文档视界 最新最全的文档下载
当前位置:文档视界 › ARM七种运行模式

ARM七种运行模式

ARM七种运行模式
ARM七种运行模式

s3c2440中断体系结构:

如何用中断?

1.中断发生:保存别人的状态

如何中断可以事先设置,对程序初始化,使能中断。

中断发生后,进入中断模式

2.中断处理

分辨中断源

进行不同的处理

清理工作

3.恢复别人的状态

过程:外界信号上升沿、下降沿,高电平、低电平都可以设置成信号引脚设置,再进入状态寄存器。

状态寄存器连接屏蔽寄存器

进入第二个状态寄存器,储存各种中断,可以储存多个中断

进入优先级寄存器,判断中断运行顺序

再进入屏蔽使能寄存器和模式寄存器

进入优先级寄存器

进入cpu处理

cpu的处理:进入入口地址 b handleIRQ

计算返回地址,被中断处地址

保存现场,即各寄存器状态

调用处理函数

函数运行完后恢复现场

函数的处理:分辨终端

处理中断

清除数据,即清除中断

1.中断寄存器

arm的七种模式

https://www.docsj.com/doc/183166914.html,r 用户模式r0-r15

2.fiq 快中断模式r0-r7

专用寄存器r8-r15,

3.svc 管理模式

专用寄存器r13-r14,

4.abt 数据访问终止模式

5.sys 系统模式

6.und 未定义指令终止模式

7.irq 中断模式

几种模式的区别:

嵌入式的中断:

a.不同的寄存器

b.不同的权限

c.触发条件不一样

何时使用几种模式:

usr 用户模式:arm处理器正常的程序执行状态

fiq 快中断模式:高速数据传输和通道处理

svc 管理模式:操作系统使用的保护模式

abt 数据访问终止模式:数据或者指令终止时进入,用于虚拟存储或者存储保护

sys 系统模式:运行具有特权的操作系统任务

und 未定义指令终止模式:未定义的指令执行时进入该模式,用于支持硬件处理器的软件仿真.

irq 中断模式:用于通用的中断处理

后六种是特权模式,用于处理中断、异常和特殊权限处理

用户模式是最常见的模式

2.中断中的异常

中断是一种异常。

当发生中断时,cpu进入中断模式

cpu进入异常入口,异常入口是硬件规定的一个地址

运行模式

ARM920T 支持7 种运行模式:

●用户(usr)):正常ARM 程序执行状态

●快中断(fiq)):为支持数据传输或通道处理设计

●中断(irq)):用于一般用途的中断处理

●管理(svc)):操作系统保护模式

●中止(abt ): 数据或指令预取中止后进入

●系统(sys)):操作系统的特权用户模式

●未定义(und)):执行了一个未定义指令时进入

模式的改变可由软件控制,或者由外部中断或进入异常引起。大部分应用程序都将在用户模式执行。

被称为特权模式的非用户模式,都将进入到中断服务或异常中去,或者访问受保护的资源。内部寄存器

ARM920T 总共有37 个寄存器,其中31 通用32 位寄存器和6 个状态寄存器,但不能在同一时刻对所有的寄存器可见。处理器状态和运行模式决定了哪些寄存器对程序员可见。

ARM状态时内部寄存器集在ARM 状态,16 个通用寄存器和一个状态寄存器在任意时刻都可见。

在特权(非用户)模式下,将切换到指定模式的分组(banked)寄存器。图2-3 显示了哪些寄存器在各模式下是可见的:

分组寄存器被标记了阴影三角形。

ARM 状态时寄存器被设为包含16 个直接可以访问的寄存器:R0 到R15。

除了R15,其他全部寄存器都为通用寄存器,如可能用于保存数据或地址值。除此之外,还有第17 个寄存器用于存储状态信息。

FIQ 模式包含7 个分组寄存器,分别映射到R8-14(R8_fiq-R14_fiq)。

在ARM 状态,有很多不需要保存寄存器的FIQ 处理程序。

用户,IRQ,管理中止和未定义模式都包含两个分组寄存器映射到R13 和R14,允许这些模式都都包含私有堆栈指针和链接寄存器。

Thumb 状态时内部寄存器集

Thumb 状态时的寄存器集为ARM 状态时的寄存器的分配的一个子集。

程序员能够直接访问8 个通用寄存器R0 至R7,还有程序计数器(PC),一个堆栈指针寄存器(SP),一个链接寄存器(LR)和CPSR。

各自特权模式还分别有分组堆栈指针,链接寄存器和进程保存状态寄存器(SPSR)。如图2-4 所示。

Thumb 状态访问高寄存器(Hi-Registers )

在Thumb 状态,寄存器R8-R15(“Hi registers”)不是标准的寄存器集的一部分。然而,汇编语言程序员可以受限的对它们的进行访问,可以将它们用于快速暂存。

使用MOV 指令的特殊变量可以将一个值从R0-R7(“Lo register”)范围内的寄存器传送到高寄存器或从高寄存器到第低寄存器。使用CMP 和ADD 指令也可以对高寄存器的值与寄存器的值进行比较以或相加。

更多内容请参考表3-34。

程序状态寄存器

ARM920T 包含了一个当前程序状态寄存器(Current Program Status Register-CPSR),还有5 个用于异常程序处理的程序状态保存寄存器(Saved Program Status Registers-SPSR)。这些寄存器的功能为:

●保存最近已处理的ALU 操作的信息

●控制中断的使能与禁止

●设置处理器的运行模式

图2-6 显示了各位的编排

状态代码标志位

N,Z,C 和V 位为状态代码标志位。算术或逻辑操作结果可能会改变这些位,并检验以决定是否应该执行某条指令。

在ARM 状态,所有指令都可能为条件执行:详情见表3-2。

在Thumb 状态,只有分支指令才能条件执行:详情见表3-46。

控制位

PSR (包含I,F,T 和M[4:0])的末端8 位,统称为控制位。当发生异常时将会改变这些位。

如果处理器运行在特权模式,它们也可由软件控制。

异常:程序暂时停止

当正常程序流程被暂时停止发生异常,例如响应一个来自外设的中断。在处理异常前,必须保护当前的处理器状态,以便在完成处理程序后能恢复到原来的程序。

如果同时发生好几个异常,将会按照固定的顺序来分配,见P2-13 的异常优先级。

进入异常行为

当处理一个异常时,ARM920T 将会进行以下活动:

1. 相应链接寄存器保存下条指令的地址。如果在ARM 状态进入异常,下条指令的地址将会复制到链接寄存器(当前PC+4 或PC+8,由异常决定。详情见表2-2)中。

如果在Thumb 状态进入异常,写入链接寄存器的值则为当前PC 偏移一个值,这样异常返回后程序能从正确的位置恢复。

这意味着异常处理不需要确定异常是从什么状态进入的。例如,在SWI 的情况,无论是在ARM 状态还是Thumb 状态执行SWI,MOVS PC,R14_svc 语句都将返回到下一条指令。

2. 复制CPSR 的内容到相应SPSR 中。

3. 根据异常类型强制将CPSR 模式位设为某一个值。

4. 强制PC 从相关异常向量处取下条指令。

通常也会置位中断禁止标志位,以防止不同的难处理的异常嵌套。

如果一个异常发生时处理器处于Thumb 状态,当装载异常向量地址到PC 时会自动切换到ARM 状态。

离开异常行为:

当异常结束,异常处理程序将会:

1. 将链接寄存器适当减去一个偏移量并放入到PC 中。(偏移量由异常类型决定)

2. 复制SPSR 的内容返回给CPSR 中。

3. 如果在异常进入时置位了中断禁止标志位异常,清除中断禁止标志位。

注意:不需要在异常结束时切换回Thumb 状态,因为在异常前会立刻保存CPSR 中T 位的值到SPSR 中,并在退出异常时从SPSR 恢复到CPSR 中。

异常进入/ 退出总结

表2-2 总结了进入异常时保存在相关R14 中的PC 值和被推荐的退出异常的指令。

注释:

1. 此处PC 为含预取中止的BL/SWI/未定义指令取指令的地址。

2. 此处PC 为由于FIQ 或IRQ 抢先而未执行的指令地址。

3. 此处PC 为发生了数据中止的Load 或Store 指令的地址。

4. 当复位时保存在R14_svc 的值将是不可预测的。

快中断FIQ

FIQ(快中断请求)异常是为支持数据传输或通道处理而设计的,在ARM 状态拥有足够的私有寄存器来消除对寄存器保存的需求(这样最小化了对上下文的切换的开销)。

将nFIQ 输入端拉低可以实现外部产生FIQ。由ISYNC 输入信号端的状态决定是同步还是异步传输。

当ISYNC 为低电平,认为nFIQ 和nIRQ 为异步,中断前会引起同步周期延迟并影响处理器流程。

无论是从ARM 还是Thumb 状态进入的异常,FIQ 处理时执行SUBS PC,R14_fiq,#4 时,都应该避免中断。

如果设置CPSR 的F 标志位,FIQ 将会被禁止(但主义这不可能在用户模式中发生)。如果F 标志位为零,ARM920T将在每条指令末检测FIQ 同步发生器的输出是否为低电平。

中断IRQ

IRQ(中断请求)异常是一个由nIRQ 输入端的低电平产生的一个普通中断。IRQ 的优先级低于FIQ,当进入了相关的FIQ,会屏蔽IRQ。除非是在特权(非用户)模式,其他任何时刻都禁止设置CPSR 内的I 位。

无论是从ARM 还是Thumb 状态进入的异常,IRQ 处理时执行SUBS PC,R14_fiq,#4 时,都应该避免中断。

中止

中止表示不能完成当前对存储器的访问。

通过外部ABORT 输入端指示的。

ARM920T 在存储器访问周期期间检测中止异常。

有两种类型的中止:

●预取中止(Prefetch Abort):发生在指令预取期间

●数据中止(Date Abort):发生在数据访问期间

如果发生预取中止,将屏蔽预取指并为无效,但并不会立刻带来异常,直到指令到达流水线的执行阶段才发生。

若未执行该指令,将不会发生中止,因为流水线发生了分支。

如果发生数据中止,由指令类型决定其行为:

●单一的数据转移指令(LDR,STR)回写到被修改的基址寄存器:中止处理程序必须意识到这点。

●交换指令(SWP)执行失败,就如同没有被执行。

●块数据转移指令(LDM,STM)完成。如果设置了回写,基址寄存器将被更新。如果指令会覆盖基址寄存器数据(转移列表中包含基址),覆盖将会被阻止。表明了中止后所有寄存器的覆盖都会被阻止,特别是R15(通常是最后转移的寄存器)在一个被中止的LDM 指令会被阻止覆盖。

中止机制使得分页虚拟存储器系统可以被实现。在这样一个系统中允许处理器产生任意地址。当无法获取某一地址上的数据时,内存管理单元(Memory Management Unit-MMU)将表明产生一个中止。

中止处理程序必须紧接着找出中止原因,使得被请求的数据可用并重试被中止的指令。应用程序并不需要了解可以使用的内存总量,也不需要关心中止对其状态以任何方式被影响。

当确定中止原因后,处理程序应该不顾状态(ARM 或Thumb)执行下列语句:SUBS PC,R14_abt,#4 ; 预取中止

SUBS PC,R14_abt,#8 ; 数据中止

这将恢复PC 和CPSR,并重试被中止的指令。

软件中断SWI

软件中断指令(Software Interrupt Instruction-SWI)用于进入管理模式,通常请求一个特定的管理功能。SWI处理程序应当在状态(ARM 或Thumb)中通过执行下列指令返回:MOV PC,R14_svc

这将恢复PC 和CPSR,并返回到SWI 之后的指令。

注意:nFIQ,nIRQ,ISYNC,LOCK,BIGEND 和ABORT 引脚只存在于ARM920T CPU 内核之中。

未定义指令

当ARM920T 遇到不能处理的指令时,将产生未定义指令陷阱。这个机制可以用于软件仿真扩展Thhumb 指令集或ARM 指令集。

仿真了失败指令后,陷阱处理程序应该执行在状态(ARM 或Thumb)中执行下列指令:MOVS PC,R14_und

这将恢复CPSR,并返回到未定义指令之后的指令。

异常向量

下表显示了异常向量地址

异常优先级

当同时出现多个异常时,一个固定的优先级系统将确定它们的处理顺序:

高优先级:

1. 复位

2. 数据中止

3. 快中断FIQ

4. 中断IRQ

5. 预取中止

低优先级:

6. 未定义指令,软件中断

并不是所有的异常都可以在同一时刻发生!

未定义指令和软件中断异常互斥,因为它们分别对应于当前指令的的特定(非重叠)译码。

如果发生数据中止的同时发生FIQ 并且又使能了FIQ (CPSR 的 F 标志位被清零),ARM920T 将先进入数据中止处理程序,然后立即转向FIQ 向量。当从FIQ 正常返回将会引起数据中止处理程序恢复执行。

为了确保传输错误不会在检测中被遗漏,必须将数据中止置为比FIQ 更高的优先级。进入此异常的时间需要按加上最坏情况下FIQ 的时间延迟来算。

中断延迟

当使能了FIQ ,其最坏情况的延迟包括:

请求通过同步器的最长时间(Tsyncmax,如果为异步),加上完成最长指令的时间(Tldm,最长指令是装载包括PC 在内所有的寄存器的LDM 指令),加上数据中止进入的时(Texc),再加上FIQ 进入的时间(Tfiq)。在该时间末ARM920T 将会执行位于0x1C 处的指令。

Tsyncmax 为3 个才处理器周期,Tldm 为20 个周期,Texc 为3 个周期,Tfiq 为2 个周期。因此总时间为28个处理器周期。在一个使用连续20MHz 处理器时钟的系统中,其只过了1.4 毫秒。最大IRQ 延迟的计算与此类同,

但还必须实际考虑,FIQ 具有更高的优先级并且能推迟任意长度的时间进入到IRQ 处理程序。FIQ 或IRQ 最小延迟包括请求通过同步器的最短时间(Tsyncmin)加上Tfiq。此时为4 个处理器周期。

复位

当nRESET 信号端变为低电平时,ARM920T 将放弃正在处理的指令,然后从递增(incrementing)字地址继续取指令。

当nRESET 信号端变为高电平时,ARM920T 将:

1. 复制当前PC 和CPSR 的值覆盖到R14_svc 和SPSR_svc 中。未定义保存的PC 和SPSR 的值

2. 强制将M[4:0]设置为10011(管理模式),置位CPSR 中的I 和F 位并清除CPSR 的T 位。

3. 强制PC 从0x00 地址开始对下一条指令的取指。

4. 在ARM 状态恢复执行。

嵌入式系统移植+心得

嵌入式系统作为近年来新兴的且发展很快的学科,它的应用越来越受到广大技术人员的重视。尤其起可移植性,显著的区别了通用操作系统。一款嵌入式操作系统通常运行在不同体系结构的处理器和开发板上,极大的方便了开发者开发与应用,节约了成本。 嵌入式操作系统作为移植支持嵌入式系统应用的操作系统软件,被广泛的运用于不同应用领域。纵观嵌入式系统40多年的历史,从无操作系统的嵌入式算法阶段到简单监控式的实时操作系统,一步又一步的到现在的以Internet为标志的嵌入式系统,一批又一批的先辈为其努力而奋斗。科技的革新,带动着社会的发展,人类的进步。大数据的时代必定属于我IT 人。以下我们聊一聊嵌入式系统及其移植性。 嵌入式操作系统大体分为商用型和免费型。 商用型主要是WindowsCE。Psos.os-9.qnx等其价格较为昂贵,开发成本高,广泛运用于通信。军事。航天等高端技术领域 免费型主要为Linux等主要运用于没有存储器管理单元的处理器而设置。 嵌入式基本操作共四步 主机和目标机的连接方式; UARA最经典90%的板子上,都支持的方式叫异部串行接口,也就是我们所说的串口。 USB串行接口 TCP/IP网络接口 Debug Jtag调试接口 补充说明 1.对于串口,通常用的有串口调试助手,putty工具等,工具很多,功能都差不多,会用一两款就可以; 2.对于USB线,当然必须要有USB的驱动才可以,一般芯片公司会提供,比如对于三星的芯片,USB下载主要由DNW软件来完成; 3.对于网线,则必须要有网络协议支持才可以 安装交叉编译器 方法一:分步编译和安装交叉编译工具链所需要的库和源代码,最终生成交叉编译工具链。该方法相对比较困难,适合想深入学习构建交叉工具链的读者。如果只是想使用交叉工具链,建议使用下列的方法二构建交叉工具链。 方法二:通过Crosstool-ng脚本工具来实现一次编译,生成交叉编译工具链,该方法相对于方法一要简单许多,并且出错的机会也非常少,建议大多数情况下使用该方法构建交叉编译工具链。 方法三:直接通过网上下载已经制作好的交叉编译工具链。该方法的优点不用多说,当然是简单省事,但与此同时该方法有一定的弊端就是局限性太大,因为毕竟是别人构建好的,也就是固定的,没有灵活性,所以构建所用的库以及编译器的版本也许并不适合你要编译的程序,同时也许会在使用时出现许多莫名其妙的错误 搭建主机

三种常用的嵌入式操作系统分析与比较

三种常用的嵌入式操作系统分析与比较 摘要:提要三种常用的嵌入式操作系统——Palm OS、Windows CE、Linux;在此基础上、分析、比较这三种嵌入式操作系统,给出它们之间的异同点及各自的适用范围。 1 嵌入式系统与嵌入式操作系统 1.1 嵌入式系统 嵌入式系统是以嵌入式计算机为技术核心,面向用户、面向产品、面向应用,软硬件可裁减的,适用于对功能、可靠性、成本、体积、功耗等综合性能有严格要求的专用计算机系统。 嵌入式系统应具有的特点是:高可靠性;在恶劣的环境或突然断电的情况下,系统仍然能够正常工作;许多嵌入式应用要求实时性,这就要求嵌入式操作系统具有实时处理能力;嵌入式系统和具体应用有机地结合在一起,它的升级换代也是具体产品同步进行;嵌入式系统中的软件代码要求高质量、高可靠性,一般都固化在只读存储器中或闪存中,也就是说软件要求固态化存储,而不是存储在磁盘等载体中。 1.2 嵌入式操作系统 嵌入式操作系统EOS (Embedded Operating System)是一种用途广泛的系统软件,过去它主要应用于工业控制和国防系统领域。EOS负责嵌入系统的全部软、硬件资源的分配、调度作,控制、协调并发活动;它必须体现其所在系统的特征,能够通过装卸某些模块来达到系统所要求的功能。目前,已推出一些应用比较成功的EOS产品系列。随着Internet技术的发展、信息家电的普及应用及EOS的微型化和专业化,EOS开始从单一的弱功能向高专业化的强功能方向发展。嵌入式操作系统在系统实时高效性、硬件的相关依赖性、软件固化以及应用的专用性等方面具有较为突出的特点。EOS是相对于一般操作系统而方的,它除具备了一般操作系统最基本的功能,如任务调度、同步机制、中断处理、文件处理等外,还有以下特点: ①可装卸性。开放性、可伸缩性的体系结构。 ②强实时性。EOS实时性一般较强,可用于各种设备控制当中。 ③统一的接口。提供各种设备驱动接口。

嵌入式-ARM寄存器基本概念.

嵌入式-ARM寄存器基本概念 嵌入式-ARM寄存器基本概念 类别:嵌入式系统 无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄 存器以及工作模式。ARM有37个寄存器,其中31个通用寄存器,6个状 态寄存器。这里尤其要注意区别的是ARM自身寄存器和它的一些外设的寄存器的区别。ARM自身是统一架构的,也就意味着37个寄存器无论在哪 个公司的芯片里面都会出现。但是各家公司会对ARM进行外设的扩展,所以就 出现了好多外设寄存器,一定要与这37个寄存器区别开来!!!1、备份寄存器(R8-R14)对于R8-R12来说,除在快速中断模式下,每个模式对 应相同物理寄存器,所以在FIQ模式下可不必保护和恢复中断现场。对于R13-R14来说,每个寄存器对应6个不同的物理寄存器,其中一个是用户模式 和系统模式共用的。寄存器R13常用做栈指针SP,除用户和系统模式 外,其他模式在使用时的名字构成为R13_。寄存器R14又被称 2、不分组寄存器(R0-R7)不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理 器模式使用一个名字相同的物理寄存器,就是使用的同一个寄存器,这样可能 造成寄存器中数据被破坏,所以在进行模式切换时必须加以保护。为连接寄存器(LR),除用户和系统模式外,其他模式在使用时的名字构成为 R14_。有下面两种特殊用途:A、每个处理器模式自己的物理R14中存放在当前子程序的返回地址。当通过BL或BLX指令调用子程序时, R14被设置成该子程序的返回地址。B、当异常中断发生时,该异常模式 下的R14被设置成保存该模式基于PC的返回地址,对于有些异常模式,R14的值有可能与将返回的地址有个常数的偏移量,不同模式偏移量还有所不同(在ARM 的异常处理里有详细介绍)。3、程序计数器R15 对于用户来说,尽量避免使用STR/STM指令来保存R15的值。当成功向R15写入一个地址 数值时,程序将跳转到该地址执行。在ARM状态下指令总是字对齐的,所以PC的PC[1:0]位恒为零,在想PC写入地址时一定要注意将PC[1:0]设为零。ARM采用的是3级流水线结构,所以PC指向的是当前执行指令的下 两条指令,PC-8为当前指令地址。4、程序状态寄存器CPSR(当前程序状态寄存器)可以在任何处理器模式下被访问。同时除了用户和系统模式以外,每中处理器模式下都有一个专用的物理状态寄存器,称为 SPSR(备份程序状态寄存器)。当特定的异常中断发生时,这个寄存器用于存放当前程序状态 寄存器的内容。当在用户模式和系统模式中访问SPSR,将会产生不可预知的结果。CPSR和SPSR的格式相同,如下:0:M0 1:M1 2:M2 3:M3 4:M4 5:T(=1 Thumb执行) 6:F(=1是禁止) 7: I(=1是禁止) 注意:M0~M4并不是所有的组合都定义了有效的处理模式,如 果错误设置,将会引起无法预料的错误。27:Q 在ARM V5的E系列处理器中,CPSR的bit[27]称为q标识位,主要用于指示增强的dsp指令是否发生了

嵌入式习题答案

嵌入式习题答案Last revision on 21 December 2020

第一章习题答案 1.什么是嵌入式系统请列举几个常见的嵌入式系统。 答:根据国际电气和电子工程师协会(IEEE)的定义,嵌入式系统是控制、监视或者辅助设备、机器和生产线运行的装置(Devices used to control, monitor, or assist the operation of equipment, machinery or plants)。这主要是从产品的应用角度加以定义的,由此可以看出嵌入式系统是软件和硬件的综合体,可以涵盖机械等附属装置。 目前被我国科学家普遍认同的定义是:嵌入式系统是以应用为中心,以计算机技术为基础,软硬件可裁减,对功能、可靠性、成本、体积、功耗要求严格的专用计算机系统。 常见的嵌入式系统:手机,DVD,路由器,核磁共振仪,全自动洗衣机。 2.嵌入式系统与通用计算机有哪些区别 答:(1) 以应用为中心;(2) 以计算机技术为基础(3) 软件和硬件可裁减(4) 对系统性能要求严格(5)软件的固件化(6)需要专用的开发工具 3.嵌入式系统的发展分为哪几个阶段 答:第一阶段:无操作系统的嵌入算法阶段。第二阶段:以嵌入式CPU为基础,以简单操作系统为核心的嵌入式系统。第三阶段:以嵌入式操作系统为标志的嵌入式系统。第四阶段:以基于Internet为标志的嵌入式系统。 4.请列举嵌入式系统的主要应用领域。 答:(1)工业控制领域(2)交通运输领域(3)消费电子产品(4)家电领域(5)通信领域(6)商业和金融领域(7)环境监测领域(8)医疗领域(9)建筑领域(10)军事国防领域(11)航天航空领域

常见的嵌入式操作系统

常见的嵌入式操作系统 分类:嵌入式操作系统2012-12-11 10:06 459人阅读评论(1) 收藏举报嵌入式操作系统 嵌入式操作系统与通用的操作相比较主要特点在于: 1.小内核,稳定可靠。 2.需要可装卸、可裁剪,以便能灵活应对各种不同的硬件平台。 3.面向应用,强实时性,可用于各种设备控制当中。 国际上常见的嵌入式操作系统大约有40种左,右如:Linux、uClinux、WinCE、PalmOS、Symbian、eCos、uCOS-II、VxWorks、pSOS、Nucleus、ThreadX 、Rtems 、QNX、INTEGRITY、OSE、C Executive 。他们基本可以分为两类,一类是面向控制、通信等领域的实时操作系统,如windriver公司的vxworks、isi的psos、qnx系统软件公司的qnx、ati的nucleus等;另一类是面向消费电子产品的非实时操作系统,这类产品包括个人数字助理(pda)、移动电话、机顶盒、电子书、webphone等,系统有Microsoft的WinCE,3Com 的Palm,以及Symbian和Google的Android等。 一、VxWorks VxWorks操作系统是美国WindRiver公司于1983年设计开发的一种嵌入式实时操作系统(RTOS),是T ornado嵌入式开发环境的关键组成部分。良好的持续发展能力、高性能的内核以及友好的用户开发环境,在嵌人式实时操作系统领域逐渐占据一席之地。VxWorks具有可裁剪微内核结构;高效的任务管理;灵活的任务间通讯;微秒级的中断处理;支持POSIX 1003.1b实时扩展标准;支持多种物理介质及标准的、完整的TCP/IP网络协议等。 然而其价格昂贵。由于操作系统本身以及开发环境都是专有的,价格一般都比较高,通常需花费10万元人民币以上才能建起一个可用的开发环境,对每一个应用一般还要另外收取版税。一般不通供源代码,只提供二进制代码。由于它们都是专用操作系统,需要专门的技术人员掌握开发技术和维护,所以软件的开发和维护成本都非常高。支持的硬件数量有限。 二、Windows CE Windows CE与Windows系列有较好的兼容性,无疑是Windows CE推广的一大优势。其中WinCE3.0是一种针对小容量、移动式、智能化、32位、了解设备的模块化实时嵌人式操

ARM体系的7种工作模式

ARM体系的7种工作模式 一、ARM体系的CPU有以下7种工作模式: 1、用户模式(usr):正常的程序执行状态 2、快速中断模式(fiq): 3、中断模式(irq): 4、管理模式(svc):操作系统使用的保护模式 5、系统模式(sys):运行具有特权的操作系统任务 6、数据访问终止模式(abt):数据或指令预取终止时进入该模式 7、未定义指令终止模式(und):未定义的指令执行时进入该模式 注解: 可以通过软件来进行模式切换,或者发生各类中断、异常时CPU自动进入相应的模式;除用户模式外,其余6种工作模式都属于特权模式; 特权模式中除了系统模式以外的其余5种模式称为异常模式; 大多数程序运行于用户模式; 进入特权模式是为了处理中断、异常、或者访问被保护的系统资源; 二、ARM体系的CPU有两种工作状态 1、ARM 2、THumb CPU上电处于ARM状态 三、寄存器 ARM有31个通用的32位寄存器,6个程序状态寄存器,共分为7组,有些寄存器是所有工作模式共用的,还有一些寄存器专属于每一种工作模式; R13——栈指针寄存器,用于保存堆栈指针; R14——程序连接寄存器,当执行BL子程序调用指令时,R14中得到R15的备份,而当发生中断或异常时,R14保存R15的返回值;

R15——程序计数器; 快速中断模式有7个备份寄存器R8—R14,这使得进入快速中断模式执行很大部分程序时,甚至不需要保存任何寄存器; 其它特权模式都含有两个独立的寄存器副本R13、R14,这样可以令每个模式都拥有自己的堆栈指针和连接寄存器; 四、当前程序状态寄存器(CPSR) CPSR中各位意义如下: T位:1——CPU处于Thumb状态,0——CPU处于ARM状态; I、F(中断禁止位):1——禁止中断,0——中断使能; 工作模式位:可以改变这些位,进行模式切换; 五、程序状态保存寄存器(SPSR) 当切换进入某一个特权模式时,SPSR保存前一个工作模式的CPSR值,这样,当返回前一个工作模式时,可以将SPSR的值恢复到CPSR中; 六、模式切换

嵌入式系统学习心得

嵌入式系统学习心得 首先我声明,我是基于嵌入式系统平台级设计的,硬件这个方向我相对来讲比较有发言权,如果是其它方面所要具备的基本技能还要和我们培训中心其它专业级讲师沟通。他们的方面上我只能说是知道些,但不是太多,初级的问题也可以问我。 对于硬件来讲有几个方向,就单纯信号来分为数字和模拟,模拟比较难搞,一般需要很长的经验积累,单单一个阻值或容值的精度不够就可能使信号偏差很大。因此年轻人搞的较少,随着技术的发展,出现了模拟电路数字化,比如手机的modem射频模块,都采用成熟的套片,而当年国际上只有两家公司有此技术,自我感觉模拟功能不太强的人,不太适合搞这个,如果真能搞定到手机的射频模块,只要达到一般程度可能月薪都在15k以上。 另一类就是数字部分了,在大方向上又可分为51/arm的单片机类,dsp类,fpga类,国内fpga的工程师大多是在ic设计公司从事ip核的前端验证,这部分不搞到门级,前途不太明朗,即使做个ic前端验证工程师,也要搞上几年才能胜任。dsp硬件接口比较定型,如果不向驱动或是算法上靠拢,前途也不会太大。而arm 单片机类的内容就较多,业界产品占用量大,应用人群广,因此就业空间极大,而硬件设计最体现水平和水准的就是接口设计这块,这是各个高级硬件工程师相互pk,判定水平高低的依据。而接口设计这块最关键的是看时序,而不是简单的连接,比如pxa255处理器

i2c要求速度在100kbps,如果把一个i2c外围器件,最高还达不到100kbps的与它相接,必然要导致设计的失败。这样的情况有很多,比如51单片机可以在总线接lcd,但为什么这种lcd就不能挂在arm的总线上,还有arm7总线上可以外接个winband的sd卡控制器,但为什么这种控制器接不到arm9或是xscale处理器上,这些都是问题。因此接口并不是一种简单的连接,要看时序,要看参数。一个优秀的硬件工程师应该能够在没有参考方案的前提下设计出一个在成本和性能上更加优秀的产品,靠现有的方案,也要进行适当的可行性裁剪,但不是胡乱的来,我遇到一个工程师把方案中的5v变1.8v的dc芯片,直接更换成ldo,有时就会把cpu烧上几个。前几天还有人希望我帮忙把他们以前基于pxa255平台的手持gps设备做下程序优化,我问了一下情况,地图是存在sd卡中的,而sd卡与pxa255的mmc控制器间采用的spi接口,因此导致地图读取速度十分的慢,这种情况是设计中严重的缺陷,而不是程序的问题,因此我提了几条建议,让他们更新试下再说。因此想成为一个优秀的工程师,需要对系统整体性的把握和对已有电路的理解,换句话说,给你一套电路图你终究能看明白多少,看不明白80%以上的话,说明你离优秀的工程师还差得远哪。其次是电路的调试能力和审图能力,但最最基本的能力还是原理图设计pcb绘制,逻辑设计这块。这是指的硬件设计工程师,从上面的硬件设计工程师中还可以分出ecad工程师,就是专业的画pcb板的工程师,和emc设计工程师,帮人家解决emc的问题。硬件工程师再往上就是板级测试工程师,就是c语功底很好的硬件工程师,在电路板调试过程中

基于Linux嵌入式操作系统的研究

基于Linux 嵌入式操作系统的研究 李红卫1,潘瑜1,王树亮2,薛小锋1 (1.江苏技术师范学院计算机科学与工程学院,江苏常州213001; 2.江苏技术师范学院图书馆,江苏常州213001) 摘要:从Linux内核实时性、实时调度策略以及时钟细粒度定时器三个方面,对Linux嵌入式实时化技术进行了探讨。在内核中插入抢占点或采用双内核系统,改善Linux的实时性能;通过动态优先级提高实时任务的调度性能;通过增加时钟中断频率或采用实时时钟一次性模式,实现时钟细粒度。 关键词:Linux;嵌入式系统;实时性;进程调度 中图分类号:TP316.2文献标识码:A 0引言 嵌入式系统是集软硬件于一体可独立工作的计算机系统,它通常是更大系统中一个完整的部分[1]。 在早期的嵌入式系统设计中一般不包含操作系统,但当系统越来越复杂、应用范围越来越广泛时,没有操作系统已成为系统开发的最大障碍;因此,在嵌入式系统的发展中,出现了各种各样的商用嵌入式操作系统。嵌入式操作系统的出现改变了以往嵌入式软件设计只能针对具体的应用从头做起,使嵌入式系统的开发方法更具科学性;同时,采用嵌入式操作系统提高了系统的开发效率,减少了开发的工作量,增强了软件的可移植性。操作系统成为嵌入式系统的核心,是一个时代的特征,也是嵌入式系统从简单的单片机、微处理器走向愈来愈复杂的嵌入式SOC和CPU的自然体现[2]。开源Linux操作系统的出现,给嵌入式操作系统的发展带来生机,将Linux应用于嵌入式系统开发环境中已十分广泛;但就目前而言,嵌入式Linux的研究成果与市场的真正需求仍有一段差距,还需要在嵌入式Linux系统的实时性、进程调度等方面对其进行不断的改进和完善。 1改造Linux为嵌入式操作系统的分析 实时系统最重要的特征是实时性,实时性是指系统对外部事件的响应和处理要在一个给定的时间内 完成,即计算必须在到达死线(deadline)前完成[1]。根据丢失死线的容忍程度可将实时系统分为硬实时系 统和软实时系统:硬实时系统必须保证任务在到达死线之前完成,丢失死线将会引发灾难;软实时系统能保证任务在死线之前完成,但死线的丢失并不会带来致命的错误。 在大多数嵌入式系统应用中往往要求系统具有实时性。虽然Linux是一个分时操作系统,但其符合POSIX1003.1b关于实时扩展部分的标准,尤其Linux2.6的推出给嵌入式系统以及实时系统的应用带来生机。将Linux改造为嵌入式实时操作系统具有(1)Linux功能强大、(2)开放源码、(3)支持多种硬件平台、(4) 收稿日期:2006-02-21;修回日期:2006-04-03 基金项目:江苏技术师范学院科研基金资助项目(KYY04001) 作者简介:李红卫(1966-),男,山西阳城人,江苏技术师范学院计算机科学与工程学院副教授。 JOURNALOFJIANGSUTEACHERSUNIVERSITYOFTECHNOLOGY江苏技术师范学院学报 Apr.,Vol.12,No.22006 2006年4月第12卷第2期

《ARM嵌入式系统结构与编程》习题答案

1章绪论 1.国内嵌入式系统行业对“嵌入式系统”的定义是什么?如何理解?答:见教材1.1节。 2.嵌入式系统是从何时产生的,简述其发展历程。答:见教材1.1节。 3.当前最常见的源码开放的嵌入式操作系统有哪些,请举出两例,并分析其特点。 答:见教材1.2.1节的嵌入式Linux和嵌入式实时操作内核UC /OS-I 。 4.举例说明嵌入式设备在工控设备中的应用。答:见教材1.3节的“工业控制领域”。 5.未来嵌入式技术的发展趋势有哪些?答:见教材1.4节的嵌入式技术的发展趋势。 2章ARM技术与ARM体系结构 1.简述ARM处理器内核调试结构原理。答:对教材1.2节的图2-1进行描述。 2.分析ARM7TDMI-S各字母所代表的含义。答:参考教材 2.1.2 ARM核版本命名规则说明。3.ARM处理器的工作模式有哪几种,其中哪些为特权模式,哪些为异常模式,并指出处理器在什么情况下进入相应的模式。 ARM处理器共有7种工作模式: 用户模式:非特权模式,也就是正常程序执行的模式,大部分任务在这种模式下执行。在用户模式下,如果没异常发生,不允许应用程序自行改变处理器的工作模式,如果有异常发生,处理器会自动切换工作模式FIQ模式:也称为快速中断模式,支持高速数据传输和通道处理,当一个高优(fast)中断产生时将会进入这种模式。 IRQ模式:也称为普通中断模式,:当一个低优先级中断产生时将会进入这种模式。在这模式下按中断的处理器方式又分为向量中断和非向量中断两种。通常的中断处理都在IRQ 模式下进行。 SVC模式:称之为管理模式,它是一种操作系统保护模式。当复位或软中断指令执行时处理器将进入这种模式。 中止模式:当存取异常时将会进入这种模式,用来处理存储器故障、实现虚拟存储或存储保护。 未定义指令异常模式:当执行未定义指令时会进入这种模式,主要是用来处理未定义的指令陷阱,支持硬件协处理器的软件仿真,因为未定义指令多发生在对协处理器的操作上。 系统模式:使用和User模式相同寄存器组的特权模式,用来运行特权级的操作系统任务。 在这7种工作模式中,除了用户模式以外,其他6种处理器模式可以称为特权模式,在这些模式下,程序可以访问所有的系统资源,也可以任意地进行处理器模式的切换。在这6种特权模式中,除了系统模式外的其他5种特权模式又称为异常模式 4.分析程序状态寄存器(PSR)各位的功能描述,并说明C、Z、N、V在什么情况下进行置位和清零。PSR的具体格式为 V—溢出标志位 对于加/减法运算指令,当操作数和运算结果为二进制补码表示的带符号数时,V=1表示符号位溢出,其他的指令通常不影响V位。 例如:两个正数(最高位为0)相加,运算结果为一个负数(最高位为1),则符号位溢出,相应V=1。

关于ARM中的名词常用解释

关于ARM中的名词常用解释 1.ARM中一些常见英文缩写解释 MSB:最高有效位; LSB:最低有效位; AHB:先进的高性能总线; VPB:连接片内外设功能的VLSI外设总线; EMC:外部存储器控制器; MAM:存储器加速模块; VIC:向量中断控制器; SPI:全双工串行接口; CAN:控制器局域网,一种串行通讯协议; PWM:脉宽调制器; ETM:嵌入式跟踪宏; CPSR:当前程序状态寄存器; SPSR:程序保护状态寄存器; 2.MAM 使用注意事项: 当改变MAM 定时值时,必须先通过向MAMCR 写入0 来关闭MAM,然后将新值写入MAM ti M。最后,将需要的操作模式的对应值写入MAMCR,再次打开MAM。 对于低于20MHz 的系统时钟,MAMTIM 设定为001。对于20MHz 到40MHz 之间的系统时钟,建议将Flash访问时间设定为2cclk,而在高于40MHz 的系统时钟下,建议使用3cclk。

3.VIC 使用注意事项 如果在片内RAM当中运行代码并且应用程序需要调用中断,那么必须将中断向量重新映射到Flash地址0x0。这样做是因为所有的异常向量都位于地址0x0及以上。通过将寄存器MEMMAP(位于系统控制模块当中)配置为用户RAM模式来实现这一点。用户代码被连接以便使中断向量表装载到0x4000 0000。 4. ARM启动代码设计 ARM启动代码直接面对处理器内核和硬件控制器进行编程,一般使用汇编语言。启动代码一般包括: 中断向量表 初始化存储器系统 初始化堆栈初始化有特殊要求的端口、设备 初始化用户程序执行环境 改变处理器模式 呼叫主应用程序 5.IRQ 和FIQ 之间的区别 IRQ和FIQ是ARM处理器的两种编程模式。IRQ是指中断模式,FIR是指快速中断模式。对于FIQ 你必须尽快处理你的事情并离开这个模式。IRQ 可以被FIQ 所中断,但IRQ 不能中断FIQ。为了使FIQ 更快,所以这种模式有更多的影子寄存器。FIQ 不能调用SWI(软件中断)。FIQ 还必须禁用中断。如果一个FIQ 例程必须重新启用中断,则它太慢了,并应该是IRQ 而不是FIQ。

嵌入式系统课后答案马维华

第1章嵌入式系统概述 1,什么是嵌入式系统嵌入式系统的特点是什么 嵌入式系统概念: (1) IEEE对嵌入式系统的定义:用于控制,监视或者辅助操作机器和设备的装置. (2)一般定义:以应用为中心,以计算机技术为基础,并且软硬件可裁剪,适用于应用系统对功能,可靠性,成本,体积,功耗有严格要求的专用计算机系统. 嵌入式系统的特点: (1) 专用的计算机系统 (2) 必须满足环境要求 (3) 必须能满足对象系统的控制要求 (4) 是集成计算机技术与各行业应用的集成系统 (5) 具有较长的生命周期 (6) 软件固化在非易失性存储器中 (7) 必须能满足实时性要求 (8) 需要专用开发环境和开发工具 2,简单分析几种嵌入式操作系统的主要特点,包括嵌入式Linux,Windows CE,uCOS II 及VxWorks. (1)嵌入式Linux:有多个主流版本,根据应用需求,性能略有差别.μCLinux是Linux小型化后,适合于没有MMU的微处理器芯片而裁剪成的操作系统,μCLinux保持了传统Linux操作系统的主要特性,包括稳定,强大的网络和文件系统的支持,μCLinux裁剪了大量的Linux内核以缩小尺寸,适合像512KB RAM,1MB Flash这样小容量,低成本的嵌入式系统.RT_Linux即能兼容通常的Linux,又能保证强实时性. (2)Windows CE:开发平台主要为WinCE Platform Builder,有时也用EVC环境开发一些较上层的应用.WinCE开发难度远低于嵌入式Linux,实时性略低,常用于手机,PDA等手持设备中. (3)uCOS II:结构小巧,抢先式的实时嵌入式操作系统,具有执行效率高,占用空间小,可移植性强,实时性能好和可扩展性能等优点.主要用于小型嵌入式系统. (4) VxWorks: 集成开发环境为Tornado,Vxworks因出现稍早,实时性很强,并且内核可极微(最小8K),可靠性较高等.通常应用在通信设备等实时性要求较高的系统中. 第2章嵌入式处理器体系结构 1,具体说明ARM7TDMI的含义,其中的T,D,M,I分别代表什么 ARM7TDMI是ARM7处理器系列成员之一,采用V4T版本指令.T表示Thumb,该内核可从16位指令集切换到32位ARM指令集;D表示Debug,该内核中放置了用于调试的结构,支持片内Debug调试;M表示Multiplier,支持位乘法;I表示Embedded ICE ,内含嵌入式ICE宏单元,支持片上断点和观察点. 2,ARMV4及以上版本的CPSR的哪一位反映了处理器的状态若CPSR=0x000000090,分析系统状态.CPSR=0x000000090表示当前处理器工作于ARM状态,系统处于用户模式下. CPSR的BIT5(T)反映当前处理器工作于ARM状态或Thumb状态. 3,ARM有哪几个异常类型,为什么FIQ的服务程序地址要位于0x1C 在复位后,ARM处理器处于何种模式,何种状态 ARM的7种异常类型:复位RESET异常,未定义的指令UND异常,软件中断SWI异常,指令预取中止PABT异常,数据访问中止DABT异常,外部中断请求IRQ异常,快速中断请求FIQ 异常.在有快速中断发生时,CPU从0x1C处取出指令执行.ARM复位后处于管理模式,工作于ARM状态. 4,为什么要使用Thumb模式,与ARM代码相比较,Thumb代码的两大优势是什么

嵌入式实习报告总结

嵌入式实习报告总结 随着信息化技术的发展和数字化产品的普及,以计算机技 术、芯片技术和软件技术为核心的嵌入式系统再度成为当前研究和应用的热点,通信、计算机、消费电子技术(3C)合一的趋势正在逐步形成,无所不在的网络和无所不在的计算( , )正在将人类带入一个崭新的信息社会。 二、实习目的 学习和了解了嵌入式在生活中的重要作用和发展过程,熟练掌握硬件体系结构,熟悉下的嵌入式编程流程,积累自己的软件编写经验,能够参与并实现一个真实和完整的嵌入式项目,为今后的学习和将从事的技术工作打下坚实的基础 三、实习任务 第一阶段操作和编程基础 主要介绍的基本命令和基础编程知识,包括 的文件操作和目录操作命令,编辑器,编译器,调试器和项目管理工具等知识。 第二阶段嵌入式C语言编程基础 主要介绍在嵌入式开发编程中C语言的重要概念和编程技巧中的重点难点,以复习串讲和实例分析的形式,重点介绍包括函数与程序结构,指针、数组和链表,库函数的使用等知识。

第三阶段上C强化编程训练 主要包括整数算法训练,递归和栈编程训练,位操作训练,指针训练,字符串训练和常用C库函数编程接口实践,强化学员对下基本编程开发的理解和编码调试的能力。 第四阶段环境高级编程及项目开发编程实践 主要包括系统编程(信号/系统调用/管道消息队列/共享内存等),文件编程(文件描述符/文件读写接口/原子操作/阻塞与非阻塞等,多任务和多线程编程(进程标识/ 用户标识与多线程概念/线程同步等),网络编程(网络基本概念/套接口编程/网络字节次序结构编程);掌握下编程的开发流程,熟悉网络编程的调用接口函数和相关数据结构,使学员初步具备在上进行系统编程开发的能力。同时综合之前所学内容和编程技术,以小组为单位进行一个团队合作项目的开发,考核内容包括文件编程,多线程编程,网络编程和项目文档编写。 第五阶段嵌入式处理器体系结构及编程实践 主要介绍体系结构及其基本编程知识,包括指令分类,寻址方式、指令集、存储系统、异常中断处理、汇编语言以及C\和汇编语言的混合编程等知识。同时结合嵌入式开发板硬件设计原理和基本硬件设计流程,分析各种外设的工作原理和驱动机制,并自己动手实践完成一个开发板上的编程大作业。

五大适合STM32的嵌入式操作系统

五大适合STM32的嵌入式操作系统 基于STM平台且满足实时控制要求操作系统,有以下5种可供移植选择。分别为μClinux、μC/OS-II、eCos、FreeRTOS和都江堰操作系统(djyos)。下面分别介绍这五种嵌入式操作系统的特点及不足。1、μClinuxμClinux是一种优秀的嵌入式Linux版本,其全称为micro-control Linux,从字面意思看是指微控制Linux。同标准的Linux相比, μClinux的内核非常小,但是它仍然继承了Linux操作系统的主要特性,包括良好的稳定性和移植性、强大的网络功能、出色的文件系统支持、标准丰富的API,以及TCP/IP网络协议等。因为没有MMU内存管理单元,所以其多任务的实现需要一定技巧。 μClinux在结构上继承了标准Linux的多任务实现方式,分为实时进程和普通进程,分别采用先来先服务和时间片轮转调度,仅针对中低档嵌入式CPU特点进行改良,且不支持内核抢占,实时性一般。 在内存管理上由于μClinux是针对没有MMU的处理器设计的,不能使用处理器的虚拟内存管理技术,只能采用实存储器管理策略。系统使用分页内存分配方式,在启动时对实际存储器进行分页。系统对内存的访问是直接的,操作系统对内存空间没有保护,多个进程可共享一个运行空间,所以,

即使是一个无特权进程调用一个无效指针也会触发一个地 址错误,并有可能引起程序崩溃甚至系统崩溃。 μClinux操作系统的中断管理是将中断处理分为两部分:顶半处理和底半处理。在顶半处理中,必须关中断运行,且仅进行必要的、非常少、速度快的处理,其他处理交给底半处理;底半处理执行那些复杂、耗时的处理,而且接受中断。因为系统中存在有许多中断的底半处理,所以会引起系统中断处理的延时。 μClinux对文件系统支持良好,由于μClinux继承了Linux完善的文件系统性能,它支持ROMFS、NFS、ext2、MS-DOS、JFFS等文件系统。但一般采用ROMFS文件系统,这种文件系统相对于一般的文件系统(如ext2)占用更少的空间。但是ROMFS文件系统不支持动态擦写保存,对于系统需要动态保存的数据须采用虚拟RAM盘/JFFS的方法进行处理。在对硬件的支持上,由于μClinux继承了Linux的大部分性能,所以至少需要512KB的RAM空间,lMB的ROM/Flash 空间。 在μClinux的移植方面,。μClinux是Linux针对嵌入式系统的一种改良,其结构比较复杂。移植μClinux,目标处理器除了需要修改与处理器相关的代码外,还需要足够容量的外部ROM和RAM。 综上可知,μClinux最大特点在于针对无MMU处理器设计,

ARM技术中英文缩写解说

ARM技术中英文缩写解说 中一些常见英文缩写解释 MSB:最高有效位; LSB:最低有效位; AHB:先进的高性能总线; VPB:连接片内外设功能的VLSI外设总线; EMC:外部存储器控制器; MAM:存储器加速模块; VIC:向量中断控制器; SPI:全双工串行接口; CAN:控制器局域网,一种串行通讯协议; PWM:脉宽调制器; ETM:嵌入式跟踪宏; CPSR:当前程序状态寄存器; SPSR:程序保护状态寄存器; 使用注意事项: 答:当改变 MAM 定时值时,必须先通过向 MAMCR 写入 0 来关闭 MAM,然后将新值写入 MAMTIM。最后,将需要的操作模式的对应值写入MAMCR,再次打开MAM。 对于低于 20MHz 的系统时钟,MAMTIM 设定为 001。对于 20MHz 到 40MHz 之间的系统时钟,建议将Flash 访问时间设定为2cclk,而在高于40MHz的系统时钟下,建议使用3cclk。 使用注意事项 答:如果在片内RAM当中运行代码并且应用程序需要调用中断,那么必须将中断向量重新映射到Flash地址0x0。这样做是因为所有的异常向量都位于地址0x0及以上。通过将寄存器MEMMAP(位于系统控制模块当中)配置为用户RAM模式来实现这一点。用户代码被连接以便使中断向量表装载到0x4000 0000。 4. ARM启动代码设计 答:ARM启动代码直接面对处理器内核和硬件控制器进行编程,一般使用汇编语言。启动代码一般包括:中断向量表 初始化存储器系统 初始化堆栈初始化有特殊要求的端口、设备 初始化用户程序执行环境 改变处理器模式 呼叫主应用程序 和 FIQ 之间的区别 答:IRQ和FIQ是ARM处理器的两种编程模式。IRQ是指中断模式,FIR是指快速中断模式。对于 FIQ 你必须尽快处理你的事情并离开这个模式。IRQ 可以被 FIQ 所中断,但 IRQ 不能中断 FIQ。为了使 FIQ 更快,所以这种模式有更多的影子寄存器。FIQ 不能调用 SWI(软件中断)。FIQ 还必须禁用中断。如果一个 FIQ 例程必须重新启用中断,则它太慢了,并应该是 IRQ 而不是 FIQ。

嵌入式操作系统期末考试答案

填空 1、嵌入式系统是以应用为中心、以计算机技术为基础、软硬件可裁剪、适用于应用系统,对(功能)、(可靠性)、(成本)、(体积)、(功耗)严格要求的专用计算机系统。 2、嵌入式系统开发采用的交叉开发环境是由(宿主机)和(目标机)组成的。 3、挂载设备到文件系统的命令是(mount),从文件系统中卸载设备命令是(umounts)。 4、在系统提示符号输入vi及文件名称后,就进入vi全屏幕编辑画面,进入vi之后,是处于 (命令)模式,要切换到(编辑)模式才能够输入文字。 5、GCC的编译流程分为4个步骤,分别为:(预处理),编译,(汇编),链接。 6、Linux系统的设备分为三类:(字符设备)、(块设备)和网络设备。 7、操作系统的功能包(处理机管理)、(存储管理)、(设备管理)、(信息管理)、(作业管理)。 选择 1、下面哪点不是嵌入式操作系统的特点。(C) (A)内核精简(B)专用性强(C)功能强大(D)高实时性 2、嵌入式Linux下常用的文件系统不包括以下哪一项(A) (A)nfs(B)romfs(C)yaffs(D)jffs 3、下面关于Shell的说法,不正确的是:(D) (A)操作系统的外壳(B)用户与Linux内核之间的接口程序(C)一个命令语言解释器(D)一种和C语言类似的程序语言 4、在Bootloader()模式下,目标机可以通过通信手段从主机更新系统。(B) (A)启动加载模式(B)下载模式(C)实时模式(D)保护模式 5、文件exer1的访问权限为rw-r--r--,现要增加所有用户的执行权限和同组用户的写权限,下列命令正确的是: (A) (A)chmoda+xg+wexer1(B)chmod765exer1(C)chmodo+xexer1(D)chmodg+wexer1 6、在vi编辑环境中,下面()选项不是从命令行模式切换到插入模式。(C) (A)i(B)o(C)ESC(D)a 7、shell变量名命名中不包括()。(D) (A)字母(B)数字(C)下划线(D)括号 8、下列关于字符设备说法不正确的是()。(C) (A)以字节为单位逐个进行I/O操作(B)字符设备中的缓存是可有可无的 (C)支持随机访问(D)字符设备可以通过设备文件节点访问 9、以下哪一项是是硬盘设备文件()。(B) (A)fd0(B)hda(C)eth1(D)ht0 10、共享内存通信机制的缺点是()。(B) (A)需要花费额外的内存空间(B)需要使用额为的同步机制 (C)需要额外硬件支持(D)通信过程中需要反复读取内存,时间开销大 简答题 1.嵌入式操作系统在哪些方面较为突出的特点并请列举出4种目前较常用的手机嵌入 式操作系统。 四个方面:系统实时高效性硬件的相关依赖性软件固态化应用的专用性 四种手机操作系统:Window Mobile SymbianOSAndriod OSE

嵌入式系统原理与应用复习知识点总结

第一章 1、嵌入式系统的应用范围:军事国防、消费电子、信息家电、网络通信、工业 控制。 2、嵌入式系统定义:嵌入式系统是以应用为中心,以计算机技术为基础,软件 与硬件可裁剪,适应应用系统对功能、可靠性、成本、体积、功耗严格要求的专 用计算机系统。(嵌入式的三要素:嵌入型、专用性与计算机系统)。 3、嵌入式系统的特点:1)专用性强;2)实时约束;3)RTOS;4)高可靠性;5) 低功耗;6)专用的开发工具和开发环境;7)系统精简; 4、嵌入式系统的组成: (1)处理器:MCU、MPU、DSP、SOC; (2)外围接口及设备:存储器、通信接口、I/O 接口、输入输出设备、电源等;(3)嵌入式操作系统:windows CE、UCLinux、Vxworks、UC/OS; (4)应用软件:Bootloader 5、嵌入式系统的硬件:嵌入式微处理器(MCU、MPU、DSP、SOC),外围电路, 外部设备; 嵌入式系统的软件:无操作系统(NOSES),小型操作系统软件(SOSE)S,大型 操作系统软件(LOSES)注:ARM 处理器三大部件:ALU、控制器、寄存器。 6、嵌入式处理器特点:(1)实时多任务;(2)结构可扩展;(3)很强的存储区 保护功能;(4)低功耗; 7、DSP处理器两种工作方式:(1)经过单片机的DSP可单独构成处理器;(2) 作为协处理器,具有单片机功能和数字处理功能; 第二章 1、IP核分类:软核、固核、硬核; 2、ARM 处理器系列:(1)ARM7系列(三级流水,thumb 指令集,ARM7TDMI); (2)ARM9系列(DSP处理能力,ARM920T)(3)ARM/OE(增强DSP)(4)SecurCone 系列(提供解密安全方案);(5)StrongARM系列(Zntle 产权);(6)XScale系列(Intel 产权);(7)Cortex 系列(A:性能密集型;R:要求实时性;M:要求低 成本) 3、ARM 系列的变量后缀:(1)T:thumb 指令集;(2)D:JTAG调试器;(3)快

《ARM嵌入式系统结构与编程》第二章课后答案

第2章ARM技术与ARM体系结构 1.简述ARM处理器内核调试结构原理 答:ARM处理器一般都带有嵌入式追踪宏单元ETM(Embedded Trace Macro),它是ARM 公司自己推出的调试工具。ARM处理器都支持基于JTAG(Joint Test Action Group 联合测试行动小组)的调试方法。它利用芯片内部的Embedded ICE来控制ARM内核操作,可完成单步调试和断点调试等操作。当CPU处理单步执行完毕或到达断点处时,就可以在宿主机端查看处理器现场数据,但是它不能在CPU运行过程中对实时数据进行仿真。 ETM解决了上述问题,能够在CPU运行过程中实时扫描处理器的现场信息,并数据送往TAP(Test Access Port)控制器。上图中分为三条扫描链(图中的粗实线),分别用来监视ARM核,ETM,嵌入式ICE的状态。 1.分析ARM7TDMI-S各字母所代表的含义。 答:ARM7 T D M I – S 中 ARM是Advanced RISC Machines的缩写 7是系列号; T:支持高密度16位的Thumb指令集; D:支持JTAG片上调试; M:支持用于长乘法操作(64位结果)ARM指令,包含快速乘法器;; I:带有嵌入式追踪宏单元ETM,用来设置断点和观察点的调试硬件; S:可综合版本,意味着处理器内核是以源代码形式提供的。这种源代码形式又可以编译成一种易于EDA工具使用的形式。 2.ARM处理器的工作模式有哪几种,其中哪些为特权模式,哪些为异常模式,并指出处 理器在什么情况下进入相应的模式。 答:ARM技术的设计者将ARM处理器在应用中可能产生的状态进行了分类,并针对同一类型的异常状态设定了一个固定的入口点,当异常产生时,程序会自动跳转到对应异常入口处进行异常服务。 ?1.用户模式:非特权模式,也就是正常程序执行的模式,大部分任务在这种模式下 执行。在用户模式下,如果没异常发生,不允许应用程序自行改变处理器的工作模式,如果有异常发生,处理器不会自动切换工作模式 ?2.FIQ模式:也称为快速中断模式,支持高速数据传输和通道处理,当一个高优先

ARM寄存器详解

ARM 处理器有二十七个寄存器,其中一些是在一定条件下使用的,所以一次只能使用十六 个。 R0~R7:是通用寄存器并可以用做任何目的。 R8~R12:是通用寄存器,但是在切换到FIQ模式的时候,使用它们的影子(shadow)寄存器。 R13:被称为栈指针寄存器,常用来保存栈指针。 R14:链接寄存器,常用来保存函数返回地址 R15:是程序指针PC CPSR:(Current Program Status Register)当前程序状态寄存器,CPSR 寄存期保存当前程序运行的状态。 0 0 0 0 0 User26 模式 0 0 0 0 1 FIQ26 模式 0 0 0 1 0 IRQ26 模式 0 0 0 1 1 SVC26 模式 1 0 0 0 0 User 模式 1 0 0 0 1 FIQ 模式 1 0 0 1 0 IRQ 模式 1 0 0 1 1 SVC 模式 1 0 1 1 1 ABT 模式 1 1 0 1 1 UND 模式

ARM寻址方式 1.立即数寻址 ARM 指令的立即数寻址是一种特殊的寻址方式,操作数本身就在指令中给出,只要取出指令也就取到了操作数。这个操作数被称为立即数。ADD R0,R0,#1 ;R0←R0 + 1 ADD R0,R0,#0x3A ;R0←R0 + 0x3A 在以上 2 条指令中,第2个源操作数即为立即数,实际使用时以“#”符

号为前缀。 2.寄存器寻址 寄存器寻址就是利用寄存器中的数值作为操作数,这种寻址方式是各类微处理器经常采 用的一种方式,也是一种执行效率较高的寻址方式。如以下的指令。 ADD R0,R1,R2 ;R0←R1 + R2 该指令的执行效果是将寄存器R1和R2的内容相加,其结果存放在寄存器R0中。 3.寄存器间接寻址 寄存器间接寻址就是以寄存器中的值作为操作数的地址,而操作数本身存放在存储器 中。例如以下指令。 ADD R0,R1,[R2] ;R0←R1 + [R2] LDR R0,[R1] ;R0←[R1] 在第1 条指令中,以寄存器R2 的内容作为操作数的地址,然后与R1相加,其结果存入 寄存器R0中。 第2条指令将以 R1 的值为地址的存储器中的内容送到寄存器R0中。 4.基址变址寻址 基址变址的寻址方式就是将寄存器(该寄存器一般称作基址寄存器)的内容与指令中给 出的地址偏移量相加,从而得到一个操作数的有效地址。如下面的几条指令所示。 LDR R0,[R1,#0x0A] ;R0←[R1 + 0x0A] LDR R0,[R1,#0x0A]!;R0←[R1 + 0x0A]、R1←R1 + 0x0A 在第1条指令中,将寄存器R1 的内容加上0x3A 形成操作数的有效地址,将该地址处的 操作数送到寄存器R0中。 在第2条指令中,将寄存器R1的内容加上0x0A形成操作数的有效地址,从而取得操作数存入寄存器R0中,然后,R1的内容自增0x0A个字节。 5.多寄存器寻址 采用多寄存器寻址方式,一条指令可以完成多个寄存器值的传送。这种寻址方式可以用 一条指令完成传送最多 16 个通用寄存器的值。比如下面的指令。LDMIA R0,{R1,R2,R3,R4} ;R1←[R0] ;R2←[R0 + 4]

相关文档