泵吸入口至叶轮进口处时,由于流道收缩,流体流速增加,从而产生一定的压力损失。同时,由于在此过程中流体流动的方向由轴向变为径向,因转弯处流场不均匀也会产生一部分压力损失。可见叶轮前盖板曲率半径的大小直接影响着压力损失的大小,进而影响着离心泵的

气蚀特性。采用较大的曲率半径可减弱前盖处液流转弯处流速的变化,使流速均匀平稳,改善离心泵气蚀性能。

3.其他方面的影响:

1.参数的相互影响

到目前为止,对离心泵气蚀影响因素的研究都只是针对某个参数进行的,对各个参数间的相互影响则很少研究。但结构参数的影响是一个统一的整体,它们是互相制约、互相影响的,今后的研究应该向综合影响因素方向发展。

2.离心泵的运行工况

离心泵在实际使用过程中,由于操作条件极为复杂,泵入口流量、压力随之不断改变。因此,离心泵的实际工况往往与实验、设计的工况存在较大的偏差。其发生气蚀的可能远远超出实验的预计。

小结

由于气蚀的机理非常复杂,影响离心泵气蚀的因素较多,且各种因素并不是孤立作用的,不同的影响因素之间存在相互作用、相互影响。因此在研究离心泵的气蚀性能时,应结合实际情况对影响泵气蚀的机理与因素进行通盘的考虑。近年来,随着CFD 技术的发展,通过对离心泵内流场的数值模拟,为研究多种因素共同影响下的离心泵气蚀性能提供了新的手段。但目前,大多数离心泵气蚀CFD数值模拟仍局限于研究单一因素对泵气蚀性能的影响,接下来的研究应更多关注不同因素间相互作用对离心泵抗气蚀性能的影响。

浅谈离心泵的故障原因及应对措施(标准版)

( 安全论文 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 浅谈离心泵的故障原因及应对 措施(标准版) Safety is inseparable from production and efficiency. Only when safety is good can we ensure better production. Pay attention to safety at all times.

浅谈离心泵的故障原因及应对措施(标准 版) 摘要:泵是一种流体机械,它给予液体一定能量而沿管路输送液体。由于泵的结构简单、比较耐用,是被广泛应用于石油、化工、电力、冶金、矿山、造船、工程、轻工、农业和国防等部门的一种通用机械设备。尤其是在石油炼化企业生产中,泵类设备是不可缺少的运转设备之一,这其中要以离心泵的应用较为常见。在离心泵的运转过程中,难免会出现各种故障。为了确保设备正常运转,保证工艺生产的正常运行,必须加强日常生产中的维护和保养,并对离心泵出现的各种故障进行分析并采取相应的措施加以处理。本文主要从离心泵的结构、工作原理、常见故障、影响因素、日常的维护保养及应对的措施等几方面进行探讨和分析。 关键词:离心泵故障措施

1离心泵的主要组成部分 离心泵主要是由叶轮、泵体、泵轴、轴承、密封环、填料函等几部分组成。 1.1叶轮:叶轮是离心泵的核心部分,是将原动机输入的机械能传递给液体,提高液体能量的核心部件。它用键固定于轴上,被电机驱动旋转对液体作功进行能量传递转换。叶轮上的内外表面要求光滑,以减少水流的摩擦损失。根据其结构形式可分为闭式、开式、半开式三种。其中闭式叶轮效率较高,开式叶轮效率较低。 1.2泵体:泵体也称泵壳,它是离心泵的主体,起到支撑固定的作用,并与安装轴承的托架相连接。 1.3泵轴:泵轴是传递扭矩的主要部件,其主要作用是将联轴器和电动机相链接,并将电动机的转矩传给叶轮。泵轴通常要选用强度较高的碳钢或合金钢并经调质处理,轴径按强度、刚度及临界转速定。 1.4轴承:轴承是套在泵轴上支撑泵轴的构件,有滚动轴承和滑动轴承两种。常见的轴承润滑方式有油润滑和脂润滑两种。滚动轴

离心泵的气缚与气蚀现象

离心泵的气缚与气蚀现象 为区分离心泵的“气缚”与“汽蚀”现象,有必要先简要了解离心泵的结构和理解其工作原理。 离心泵的外观是一个蜗牛状的泉壳,里面装有与泵轴相连的叶轮及泵的进出口阀门等构成。离心泵在开泵前,泵内必须充满液体。启动电机后,电机通过轴带动叶轮高速旋转。高速旋转的叶轮带动液体转动,因叶轮的特殊结构,在离心力的作用下使液体获得很高的能量,表现为流速、压力的增大。在泵壳中崮泵壳的蜗壳形状.流速会逐渐减小,而压力会进一步增大,最终以较高的压力从泵的出口排出。同时,当叶轮中心的液体被甩出后,在叶轮中心形成一定的真空度,而液面的压强比叶轮中心处要高,液面与叶轮中心形成一定压力差。在压差的作用下,液体被吸入泵内。通俗地说离心泵的工作过程是吸进来压出去。 “气缚”现象 离心泵运转时,如果泵内没有充满液体。或者在运转中泵内漏入了空气,由于空气很轻(密度很小),产生的离心力小,在吸入口处所形成的真空度低,不足以将液体吸入泵内。这时,虽然叶轮转动,却不能输送液体,这种现象称为“气缚”。 可见“气缚”现象是由于泵内存有气体而不能吸液的现象。没有液体的吸入,当然就没有液体的排出。如果泵安装在液面以上时,在

吸入管底部必须安装一个单向底阀。目的是为了不使泵内液体漏掉,以防“气缚”产生。 对于“气缚”现象,只要赶跑泵内空气,使泵内充满液,泵就能恢复正常运行。 “汽蚀”现象 “汽蚀”现象是由于泵的安装高度过高,泵内叶轮中心附近压力过低,当压力低到等于被输送液体的饱和蒸汽压时,入口处液体将在泵内汽化,产生大量汽泡,随同液体一起进入高压区,在高压区内便被周围高压液体压碎。瞬间内周围的高压液体以极高的速度打向原汽泡所占据的空间,类似于子弹打在这些点上。使叶轮或泵壳出现麻点和小的裂缝,久而久之,叶轮或泵壳将烂成海绵状,这种现象称为“汽蚀”。 简要地说,“汽蚀”现象是由于泵的安装高度过高,叶轮中心附近压力过低.液体在泵内汽化而损坏泵体的现象。当“汽蚀”现象发生时,其特征是泵体震动并发出噪音,泵的流量、扬程也明显下降。 可见“气缚”与“汽蚀”直接导因是不同的。“气缚”是由于泵内存有空气而产生,不会严重损坏泵体。“汽蚀”是由于液体在泵内汽化而产生.会严重损坏泵体。因此在使用中,应严禁“汽蚀”现象的发生。

离心泵产生振动的原因及解决方法

离心泵产生振动的原因及解决方法 一. 机泵轴弯曲 机泵轴是带着固定在其上的叶轮或转子旋转,由于叶轮和转子的重量,特别是大机泵,当机泵较长时间停止工作时,使机泵轴在一个方向上受力,造成轴弯曲。轴弯曲的机泵在运行中就会引起叶轮等传动产生不平衡,致使叶轮与本壳发生摩擦,导致机泵产生振动现象。解决方法是每8h盘车一次,每次按同一方向将轴转动120度。 二. 轴承问题 1.轴承“跑外缘” 由于轴承装配质量不良,机泵经过长时间运行后,就会出现轴承“跑外缘”现象,造成轴承温度升高,产生杂音,出现转动。解决的方法是:(1)将轴承支架焊上一层金属,然后车削到合适的尺寸,重新装配;(2)如轴承间隙较大,可加薄铜皮,使轴承外缘静配合达到规定值。 2.轴承磨损 目前从市场上采购的轴承或多或少都存在一些质量问题。主要是滚珠大小不一、硬度差、间隙大等,很难保证维修质量。轴承磨损一般伴随有发热和异常声音,严重时发生卡泵。因此,发现轴承异常时应及时停机更换。 3.轴瓦间隙过大 这种情况常出现在采用滑动轴承的大、中型水泵中,若轴瓦间隙过大,就容易使轴松动,因此应及时调整轴瓦间隙。 三. 联轴器问题 联轴器的作用主要是把泵和电机连接起来一同旋转并转递扭矩,其问题有以下两点,一是不同心,有些大型泵使用一段时间后,就会发生变化,如果出现不同心现象,只能停机并重新找正;二是联轴器所使用的胶圈、梅花胶皮、等容易损坏,将损坏的胶圈换掉即可恢复正常。 四. 液体通道不畅 当机泵运行时,由于液体通道不畅,产生水力冲击而引起机泵振动。主要原因有以下几点。 1、出口阀门开度太小 离心式泵,特别是高扬程、大排量的泵在流量小时容易产生不通程度的振动,当开大阀门流量正常后,振动就会消失。 2、泵吸入端管道进气或有杂物 入口端装有底阀和过滤网的输送泵,在试运初期流体过脏或粘度过大,易产生气蚀,同时伴随有振动,严重时水泵不能正常工作。为了消除这一现象,最好在泵的入口端安装一负压表,以便随时观察负压变化,从而准确判断吸入管路的变化情况,及时清理底阀和过滤器。 3.出口管道存有气囊 在开泵时即使有空气排放比较彻底,也很难放净,运行时容易形成气囊,使管道压力产生波动。解决的方法是将排空点尽量安装在高处,并注意对个别局部的排气处理。此外,在操作中,开泵时先用小排量打水,使干线压力缓慢上升,也可使压力波动减小。 五.维修中注意的问题

导致离心泵振动的十大原因

导致离心泵振动的十大原因 一、引起离心泵振动的十大原因——轴 轴很长的泵,易发生轴刚度不足,挠度太大,轴系直线度差的情况,造成动件(传动轴)与静件(滑动轴承或口环)之间碰摩,形成振动。另外,泵轴太长,受水池中流动水冲击的影响较大,使泵水下部分的振动加大。轴端的平衡盘间隙过大,或者轴向的工作窜动量调整不当,会造成轴低频窜动,导致轴瓦振动。旋转轴的偏心,会导致轴的弯曲振动。 二、引起离心泵振动的十大原因——基础及泵支架 驱动装置架与基础之间采用的接触固定形式不好,基础和电机系统吸收、传递、隔离振动能力差,导致基础和电机的振动都超标。水泵基础松动,或者水泵机组在安装过程中形成弹性基础,或者由于油浸水泡造成基础刚度减弱,水泵就会产生与振动相位差1800的另一个临界转速,从而使水泵振动频率增加,如果增加的频率与某一外在因素频率接近或相等,就会使水泵的振幅加大。另外,基础地脚螺栓松动,导致约束刚度降低,会使电机的振动加剧。 三、引起离心泵振动的十大原因——联轴器 联轴器连接螺栓的周向间距不良,对称性被破坏;联轴器加长节偏心,将会产生偏心力;联轴器锥面度超差;联轴器静平衡或动平衡不好;弹性销和联轴器的配合过紧,使弹性柱销失去弹性调节功能造成联轴器不能很好地对中;联轴器与轴的配合间隙太大;联轴器胶圈的

机械磨损导致的联轴器胶圈配合性能下降;联轴器上使用的传动螺栓质量互相不等。这些原因都会造成振动。 四、引起离心泵振动的十大原因——水泵自身的因素 叶轮旋转时产生的非对称压力场;吸水池和进水管涡流;叶轮内 部以及涡壳、导流叶片漩涡的发生及消失;阀门半开造成漩涡而产生的振动;由于叶轮叶片数有限而导致的出口压力分布不均;叶轮内的 脱流;喘振;流道内的脉动压力;汽蚀;水在泵体中流动,对泵体会有摩擦和冲击,比如水流撞击隔舌和导流叶片的前缘,造成振动;输送高温水的锅炉给水泵易发生汽蚀振动;泵体内压力脉动,主要是泵叶轮密封环,泵体密封环的间隙过大,造成泵体内泄漏损失大,回流严重,进而造成转子轴向力的不平衡和压力脉动,会增强振动。另外,对于输送热水的热水泵,如果启动前泵的预热不均,或者水泵滑动销轴系统的工作不正常,造成泵组的热膨胀,会诱发启动阶段的剧烈振动;泵体来自热膨胀等方面的内应力不能释放,则会引起转轴支撑系统刚度的变化,当变化后的刚度与系统角频率成整倍数关系时,就发生共振。 五、引起离心泵振动的十大原因——电机 电机结构件松动,轴承定位装置松动,铁芯硅钢片过松,轴承因磨损而导致支撑刚度下降,会引起振动。质量偏心,转子弯曲或质量分布问题导致的转子质量分布不均,造成静、动平衡量超标川。另外,鼠笼式电动机转子的鼠笼笼条有断裂,造成转子所受的磁场力和转子的旋转惯性力不平衡而引起振动,电机缺相,各相电源不平衡等原因

离心泵产生气蚀现象的原因及防止措施

离心泵因其操作简易、运行平稳、性价比高及便于维修护理而受到多数使用客户的喜爱并广泛应用于工业领域和日常生活。但凡是机械设备,在经过长时间的持续工作状态下,难免会出现设备的损坏和故障问题,离心泵的气蚀现象就是离心泵的常见故障之一。泵一旦发生汽蚀,其流量和扬程性能不仅会下降,还会表现出噪声、振动明显偏高,严重时甚至会使泵中液流中断,不能正常工作。汽蚀还会对泵的过流部件产生破坏,甚至影响管路系统。产生气蚀现象的原因有很多,例如离心泵产品质量有问题,操作人员的使用不当等。产品在出厂前会经过多道程序的质量检测,所以人为因素的影响比例更大。在工作状态下,离心泵的工作环境及操作因素的影响,占到离心泵发生气蚀现象比例的绝大部分。下面深圳恒才具体为大家介绍下气蚀产生的原因。 气蚀原因: 离心泵在工作的时候,离心泵输送的液体压力,会随着泵内液体从入口到叶轮入口下降而下降。当叶片入口附近的液体压力达到最低的时候,叶轮开始对液体做功,液体压力开始上升。当叶轮叶片入口附近的最低压力小于液体输送温度下的饱和蒸汽压力时,液体就会发生汽化的现象。同时溶解在液体内的气体也逸出,它们形成气泡。当气泡随液体流到叶道内压力较高处时,外面的液体压力高于气泡内的汽化压力,则气泡又重新凝结溃灭形成空穴,瞬间内周围的液体以极高的速度向空穴冲来,造成液体互相撞击,使局部的压力突然增加。这样,不仅阻碍了离心泵输送的液体正常流动。而且当这些气泡在叶轮壁面附近破裂的时候,则液体就会连续不断地撞击离心泵的内壁表面。长期的撞击之下就会造成离心泵内壁的结构损坏和剥落。如果气泡内掺杂着一些化学气体例如氧气,这些气体就会借助气泡凝结时放出的热量(局部温度可达200~300℃),还会形成热电偶,产生电解,形成电化学腐蚀作用,更加速了金属剥蚀的破坏速度。像这种液体汽化、凝结、冲击、形成高压、高温、高频冲击

离心泵常见故障与处理

三.离心泵常见故障与处理 离心泵常见故障及处理方法表

四.离心泵的操作方法 1.离心泵启动前的检查 1)电机检修后,在连接联轴器前,先检查电机的转动方向是否正确。 2)检查泵出入口管线及附属管线,法兰,阀门安装是否符合要求,地脚螺栓及地线是否良好,联轴器是否装好。 3)盘车检查,转动是否正常。 4)检查润滑油油位是否正常,无油加油,并检查润滑油(脂)的油质性质。

5)打开各冷却水阀门,并检查管线是否畅通。注意冷却水不宜过大或过小,过大会造成浪费,过小则冷却效果差。一般冷却水流成线状即可。 6)打开泵的入口阀,关闭泵的出口阀,并打开压力表手阀。 7)检查机泵的密封状况及油封的开度。 注意:热油泵在启动前要均匀预热。 2.离心泵的启动 1)全开入口阀,关闭出口阀,启动电机。 2)当泵出口压力大于操作压力时,检查各部运转正常,逐渐打开出口阀。 3)启动电机时,若启动不起来或有异常声音时,应立刻切断电源检查,消除故障后方可启动。 4)启动时,注意人不要面向联轴器,以防飞出伤人。 3.离心泵的停泵操作 1)慢慢关闭泵的出口阀。 2)切断电机的电源。 3)关闭压力表手阀。 4)停车后,不能马上停冷却水,应泵的温度的降到80度以下方可停水。 5)根据需要,关闭入口阀,泵体放空。 4.离心泵运转时的操作及维护 离心泵在正常运转时,司泵员要对以下容认真巡检:

1)检查机泵出口压力,流量,电流等,不超负荷运转,并准确记录电流,压力等参数。 2)听声音,分辨机泵,电机的运转声音,判断有无异常。 3)检查机泵,电机及泵座的振动情况,如振动严重,换泵检查。 4)检查电机外壳温度,机泵的轴承箱温度,轴承箱温度不超过65度,电机温度不超过95度。 5)保证正常的润滑油油质情况及润滑油箱的液位情况。润滑油箱液位,有刻度时以刻度为准;有看窗(油标)而无刻度线,油位应保持在1/3~1/2之间,在正常油位时,润滑油泄漏不 大于5滴/分,压力注油,以机器说明为准。 6)检查机泵密封及各法兰,丝堵,冷却水,封油接头是否泄漏。 7)检查备用泵的备用情况,每天要盘车一次。 5.离心泵的切换操作 为保证在切换泵时,其流量,压力等参数基本不变化,无波动,最好两人同时操作。 1)做好启动泵开车前的准备工作。 2)一人首先开启备用泵,待泵运转正常平稳后,慢慢打开出口阀,这时随泵出口阀的打开,泵的出口阀压力略有下降,但 电机电流增加,同时另外一人缓慢的关闭要停泵的出口阀,待 要运转泵的流量足够大时,再完全关闭要停泵的出口阀,切断

水泵振动原因分析和解决措施方案

56LKSB-25型泵振动与异响原因分析及解决措施 广东省电力工业局第一工程局安装公司何志军 一、摘要: 广石化热电资源综合利用改造工程2×100MW汽轮发电机组1#机组循环冷却水系统循环水泵为3台56LKSB-25型立式斜流水泵。在循环水泵分部试运行时,3台循环水泵均出现间断性的异响,并伴随超标的振动。经过分析,间断性异响主要由于循环水泵吸水夹带汽体,内部形成了水力冲击,造成了间断性异响,并产生振动,影响循环水泵的运行。经过对产生水力冲击的原因分析,采取合理的措施,最终消除了水力冲击,解决了循环水泵的异响及振动问题。 二、关键词:循环水泵异响水力冲击导流锥 三、前言: 立式水泵在分部试运出现异响、振动情况是常见,引起立式水泵的异响、振动的原因比较多: ⑴从责任主体方面划分,有设备制造质量原因、安装施工质量原因及设计原因,但安装施工质量不合格引起的立式水泵异响、振动原因较常见。 ⑵从起因方面划分,有机械原因引起的异响、振动和水力冲击引起的异响、振动,而机械原因引起的异响、振动的情况是较常见的。 该机组3台循环水泵异响、振动的主因是设计原因引起的水力冲击造成的异响、振动,在工程施工中较为少见。通过对循环水泵异响、振动原因分析,问题解决,以达到引起相关部门在关心安装施工质量和设备制造质量的同时,也注重设计质量问题的目的。 四、正文: 4.1 泵的结构参数简介 广石化热电资源综合利用改造工程2×100MW汽轮发电机组1#机组循环水泵

共有3台,其中2台工作泵,1台备用泵,均为露天安装。循环水泵采用长沙水泵有限公司生产的56LKSB-25型水泵。该型水泵为立式、单吸、转子可抽式、斜流泵,具体参数如附表1所示。 附表1: 4.2 问题产生及原因分析 4.2.1 问题产生 2#循环水泵首次带负荷运行时,主要发现两大问题:1)循环水泵运行过程中,伴随着间断性、频率不等的异响,类似水泥搅拌机搅拌时发出的响声;2)循环水泵泵体振动超标(如附表2)。随后,1#、3#循环水泵分部试运行情况和2#循环水泵的情况一样,同样存在异响、振动超标的问题。 附表2

离心泵气蚀的主要原因分析

离心泵气蚀的主要原因分析 影响离心泵气蚀的因素是设计与使用离心泵所必须考虑的问题,近年来国内外对其进行了大量的研究。但由于研究的侧重点不同,且大多都是针对影响离心泵气蚀的某一参数进行的研究,造成研究成果较为分散,且部分观点之间相互矛盾。本文综合国内外大量文献,对离心泵气蚀影响因素的相关研究结果进行比较、分析,得出目前较为全面的影响离心泵气蚀的主要因素。 1.流体物理特性方面的影响 流体物理特性对离心泵气蚀的影响主要包括:所输送流体的纯净度、pH值和电解质浓度、溶解气体量、温度、运动黏度、汽化压力及热力学性质。 (1)纯净度(所含固体颗粒物浓度)的影响流体中所含固体杂质越多,将导致气蚀核子的数量增多。从而加速气蚀的发生与发展。 (2)pH值和电解质浓度的影响输送极性介质的离心泵(如一般的水泵)与输送非极性介质的离心泵(输送苯、烷烃等有机物的泵),其气蚀机理是不同的。输送极性介质的离心泵的气蚀损伤可能包括机械作用、化学腐蚀(与流体PH值有关)、电化学腐蚀(与流体电解质浓度有关);而输送非极性介质的离心泵的气蚀损伤可能只有机械作用。 (3)气体溶解度的影响国外研究表明流体内溶解的气体含量对气蚀核子的产生与发展起到促进作用。 (4)气化压力的影响研究表明随着气化压力的增高,气蚀损伤先升高后降低。因为随着气化压力的升高,流体内形成的不稳定气泡核的数量也不断升高,从而引起气泡破裂数量的增多,冲击波强度增大,气蚀率上升。但如果气化压力继续增大,使气泡数增加到一定限度,气泡群形成一种“层间隔”的作用,阻止了冲击波行进,削弱其强度,气蚀的破坏程度反而会逐渐降低。 (5)温度的影响在流体中温度的改变将导致气化压力、气体溶解度、表面张力等其他影响气蚀的物理性质出现较大改变。由此可见,温度对气蚀的影响机制较为复杂,需结合实际情况进行判断。 (6)表面张力的影响当其他因素保持不变,降低流体表面张力可以减少气蚀损伤。因为随着流体表面张力的减小,气泡溃灭所产生冲击波的强度减弱,气蚀速率降低。 (7)液体黏度的影响流体黏度越大,流速越低,达到高压区的气泡数越少,气泡破灭所产生冲击波的强度就减小。同时,流体黏度越大,对冲击波削弱也越大。因此,流体的黏度越低,气蚀损伤越严重。 (8)液体的可压缩性和密度的影响随着流体密度的增加,可压缩性降低,气蚀损失增加。 2.过流部件材质特性方面的影响 由于泵的气蚀损伤主要体现为对过流部件材质的损坏。因此,过流部件的材料性能也将在一定程度上对离心泵的气蚀产生影响,采用抗气蚀性能良好的材料制造

离心泵常见故障分析及处理[1]

离心泵常见故障分析及处理 张军 摘要:离心泵运转过程中,难免会出现各种各样的故障。因而,如何提高泵运转的可靠性、寿命及效率,以及对发生的故障及时准确的判断处理,是保证生产平稳运行的重要手段。 关键词:离心泵;故障;分析;处理 一、引言 随着工业的不断发展,对离心泵的要求不断增加。离心泵做为输送物料的一种转动设备,对连续性较强的试油作业(如锅炉试气保温作业)生产尤为重要。因此,需要性能稳定能够输送高温介质及高扬程的离心泵。而离心泵运转过程中,难免会出现各种各样的故障。因而,如何提高泵运转的可靠性、寿命及效率,以及对发生的故障及时准确的判断处理,是保证生产平稳运行的重要手段。 二、离心泵结构及工作原理 1、离心泵结构组成 离心泵的主要过流部件有吸水室、叶轮和压水室。吸水室位于叶轮的进水口前面,起到把液体引向叶轮的作用;压水室主要有螺旋形压水室(蜗壳式)、导叶和空间导叶三种形式;叶轮是泵的最重要的工作元件,是过流部件的心脏,叶轮由盖板和中间的叶片组成。 2、离心泵工作原理 离心泵工作前,先将泵内充满液体,然后启动离心泵,叶轮快速转动,叶轮的叶片驱使液体转动,液体转动时依靠惯性向叶轮外缘流去,同时叶轮从吸入室吸进液体,在这一过程中,叶轮中的液体绕流叶片,在绕流运动中液体作用一升力于叶片,反过来叶片以一个与此升力大小相等、方向相反的力作用于液体,这个力对液体做功,使液体得到能量而流出叶轮,这时液体的动能与压能均增大。依靠旋转叶轮对液体的作用把原动机的机械能传递给液体。由于离心泵的作用液体从叶轮进口流向出口的过程中,其速度能和压力能都得到增加,被叶轮排出的液体经过压出室,大部分速度能转换成压力能,然后沿排出管路输送出去,这时,叶轮进口处因液体的排出而形成真空或低压,吸水池中的液体在液面压力(大气压)的作用下,被压入叶轮的进口,于是,旋转着的叶轮就连续不断地吸入和排出液体。 三、常见故障原因分析及处理 1、起动后不能供液 离心泵不能供液的情况可分两类。一类情况是起动后一段时间,排出压力表的指针仍基本

引起立式离心泵震动的大原因

引起立式离心泵震动的8大原因 立式离心泵是利用叶轮旋转而使水发生离心运动来工作的。水泵在启动前,必须使泵壳和吸水管内充满水,然后启动电机,使泵轴带动叶轮和水做高速旋转运动,水发生离心运动,被甩向叶轮外缘,经蜗形泵壳的流道流入水泵的压水管路引起立式离心泵震动的原因1:轴 1.轴很长的泵,易发生轴刚度不足,挠度太大,轴系直线度差的情况,造成动件(传动轴)与静件(滑动轴承或口环)之间碰摩,形成振动。 2.泵轴太长,受水池中流动水冲击的影响较大,使泵水下部分的振动加大。轴端的平衡盘间隙过大,或者轴向的工作窜动量调整不当,会造成轴低频窜动,导致轴瓦振动。旋转轴的偏心,会导致轴的弯曲振动。 引起立式离心泵震动的原因2:联轴器 1.联轴器连接螺栓的周向间距不良,对称性被破坏。 2.联轴器加长节偏心,将会产生偏心力。 3.联轴器锥面度超差。 4.联轴器静平衡或动平衡不好。 5.弹性销和联轴器的配合过紧,使弹性柱销失去弹性调节功能造成联轴器不能很好地对中。 6.联轴器与轴的配合间隙太大;联轴器胶圈的机械磨损导致的联轴器胶圈配合性能下降。 7.联轴器上使用的传动螺栓质量互相不等。以上这些原因都会造成振动。 引起立式离心泵震动的原因3:电机 1.电机结构件松动,轴承定位装置松动,铁芯硅钢片过松,轴承因磨损而导致支撑刚度下降,会引起振动。 2.质量偏心,转子弯曲或质量分布问题导致的转子质量分布不均,造成静、动平衡量超标川。 3.另外,鼠笼式电动机转子的鼠笼笼条有断裂,造成转子所受的磁场力和转子的旋转惯性力不平衡而引起振动。 4.电机缺相,各相电源不平衡等原因也能引起振动。 5.电机定子绕组,由于安装工序的操作质量问题,造成各相绕组之间的电阻不平衡,因而导致产生的磁场不均匀,产生了不平衡的电磁力,这种电磁力成为激振力引发振动。 引起立式离心泵震动的原因4:水泵选型和变工况运行 1.每台泵都有自己的额定工况点,实际的运行工况与设计工况是否符合,对泵的动力学稳定性有重要的影响。 2.水泵在设计工况下运行比较稳定,但在变工况下运行时,由于叶轮中产生径向力的作用,振动有所加大;单泵选型不当,或是两种型号不匹配的泵并联。这些都会造成泵的振动。 引起立式离心泵震动的原因5:水泵自身的因素 1.叶轮旋转时产生的非对称压力场。 2.吸水池和进水管涡流,叶轮内部以及涡壳、导流叶片漩涡的发生及消失。 3.阀门半开造成漩涡而产生的振动。 4.由于叶轮叶片数有限而导致的出口压力分布不均。 5.叶轮内的脱流、喘振、流道内的脉动压力、汽蚀、水在泵体中流动,对泵体会有摩擦和冲击,比如水流撞击隔舌和导流叶片的前缘(公众号:泵管家),造成振动。 6.输送高温水的锅炉给水泵易发生汽蚀振动。 7.泵体内压力脉动,主要是泵

离心泵的汽蚀原因及措施

离心泵的气蚀原因及采取措施 【摘要】:通过掌握离心泵的气蚀原因,我们在设计、安装、和生产中应如何预防与消除气蚀现象。 【关键词】:离心泵气蚀原因消除措施 离心泵的气蚀原理: 离心泵运转时,液体压力沿着泵入口到叶轮入口而下降,在叶片入口附近的K点上,液体压力p K最低。此后由于叶轮对液体作功,液体压力很快上升。当叶轮叶片入口附近的压力p K小于液体输送温度下的饱和蒸汽压力p v时,液体就汽化。同时,使溶解在液体内的气体逸出。它们形成许多汽泡。当汽泡随液体流到叶道内压力较高处时,外面的液体压力高于汽泡内的汽化压力,则汽泡又重新凝结溃灭形成空穴,瞬间内周围的液体以极高的速度向空穴冲来,造成液体互相撞击,使局部的压力骤然增加(有的可达数百个大气压)。这样,不仅阻碍液体正常流动,尤为严重的是,如果这些汽泡在叶轮壁面附近溃灭,则液体就像无数个小弹头一样,连续地打击金属表面。其撞击频率很高(有的可达2000~3000Hz),于是金属表面因冲击疲劳而剥裂。如若汽泡内夹杂某种活性气体(如氧气等),它们借助汽泡凝结时放出的热量(局部温度可达200~300℃),还会形成热电偶,产生电解,形成电化学腐蚀作用,更加速了金属剥蚀的破坏速度。上述这种液体汽化、凝结、冲击、形成高压、高温、高频冲击负荷,造成金属材料的机械剥裂与电化学腐蚀破坏的

综合现象称为气蚀。 离心泵最易发生气蚀的部位有: 1.叶轮曲率最大的前盖板处,靠近叶片进口边缘的低压侧; 2.压出室中蜗壳隔舌和导叶的靠近进口边缘低压侧; 3.无前盖板的高比转数叶轮的叶梢外圆与壳体之间的密封间 隙以及叶梢的低压侧; 4.多级泵中第一级叶轮。 提高离心泵本身抗气蚀性能的措施 (1)改进泵的吸入口至叶轮附近的结构设计。增大过流面积;增大叶轮盖板进口段的曲率半径,减小液流急剧加速与降压;适当减少叶片进口的厚度,并将叶片进口修圆,使其接近流线形,也可以减少绕流叶片头部的加速与降压;提高叶轮和叶片进口部分表面光洁度以减小阻力损失;将叶片进口边向叶轮进口延伸,使液流提前接受作功,提高压力。 (2)采用前置诱导轮,使液流在前置诱导轮中提前作功,以提高液流压力。 (3)采用双吸叶轮,让液流从叶轮两侧同时进入叶轮,则进口截面增加一倍,进口流速可减少一倍。 (4)设计工况采用稍大的正冲角,以增大叶片进口角,减小叶片进口处的弯曲,减小叶片阻塞,以增大进口面积;改善大流量下的工作条件,以减少流动损失。但正冲角不宜过大,否则影响效率。 (5)采用抗气蚀的材料。实践表明,材料的强度、硬度、韧性

离心泵常见故障原因分析及处理 _

目录 第一章离心泵概论 (3) 1.1离心泵的基本构造 (3) 1.2离心泵的过流部件 (4) 1.3离心泵的工作原理 (5) 1.4离心泵的性能曲线 (6) 第二章离心泵的应用 (7) 2.1 离心泵工业工程的应用 (7) 2.2离心泵在给水排水及农业工程中的应用 (8) 2.3离心泵在航空航天和航海工程中的应用 (10) 第三章离心泵的拆卸 (13) 3.1离心泵的结构图 (13) 3.2离心泵拆卸的一般步骤 (14) 3.3泵的拆卸顺序 (14) 3.4泵拆卸进应注意的事项 (15) 3.5泵的装配 (15) 第四章常见故障原因分析及处理 (15) 4.1泵不能启动或启动负荷大 (15) 4.2泵不排液 (16) 4.3泵排液后中断 (16) 4.4流量不足 (16)

4.5扬程不够 (16) 4.6运行中功耗大 (16) 4.7泵振动或异常声响 (17) 4.8轴承发热 (17) 4.9轴封发热 (18) 4.1转子窜动大 (18) 4.11发生水击 (18) 4.12机械密封的损坏 (18) 4.13故障预防措施 (21) 第五章.主要零部件的检修技术 (21) 5.1.轴承的检修 (21) 5.2.填料密封的检修 (21) 5.3.联轴器检修 (22) 5.4.动密封部分的检修 (23) 5.5.静密封部分的检修 (23) 5.6.叶轮和转子的检修 (23) 5.7.机械密封的检修 (23) 第六章.试车与验收 (24) 6.1.试车前的准备工作 (24) 6.2.启动程序 (24) 6.3.检查和验收 (24) 6.4.停车 (25)

第七章离心泵装配图 (27) 致谢 (28) 参考文献 (29) 第一章离心泵概论 1.1离心泵的基本构造 离心泵的基本构造是由六部分组成的分别是叶轮,泵体,泵轴,轴承,密封环,填料函。

离心泵的汽蚀现象介绍

离心泵的汽蚀现象介绍 (一)、离心泵的汽蚀现象 离心泵的汽蚀现象是指被输送液体由于在输送温度下饱和蒸汽压等于或低于泵入口处(实际为叶片入口处的)的压力而部分汽化,引起泵产生噪音和震动,严重时,泵的流量、压头及效率的显著下降,显然,汽蚀现象是离心泵正常操作所不允许发生的。避免汽蚀现象发生的关键是泵的安装高度要正确,尤其是当输送温度较高的易挥发性液体时,更要注意。 (二)、离心泵的安装高度Hg 1允许吸上真空高度Hs是指泵入口处压力p1可允许达到的最大真空度 而实际的允许吸上真空高度Hs值并不是根据式计算的值,而是由泵制造厂家实验测定的值,此值附于泵样本中供用户查用。位应注意的是泵样本中给出的Hs值是用清水为工作介质,操作条件为20℃及及压力为1.013×105Pa时的值,当操作条件及工作介质不同时,需进行换算。 (1) 输送清水,但操作条件与实验条件不同,可依下式换算 Hs1=Hs+(Ha-10.33) - (Hυ-0.24) (2) 输送其它液体当被输送液体及反派人物条件均与实验条件不同时,需进行两步换算:第一步依上式将由泵样本中查出的Hs1;第二步依下式将Hs1换算成H?s 2 汽蚀余量Δh 对于油泵,计算安装高度时用汽蚀余量Δh来计算,即 用汽蚀余量Δh由油泵样本中查取,其值也用20℃清水测定。若输送其它液体,亦需进行校正,详查有关书籍。 从安全角度考虑,泵的实际安装高度值应小于计算值。又,当计算之Hg为负值时,说明泵的吸入口位置应在贮槽液面之下。 例2-3 某离心泵从样本上查得允许吸上真空高度Hs=5.7m。已知吸入管路的全部阻力为1.5mH2O,当地大气压为9.81×104Pa,液体在吸入管路中的动压头可忽略。试计算: (1) 输送20℃清水时泵的安装; (2) 改为输送80℃水时泵的安装高度。

离心泵振动

导致震动大有噪音的四个原因: 1、电气方面 电机是机组的主要设备,电机内部磁力不平衡和其它电气系统的失调,常引起 振动和噪音。如异步电动机在运行中,由定转子齿谐波磁通相互作用而产生的定 转子间径向交变磁拉力,或大型同步电机在运行中,定转子磁力中心不一致或各 个方向上气隙差超过允许偏差值等,都可能引起电机周期性振动并发出噪音。 2、机械方面 电机和水泵转动部件质量不平衡、粗制滥造、安装质量不良、机组轴线不对称、 摆度超过允许值,零部件的机械强度和刚度较差、轴承和密封部件磨损破坏,以 及水泵临界转速出现与机组固有频率一直引起的共振等,都会产生强烈的振动和 噪音。 3、水力方面 水泵进口流速和压力分布不均匀,泵进出口工作液体的压力脉动、液体绕流、 偏流和脱流,非定额工况以及各种原因引起的水泵汽蚀等,都是常见的引起泵机 组振动的原因。水泵启动和停机、阀门启闭、工况改变以及事故紧急停机等动态 过渡过程造成的输水管道内压力急剧变化和水锤作用等,也常常导致泵房和机组 产生振动。 4、水工及其它方面 机组进水流道设计不合理或与机组不配套、水泵淹没深度不当,以及机组启动 和停机顺序不合理等,都会使进水条件恶化,产生漩涡,诱发汽蚀或加重机组及 泵房振动。采用破坏虹吸真空断流的机组在启动时,若驼峰段空气挟带困难,形 成虹吸时间过长;拍门断流的机组拍门设计不合理,时开时闭,不断撞击拍门座; 支撑水泵和电机的基础发生不均匀沉陷或基础的刚性较差等原因,也都会导致机 组发生振动。 离心泵振动的原因及其防范措施 (1)离心泵产生振动的原因 ①设计欠佳所引起的振动离心泵设计上刚性不够、叶轮水力设计考虑不周全、叶轮的静平衡未作严格要求、轴承座结构不佳、基础板不够结实牢靠,是泵产生振动的原因。 ②制造质量不高所引起的振动离心泵制造中所有回转部件的同轴度超差、叶轮和泵轴制造质量粗糙,是泵产生振动的原因。 ③安装问题所引起的振动多级离心泵安装时基础板未找平找正、泵轴和电动机轴未达到同轴度要求、管道配置不合理、管道产生应力变形、基础螺栓不够牢固,是泵引起振动的原因。 ④使用运行不当所引起的振动选用中采用了过高转速的离心泵、操作不当产生小流量运转、泵的密封状态不良、泵的运行状态检查不严,是泵引起振动的原因。 (2)离心泵防治振动的措施 ①从设计上防治泵振动 a·提高泵的刚性刚性对防治振动和提高泵的运转稳定性非常重要。其中很重要的一点是适当增大泵轴直径和提高泵座刚性。提高泵的刚性是要求泵在长期的运转过程中保持最小的转子挠度,而增大泵轴刚性有助于减少转子挠度,提高运转稳定性。运转过程中发生轴的晃动、破坏密封、磨损口环等诸多故障均与轴的刚性不够有关。泵轴除强度计算外,其刚度计算不能缺。 b.周全考虑叶轮的水力设计泵的叶轮在运转过程中应尽量少发生汽蚀和脱流现象。为了减少脉动压力,宜于将叶片设计成倾斜的形式。 c.严格要求叶轮的静平衡数据离心泵叶轮的静平衡允许偏差数值一般为叶轮外径乘以0.025g/mm,对于高转速叶轮(2970r/min以上),其静平衡偏差还应降低一半。

热油泵汽蚀原因及措施

热油泵汽蚀原因及措施 一、汽蚀原因 在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。 液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。把这种产生气泡的现象称为汽蚀。汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。 在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并以很高的冲击频率打击金属表面,冲击应力可达几百至几千个大气压,冲击频率可达每秒几万次,严重时会将壁厚击穿。 泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。 二、抗气蚀措施 1、采用抗气蚀的材料。实践表明,材料的强度、硬度、韧性越高,化学稳定性越好,抗气蚀的性能越强。 2、采用双吸叶轮,让液流从叶轮两侧同时进入叶轮,则进口截面增加一倍,进口流速可减少一倍。 3、改进泵的吸入口至叶轮附近的结构设计。增大过流面积;增大叶轮盖板进口段的曲率半径,减小液流急剧加速与降压;适当减少叶片进口的厚度,并将叶片进口修圆,使其接近流线形,也可以减少绕流叶片头部的加速与降压;提高叶轮和叶片进口部分表面光洁度以减小阻力损失;将叶片进口边向叶轮进口延伸,使液流提前接受作功,提高压力。 4、设计工况采用稍大的正冲角,以增大叶片进口角,减小叶片进口处的弯曲,减小叶片阻

离心泵的气蚀现象讲解与防治措施

离心泵的气蚀在现有技术和材料方面还无法完全避免,所以目前研究的领域是如何最大限度降低气蚀危害和如何利用气蚀现象进行循环利用,下面就离心泵的气蚀现象与气蚀危害仿佛进行详细说明。 一、离心泵的汽蚀现象 液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。把这种产生气泡的现象称为汽蚀。汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。 离心泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并以很高的冲击频率打击金属表面,冲击应力可达几百至几千个大气压,冲击频率可达每秒几万次,严重时会将壁厚击穿。 在离心泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是离心泵中的汽蚀过程。离心泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。 二、离心泵汽蚀基本关系式 离心泵发生汽蚀的条件是由泵本身和吸入装置两方面决定的。因此,研究汽蚀发生的条件,应从泵本身和吸入装置双方来考虑,泵汽蚀的基本关系式为 NPSHc≤NPSHr≤[NPSH]≤NPSHa NPSHa=NPSHrNPSHc——泵开始汽蚀 NPSHaNPSHa 式中NPSHa——装置汽蚀余量又叫有效汽蚀余量,越大越不易汽蚀; NPSHr——泵汽蚀余量,又叫必需的汽蚀余量或泵进口动压降,越小抗汽蚀性能越好; NPSHc——临界汽蚀余量,是指对应泵性能下降一定值的汽蚀余量; [NPSH]——许用汽蚀余量,是确定泵使用条件用的汽蚀余量,通常取[NPSH]=(1.1~ 1.5)NPSHc。 三、防止发生汽蚀的措施 欲防止发生汽蚀必须提高NPSHa,使NPSHa 1.减小几何吸上高度hg(或增加几何倒

离心泵及其振动

离心泵及其振动 简介 离心泵的原理及常见的故障 工业中的很多流程都需要将流体从一个位置输送到另一个位置,扮演者重要的角色。涵盖的工业很广泛,从大型核电厂和普通电厂、输油管线、石化厂、市政废水处理厂、水厂,到大小型建筑物,到轮船和海上石油平台等等。 一般来说,泵在旋转机械中是那种皮实、可靠的一类设备。但在很多流程中,泵是关键设备,一旦故障宕机,后果往往是严重的,甚至是灾难性的。除直接经济损失外,安全问题也是不容小视,甚至超过经济损失,如泵失效导致放射性物质或有毒液体泄露,会殃及工厂相关人员的生命,甚至包括周边百姓。此外环保因素也一样,有害流体因为泵的泄露等失效,会严重污染空气、水和土壤,甚至导致环境的不可逆危害,治理起来费时、费力、费钱。所以,虽然泵常常没有归入关键机组,但对它的重视,按关键机组对待并不为过。 什么是泵? 几乎所有人都都熟悉泵及其基本原理,如汽车发动机的冷却液通过泵在散热器和水套中循环。泵克服流体的重力、摩擦力,将流体加速到一定的出口速度,送到一定的高度。 克服重力的影响不难理解,但对于克服流体的阻尼–摩擦力的概念可能未必尽人皆知。流体流经管道,流体分子间会产生“摩擦”,因为分子间在运动过程中速度不一样,之间就会有相对运动,摩擦自然就

产生了。流体间运动速度不一样可以通过特殊情况理解,在管道壁流体的流速为零,在管道中心的流速最大,也就是所谓的流场梯度。所以,重力和摩擦力是泵运行中需要克服的阻力。 摩擦力有流体和管壁间的摩擦力,以及分子间的摩擦力。因此,简言之,管壁光滑的摩擦力比粗糙的小,大直径管比小直径管摩擦力小; 流体的特性影响摩擦力,内聚力大的流体,也就是粘度大的流体摩擦力大。当然实际情况可能要复杂得多,但足够去理解泵的阻力了。 泵是一种能量转换设备,是将驱动机械的旋转动能,转换成所泵流体的能量。 ?克服流体运动过程中的重力,提高扬程、克服流体内、外摩擦力。?流体出口速度比入口速度提高。 下图是流体流过泵和管道,流体能量的变化图

离心泵的振动原因分析

离心泵的振动原因分析 离心泵的振动原因分析 1.离心泵的转子不平衡与不对中。这个问题在离心泵的振动问题中所占比例较大,约为80%的比例。造成离心泵转子不平衡的因素:材料阻止不均匀、零件结构不合格,造成转子质量中心线与转轴中心线不重合产生偏心据形成的不平衡。校正离心泵的转子不平衡又可分为两。静平衡与动平衡:一般也称为单面平衡和双面平衡。其区别就是:单面平衡是在一个校正面进行校正平衡,而双面平衡是在两个校正面上进行校正。 2.安装原因:基础螺栓松脱、校调的水平度没有调整好,在离心泵工作之前,要检查一下其基础螺栓是否有松动的现象,以及离心泵的安装是否水平。这些也会造成离心泵在工作的时候发生振动的情况。 3.离心泵内有异物。在离心泵工作之前,要检查下泵内部,由于长期使用,在离心泵的内部可能存在一些例如水中的杂草等异。 4.由于长时间的使用造成离心泵内部的气蚀穿孔。 5.离心泵的设计方面存在不合理的情况,例如零件大小尺寸等问题。不过这种情况相对较少。离心泵在出场之前,都会在车间内部进行多次的检测工作,以保证出厂离心泵的合格率。 CQB-G高温磁力驱动离心泵安装和调试: (一)应水平安装.开车前应检查冷却箱之润滑油油位.若油位过低时应及时补充。开泵前.首先应打开冷却水回路.进水管阀门的开启度应根据泵正常工作后冷却出水管的温度进行调节。 (二)当抽吸液面高于果轴心线时.起动前打开吸入管道阀门即可.若抽吸液面低于泵轴心线时.管道需配备底阀。 (三)泵使用前应进行检查.电机风叶转动要灵活.无卡住及异常声响.各紧固件要紧固。 (四)检查电机旋转方向是否与磁力泵转向标记一致。 (五)电机启动后.缓慢打开排出阀.待泵进入正常工作状态后.再将排出阀调到所需开度。泵停止工作前.应先关闭排出阀门.然后切断电源.再关闭冷却水管阀门。 CQB-G高温磁力驱动离心泵产品概述: CQB-G高温磁力驱动离心泵采用多重循环冷却结构,保证了原动力和磁传动的可靠性和稳定性,同时采用柱销联轴器减少了泵的噪音和震动,便拆式和柱销联轴器同时使用,使泵的结构增长,更有利于泵的散热。同时,也十分方便用户的维修或更换零件,在泵的外转子部分还设计了散热风叶,确保磁钢的稳定性。本系列适用于输送高温介质,温度≤200℃。 CQB-G高温磁力驱动离心泵使用注意事项:

离心泵的汽蚀原因和故障诊断发展

离心泵的汽蚀原因和故障诊断发展 发表时间:2019-10-30T11:29:15.970Z 来源:《当代电力文化》2019年10期作者:顾生琴[导读] 发现离心泵在生产过程当中极容易出现故障,为此我们进行了分析,得出了导致离心泵出现故障的原因,并且针对这些原因进行了研究,提出了一些解决方法兰州理工大学技术工程学院甘肃兰州 730030摘要:随着社会的不断发展,科学技术也获得了巨大的进步。文章结合现阶段大型石油化工装置当中应用较广的离心泵出现的问题进行了 分析,详细探究了现阶段离心泵出现故障的主要因素,针对这些因素提出了对应的解决方式,同时对各种解决的方式进行了比较,也对未来离心泵的发展趋势做出了相应的展望。关键词:离心泵;故障原因;处理方法分析随着社会经济的不断发展,科学技术的发展得到了极大地推动,石油化工行业也出现了新的发展机遇。当前,在大型石油化工中采用较多的动力设备就是离心泵,通过离心泵来适应现阶段流量较大并且需要长期工作的实际生产要求。在日常的工作过程当中,我们发现离心泵在生产过程当中极容易出现故障,为此我们进行了分析,得出了导致离心泵出现故障的原因,并且针对这些原因进行了研究,提出了一些解决方法一、离心泵在使用过程当中产生故障的原因通常我们将离心泵出现故障的原因大致分为两种,一种是离心泵本身出现了机械故障,另外一种是由于泵与管道相关组成工艺系统当中存在缺陷。这两方面原因就是导致离心泵出现故障的主要原因。而在离心泵出现故障时,大多发生在离心泵的振动和噪声这两个方面。由于造成噪声故障的因素一般比较隐秘,不容易发掘,所以这个更应该提高人们在日常工作当中的重视。我们都知道离心泵产生故障的主要因素就是由于气体密度小于液体密度,从而导致气体在经过流道时获得的压力低于液体获得的压力,从而出现了不同的压力分布。由于压力分布不均,液体当中混有其他气体时,气泡就会在这种不均衡的压力之下首先膨胀接着压缩,进而造成了类似至于汽蚀的冲击,最后就会导致离心泵出现故障。离心泵的叶轮遭受到外力作用时,会出现较为强烈的振动,并且还会产生较大的杂声,泵的出口会有较大幅度的压力变化。在封闭的循环系统当中,由于系统中的气体处在一个封闭的环境当中,在环境当中液体可以与气体同时进行循环流动,也因此无法将气体排出系统之外。当系统当中存在的气体过多时就容易出现异常振动,从而给离心泵带来较大的压力,如果气体无法排出系统,那么就会使系统当中气体越来越多,对泵的压力也会越来越大。在我们日常使用离心泵的过程当中,由于密封系统就容易产生上面两种情况,就会造成离心泵系统内增加的气体越来越多,进而导致离心泵出现故障。在离心泵出现气体增多的情况时,应当及时排出系统内的原有气体,并且要判断性气体的来源,如果不能够杜绝气体排放的情况,就需要在离心泵系统内添加气液分离的装置,这样才能够减轻离心泵出现故障的可能性。 二、离心泵使用中产生故障相关诊断技术离心泵在发展过程当中,经历了三个不同的诊断阶段,我们要首先对这三个不同的阶段进行理解。首先,由于机械设备的设计还比较简单,因此在第一阶段离心泵的故障诊断主要是依靠相关的专业学者的平时经验以及一些简单的仪表来进行诊断。在科学技术不断发展的后期,出现了传感器和动态测试,在第二阶段的离心泵整段过程当中,虽然仍然是以人工作为主要诊断方式,但是已经更多的使用到了相关的器材。在20世纪80年代之后,离心泵的检测获得了较大程度的发展,离心泵的诊断也进入了第三个阶段。随着社会的发展和科学技术的进步,推动了机械化设备的应用和推广,也推进了故障诊断技术的发展。在进入第三阶段诊断之后,更多的摒弃了人为的因素,更多的依靠智能技术来进行诊断。通过调查发现,在实际运行过程当中,离心泵会出现一种异常的振动,这种振动会导致离心泵的正常使用受到影响。同时我们在离心泵的振动最好当中也发现了丰富的信息,为此,我们可以采用相关的措施来仔细的分析离心泵的振动信号,并且来对信号进行仔细的研究。在近几年的研究过程当中,一些外国的学者针对离心泵产生故障振动来进行研究,在振动分析的基础之上提出了一些较为切实可行的方式,比如说频谱分析、功率谱估计、粗糙集理论等。这些研究都是基于振动信号的分析结果所发现的,并且还采用了各种不同的技术对于离心泵的振动信号进行更为详细的分析,从而得出更为准确的结论。 三、基于信号处理的方式 3.1频谱分析方式频谱分析是在石油工业当中使用频率最高的方式之一,相关的科研人员可以通过这个方式仔细的研究离心泵故障的具体原因,并且针对原因采取更为有效的措施进行解决。在很多的科学文献当中就对离心泵的故障诊断进行了大量的据调查和研究,在文献当中对于离心泵的特点进行了详细的分析,并且将数据以频谱分析的方式仔细地记录了下来。通过对于数据的比较,我们就可以明确得出离心泵出现故障的原因,并且选择更为合适的方式进行解决。由于造成离心泵故障的原因较为多样,所以我们在使用频谱分析法的过程当中,要仔细的辨别故障是否真的存在,在一些无法辨别的时候,频谱分析只能作为参考存在。 3.2功率谱分析功率谱分析是按照功率谱的密度以及互功率谱的相关数据进行分析的,在领域当中分析与描述相关的信号并且考虑分布情况,采用一个简单的谐波就可以研究在测试过程当中比较复杂的工程信号。在使用过程中所采用的原理就是描述信号的频率结构,从而得到机器的具体动态型号。进而得出每个部分的工作情况。 3.3小波分析方法小波分析方法是根据信号处理的要求而不断发展的时频分布方法,在处理过程当中具有比较突出的局部化特征,可以实时检测离心泵的状态,从而分析离心泵出现故障的原因。结束语:在科学发展的今天,相关人员在离心泵的故障诊断方法方面已经有了新的突破,通过对于诊断方式的研究,我们可以更加轻松而准确地发现造成离心泵鼓掌的原因,并且针对这些原因采取方法进行调整。虽然现阶段我们在离心泵的故障诊断方面已经有了较大的突破,但是还是存在着很多问题,这就需要相关的科技人员针对出现的问题进行进一步的分析和探究,从而为下一阶段的研究提供更多的参考。 参考文献:

相关文档