文档视界 最新最全的文档下载
当前位置:文档视界 › 高中函数定义域和值域的求法总结(十一种)

高中函数定义域和值域的求法总结(十一种)

高中函数定义域和值域的求法总结(十一种)
高中函数定义域和值域的求法总结(十一种)

高中函数定义域和值域的求法总结

一、常规型

即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。 例1 求函数8

|3x |15

x 2x y 2-+--=

的定义域。

解:要使函数有意义,则必须满足

??

?≠-+≥--②①

8|3x |015x 2x 2 由①解得 3x -≤或5x ≥。 ③ 由②解得 5x ≠或11x -≠ ④

③和④求交集得3x -≤且11x -≠或x>5。

故所求函数的定义域为}5x |x {}11x 3x |x {>-≠-≤ 且。

例2 求函数2

x

161

x sin y -+=的定义域。

解:要使函数有意义,则必须满足

?

??>-≥②①0x 160

x sin 2

由①解得Z k k 2x k 2∈π+π≤≤π, ③

由②解得4x 4<<-

由③和④求公共部分,得 π≤<π-≤<-x 0x 4或 故函数的定义域为]0(]4(ππ--,, 评注:③和④怎样求公共部分?你会吗? 二、抽象函数型

抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的解析式,一般有两种情况。 (1)已知)x (f 的定义域,求)]x (g [f 的定义域。 (2)其解法是:已知)x (f 的定义域是[a ,b ]求)]x (g [f 的定义域是解b )x (g a ≤≤,即为所求的定义域。

例3 已知)x (f 的定义域为[-2,2],求)1x (f 2-的定义域。

解:令21x 22≤-≤-,得3x 12≤≤-,即3x 02≤≤,因此3|x |0≤≤,从而

3x 3≤≤-,故函数的定义域是}3x 3|x {≤≤-。 (2)已知)]x (g [f 的定义域,求f(x)的定义域。 其解法是:已知)]x (g [f 的定义域是[a ,b ],求f(x)定义域的方法是:由b x a ≤≤,求

g(x)的值域,即所求f(x)的定义域。

例4 已知)1x 2(f +的定义域为[1,2],求f(x)的定义域。 解:因为51x 234x 222x 1≤+≤≤≤≤≤,,。 即函数f(x)的定义域是}5x 3|x {≤≤。 三、逆向型

即已知所给函数的定义域求解析式中参数的取值范围。特别是对于已知定义域为R ,求参数的范围问题通常是转化为恒成立问题来解决。

例5 已知函数8m m x 6m x y 2++-=的定义域为R 求实数m 的取值范围。 分析:函数的定义域为R ,表明0m 8mx 6mx 2≥++-,使一切x ∈R 都成立,由2x 项

的系数是m ,所以应分m=0或0m ≠进行讨论。 解:当m=0时,函数的定义域为R ;

当0m ≠时,08m mx 6mx 2≥++-是二次不等式,其对一切实数x 都成立的充要条件是

1

m 00)8m (m 4)m 6(0m 2

综上可知1m 0≤≤。

评注:不少学生容易忽略m=0的情况,希望通过此例解决问题。

例6 已知函数3

kx 4kx 7

kx )x (f 2+++=

的定义域是R ,求实数k 的取值范围。

解:要使函数有意义,则必须3kx 4kx 2++≠0恒成立,因为)x (f 的定义域为R ,即

03kx 4kx 2=++无实数

①当k ≠0时,0k 34k 162

3k 0<<; ②当k=0时,方程左边=3≠0恒成立。 综上k 的取值范围是4

3k 0<

≤。 四、实际问题型

这里函数的定义域除满足解析式外,还要注意问题的实际意义对自变量的限制,这点要加倍注意,并形成意识。

例7 将长为a 的铁丝折成矩形,求矩形面积y 关于一边长x 的函数的解析式,并求函数的定义域。

解:设矩形一边为x ,则另一边长为

)x 2a (2

1

-于是可得矩形面积。 2x ax 21

)x 2a (21x y -=-?=

ax 2

1

x 2+-=。

由问题的实际意义,知函数的定义域应满足

??

?>->????

??>->0x 2a 0x 0)x 2a (2

10

x 2

a

x 0<

故所求函数的解析式为ax 2

1

x y 2+

-=,定义域为(0,2a )。 例8 用长为L 的铁丝弯成下部为矩形上部为半圆的框架,如图,若矩形底边长为2x ,

求此框架围成的面积y 与x 的函数关系式,并求定义域。

解:由题意知,此框架围成的面积是由一个矩形和一个半圆组成的图形的面积,如图。

因为CD=AB=2x ,所以x CD π=?

,所以2

x

x 2L 2CD AB L AD π--=

--=

?

, 故2

x 2x x 2L x 2y 2

π+

π--?= Lx x )2

2(2+π

+-=

根据实际问题的意义知

2L x 002x

x 2L 0

x 2+π<

?

??>π--> 故函数的解析式为Lx x )2

2(y 2+π

+-=,定义域(0,2L +π)。

五、参数型

对于含参数的函数,求定义域时,必须对分母分类讨论。 例9 已知)x (f 的定义域为[0,1],求函数)a x (f )a x (f )x (F -++=的定义域。 解:因为)x (f 的定义域为[0,1],即1x 0≤≤。故函数)x (F 的定义域为下列不等式组的解集:

???≤-≤≤+≤1a x 01a x 0,即?

?

?+≤≤-≤≤-a 1x a a

1x a 即两个区间[-a ,1-a ]与[a ,1+a ]的交集,比较两个区间左、右端点,知

(1)当0a 2

1

≤≤-

时,F (x )的定义域为}a 1x a |x {+≤≤-; (2)当21

a 0≤≤时,F (x )的定义域为}a 1x a |x {-≤≤;

(3)当21a >或2

1

a -<时,上述两区间的交集为空集,此时F (x )不能构成函数。

六、隐含型

有些问题从表面上看并不求定义域,但是不注意定义域,往往导致错解,事实上定义域隐含在问题中,例如函数的单调区间是其定义域的子集。因此,求函数的单调区间,必须先求定义域。

例10 求函数)3x 2x (log y 22++-=的单调区间。

解:由03x 2x 2>++-,即03x 2x 2<--,解得3x 1<<-。即函数y 的定义域为(-1,3)。 函数)3x 2x (log y 22++-=是由函数3x 2x t t log y 22++-==,复合而成的。

4)1x (3x 2x t 22+--=++-=,对称轴x=1,由二次函数的单调性,可知t 在区间]1(,-∞上是增函数;在区间)1[∞+,上是减函数,而t log y 2=在其定义域上单调增;

3)[1)[1)31(]11(]1()31(,,,,,,,=∞+--=-∞- ,

所以函数)3x 2x (log y 2

2++-=在区间]11(,

-上是增函数,在区间)31[,上是减函数。

函数值域求法十一种

1. 直接观察法

对于一些比较简单的函数,其值域可通过观察得到。

例1. 求函数的值域。

解:∵

显然函数的值域是: 例2. 求函数的值域。 解:∵

故函数的值域是: 2. 配方法

配方法是求二次函数值域最基本的方法之一。

例3. 求函数

的值域。 解:将函数配方得:

由二次函数的性质可知:当x=1时,,当时, 故函数的值域是:[4,8] 3. 判别式法

例4. 求函数

的值域。

解:原函数化为关于x 的一元二次方程 (1)当时,

解得: (2)当y=1时,,而 故函数的值域为

例5. 求函数的值域。

解:两边平方整理得:

(1) ∵

x

1

y =

0x ≠0x 1≠),0()0,(+∞-∞ x 3y -=0x ≥3x 3,0x ≤-≤-∴]3,[-∞]2,1[x ,5x 2x y 2

-∈+-=4)1x (y 2

+-=]2,1[x -∈4y min =1x -=8y max =22x 1x x 1y +++=

0x )1y (x )1y (2=-+-1y ≠R x ∈0)1y )(1y (4)1(2≥----=?23y 2

1≤

≤0x =?

??

???∈23,211?

?????23,21)x 2(x x y -+=0y x )1y (2x 222=++-R x ∈0y 8)1y (42

≥-+=?

解得:

但此时的函数的定义域由,得

由,仅保证关于x 的方程:

在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由 求出的范围可能比y 的实际范围大,故不能确定此函数的值域为。

可以采取如下方法进一步确定原函数的值域。 ∵

代入方程(1)

解得:

即当

时,

原函数的值域为:

注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。 4. 反函数法

直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。

例6. 求函数值域。

解:由原函数式可得:

则其反函数为:

,其定义域为:

故所求函数的值域为:

5. 函数有界性法

直接求函数的值域困难时,可以利用已学过函数的有界性,反客为主来确定函数的值域。

例7. 求函数的值域。

解:由原函数式可得:

21y 21+≤≤-0)x 2(x ≥-2x 0≤≤0≥?0y x )1y (2x 222=++-0

≥??

??

???23,212x 0≤≤0

)x 2(x x y ≥-+=∴21y ,0y min +

==∴]

2,0[2

2

222x 41∈-+=

22222x 41-+=

]21,0[+6x 54

x 3++3y 5y

64x --=

3x 5y 64y --=

53

x ≠

?

?? ??

∞-53,1e 1e y x

x +-=1y 1y e x -+=

0e x

>

解得:

故所求函数的值域为

例8. 求函数

的值域。

解:由原函数式可得:,可化为:

即 ∵

即 解得:

故函数的值域为 6. 函数单调性法 例9. 求函数的值域。 解:令 则在[2,10]上都是增函数 所以在[2,10]上是增函数 当x=2时,

当x=10时,

故所求函数的值域为:

例10. 求函数的值域。

解:原函数可化为:

令,显然在上为无上界的增函数 所以,在上也为无上界的增函数

1y 1

y >-+1y 1<<-)1,1(-3x sin x

cos y -=

y 3x cos x sin y =-y 3)x (x sin 1y 2=β++1

y y 3)x (x sin 2+=

β+R x ∈]1,1[)x (x sin -∈β+1

1y y 312

≤+≤

-4

2y 42≤≤-

????

???

?-42,42)10x 2(1x log 2y 35

x ≤≤-+=-1x log y ,2y 325

x 1-==-21y ,y 21y y y +=8112log 2y 33min =

-+=-339log 2y 3

5

max =+=?

?????33,811x 1x y --+=

1x 1x 2

y -++=

1x y ,1x y 21-=+=21y ,y ],1[+∞1y y =2y ],1[+∞

所以当x=1时,有最小值,原函数有最大值 显然,故原函数的值域为 7. 换元法

通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角函数公式模型,换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发挥作用。 例11. 求函数的值域。 解:令,

又,由二次函数的性质可知

当时, 当时, 故函数的值域为 例12. 求函数

的值域。

解:因 即

故可令 ∴

故所求函数的值域为

例13. 求函数的值域。 解:原函数可变形为:

可令,则有

2

1y y y +=22

22

=0y >]2,0(1x x y -+=t 1x =-)0t (≥1t x 2

+=43

)21t (1t t y 22+

+=++=0t ≥0t =1y min =0t →+∞→y ),1[+∞2

)1x (12x y +-++=0)1x (12

≥+-1)1x (2

≤+],0[,cos 1x π∈ββ=+1

cos sin cos 11cos y 2+β+β=β-++β=1

)4sin(2+π

+β=π≤π+

β≤π≤β≤45

40,02

11)4sin(201)4

sin(22+≤+π

+β≤∴≤π+β≤-

∴]21,0[+

1x 2x x x y 2

4

3++-=2

22x 1x 1x 1x 221y +-?+?=β=tg x β=+-β=+22

22cos x 1x 1,2sin x 1x 2

时,

当时,

而此时有意义。

故所求函数的值域为 例14. 求函数,的值域。

解:

令,则

可得: ∴当时,

,当时,

故所求函数的值域为。 例15. 求函数的值域。

解:由

,可得 故可令

当时, 当时,

故所求函数的值域为:

β

-=β?β-=∴4sin 41

2cos 2sin 21y 82k π-π=β41y max =

8

2k π+π=

β4

1y min -

=βtan ?

????

?-41,41)1x )(cos 1x (sin y ++=?

??

???ππ-∈2,12x )1x )(cos 1x (sin y ++=1x cos x sin x cos x sin +++=t x cos x sin =+)

1t (21

x cos x sin 2-=2

2)1t (21

1t )1t (21y +=++-=)4/x sin(2x cos x sin t π+=

+=??????ππ-∈2,12x 2t 22

≤≤2t =

223y max +=

2

2

t =2

2

43y +=

???????

?++223

,22432

x 54x y -++=0x 52

≥-5|x |≤],0[,cos 5x π∈ββ=4

)4sin(10sin 54cos 5y +π

+β=β++β=π≤β≤04

544π

≤π+β≤π∴4/π=β104y max +=π=β54y min -=]104,54[+

-

8. 数形结合法

其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目。 例16. 求函数

的值域。

解:原函数可化简得

: 上式可以看成数轴上点P (x )到定点A (2),间的距离之和。 由上图可知,当点P 在线段AB 上时,

当点P 在线段AB 的延长线或反向延长线上时,

故所求函数的值域为: 例17. 求函数的值域。

解:原函数可变形为:

上式可看成x 轴上的点到两定点的距离之和, 由图可知当点P 为线段与x 轴的交点时,

故所求函数的值域为

例18. 求函数的值域。

解:将函数变形为: 上式可看

成定点A (3,2)到点P (x ,0)的距离与定点到点的距离之差。

即: 由图可知:(1)当点P 在x 轴上且不是直线AB 与x 轴的交点时,如点,则构成,根据三角形两边之差小于第三边,有

2

2)8x ()2x (y ++-=|8x ||2x |y ++-=)8(B -10|AB ||8x ||2x |y ==++-=10|AB ||8x ||2x |y =>++-=],10[+∞5x 4x 13x 6x y 22

+++

+-=2

222)10()2x ()20()3x (y ++++-+-=)0,x (P )1,2(B ),2,3(A --43

)12()23(|AB |y 22min =+++==],43[+∞5

x 4x 13x 6x y 22++-+-=

2

222)10()2x ()20()3x (y -++--+-=)1,2(B -)0,x (P |BP ||AP |y -='P 'ABP ?26

)12()23(|AB |||'BP ||'AP ||22=-++=<-

即:

(2)当点P 恰好为直线AB 与x 轴的交点时,有

综上所述,可知函数的值域为:

注:由例17,18可知,求两距离之和时,要将函数式变形,使A 、B 两点在x 轴的两侧,而求两距离之差时,则要使A ,B 两点在x 轴的同侧。 如:例17的A ,B 两点坐标分别为:(3,2),,在x 轴的同侧;例18的A ,B 两点坐标分别为(3,2),,在x 轴的同侧。 9. 不等式法

利用基本不等式

,求函数的最值,其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值,不过有时需要用到拆项、添项和两边平方等技巧。 例19. 求函数

的值域。

解:原函数变形为:

当且仅当 即当

时,等号成立

故原函数的值域为:

例20. 求函数的值域。 解:

26y 26<<-26

|AB |||BP ||AP ||==-]26,26(-)1,2(--)1,2(-abc 3c b a ,ab 2b a 3

≥++≥+)R c ,b ,a (+∈4)x cos 1x (cos )x sin 1x (sin y 2

2-+++

=5

2x cot x tan 3x cot x tan 3x sec x ces 1x

cos 1x sin 1)x cos x (sin y 22322222222=+≥++=++=+

++=x cot x tan =4k x π

±

π=)z k (∈),5[+∞x 2sin x sin 2y =x cos x sin x sin 4y =x cos x sin 42=

当且仅当,即当

时,等号成立。

可得:

故原函数的值域为:

10. 一一映射法

原理:因为

在定义域上x 与y 是一一对应的。故两个变

量中,若知道一个变量范围,就可以求另一个变量范围。 例21. 求函数

的值域。 解:∵定义域为

由得 故

解得

故函数的值域为

11. 多种方法综合运用

例22. 求函数的值域。

解:令,则

(1)当时,,当且仅当t=1,即时取等号,

所以

27

64]3/)x sin 22x sin x [(sin 8)x sin 22(x sin x sin 8x cos x sin 16y 322222224=-++≤-==x sin 22x sin 2

2

-=32

x sin 2=

27

64y 2≤

9

3

8y 938≤≤-

????

???

?-938,938)0c (d cx b

ax y ≠++=

1x 2x

31y +-=

??

????->-<21x 21x |x 或1x 2x 31y +-=3y 2y 1x +-=

2

13y 2y 1x ->+-=

2

1

3y 2y 1x -<+-=

23

y 23y -

>-<或?

??

??+∞-??? ?

?-∞-,2323, 3

x 2x y ++=

)0t (2x t ≥+=1t 3x 2

+=+0t >2

1

t 1t 11t t y 2≤+=+=1x -=21

y 0≤

<

(2)当t=0时,y=0。

综上所述,函数的值域为:

注:先换元,后用不等式法

例23. 求函数

的值域。

解:

令,则

∴当时,

当时,

此时

都存在,故函数的值域为 注:此题先用换元法,后用配方法,然后再运用的有界性。 总之,在具体求某个函数的值域时,首先要仔细、认真观察其题型特征,然后再选择恰当的方法,一般优先考虑直接法,函数单调性法和基本不等式法,然后才考虑用其他各种特殊方法。

?

?????21,042432x x 21x x x 2x 1y ++++-+=

4

23

4242x

x 21x x x x 21x x 21y +++++++-=22

22x 1x

x 1x 1++???

? ??+-=2tan x β=β=?

??? ??+-22

22cos x 1x 1β=+sin 21

x 1x 2

1

sin 21

sin sin 21cos y 22+β+β-=β+β=∴161741sin 2

+

??? ??

-β-=41sin =

β16

17

y max =

1sin -=β2y min -=2tan

β?????

?-1617,2βsin

高中数学-函数定义域、值域求法总结

函数定义域、值域求法总结 一.求函数的定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数y=f(x)中y 的取值范围。 常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元)(6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。 定义域的求法 1、直接定义域问题 例1 求下列函数的定义域: ① 2 1 )(-=x x f ;② 23)(+=x x f ;③ x x x f -+ +=211)( 解:①∵x-2=0,即x=2时,分式 2 1 -x 无意义, 而2≠x 时,分式 21 -x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-32 时,根式23+x 无意义, 而023≥+x ,即3 2 -≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3 2 -≥x }.

③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x -21 同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ? ??≠-≥+0201x x ? ???≠-≥21 x x 例2 求下列函数的定义域: ①14)(2 --= x x f ②2 14 3)(2-+--= x x x x f ③= )(x f x 11111++ ④x x x x f -+= 0)1()( ⑤3 7 3132+++-=x x y 解:①要使函数有意义,必须:142 ≥-x 即: 33≤≤-x ∴函数14)(2--= x x f 的定义域为: [3,3-] ②要使函数有意义,必须:???≠-≠-≤≥?? ??≠-+≥--131 40210432x x x x x x x 且或 4133≥-≤<--

求函数的定义域和值域的方法

解:求函数的定义域的常用方法 函数的定义域是高考的必考内容,高考对函数的定义域常常是通过函数性质或函数的应用来考查的,具有隐蔽性,所以在研究函数问题时必须树立“函数的定义域优先”的观念。因此掌握函数的定义域的基本求解方法是十分重要的。下面通过例题来谈谈函数的定义域的常见题型和常用方法。 一,已知函数解析式求函数的定义域 如果只给出函数解析式(不注明定义域),其定义域是指使函数解析式有意义的自变量的取值范围(称为自然定义域),这时常通过解不等式或不等式组求得函数的定义域。主要依据是:(1)分式的分母不为零,(2)偶次根式的被开方数为非负数,(3)零次幂的底数不为零,(4)对数的真数大于零,(5)指数函数和对数函数的底数大于零且不等于1,(6)三角函数中的正切函数y=tanx ,{x ︱x ∈R 且 x ≠2 k π π+ , k ∈z }和余切函数y=cotx ,{x ︱x ∈R 且 x ≠k π,k ∈z }等。 例题一 求下列函数的定义域: (1) y=2)0+㏒(x —2)x 2 (2) 解:(1)欲使函数有意义,须满足 2≠0 x —1≥0 x —2>0 解得:x >2 且 x ≠3 ,x ≠5 x —2≠1 ∴ 函数的定义域为(2,3)∪(3,5)∪(5,+∞) x ≠0 (2) 由已知须满足 tanx ﹥0 解得: k π ﹤x ﹤2 k π π+ (k ∈z ) x ≠2 k π π+ -4﹤x ﹤4 16—x 2 ﹥0 ∴ 函数的定义域为(-π,2 π - )∪(0, 2 π )∪(π,4) 二,复合函数求定义域 求复合函数定义域应按从外向内逐层求解的方法。最外层的函数的定义域为次外层函数的值域,依次求,直到最内层函数定义域为止。多个复合函数的求和问题,是将每个复合函数定义域求出后取其交集。 例题二(1)已知函数f (x )的定义域为〔-2,2〕,求函数y=f (x 2-1)的定义域。 (2)已知函数y=f (2x+4)的定义域为〔0,1〕,求函数f (x )的定义域。 (3)已知函数f (x )的定义域为〔-1,2〕,求函数y=f (x+1)—f (x 2-1)的定义域。 (4)已知函数y=f (tan2x )的定义域为〔0, 8 π 〕,求函数f (x )的定义域。 分析:(1)是已知f (x )的定义域,求f 〔g (x )〕的定义域。其解法是:已知f

函数的定义域与值域 知识点与题型归纳

了解构成函数的要素,会求一些简单函数的定义域和值域. ★备考知考情 定义域是函数的灵魂,高考中考查的定义域多以选择、填空形式出现,难度不大;有时也在解答题的某一小问当中进行考查;值域是定义域与对应法则的必然产物,值域的考查往往与最值联系在一起,三种题型都有,难度中等. 一、知识梳理《名师一号》P13 知识点一常见基本初等函数的定义域 注意: 1、研究函数问题必须遵循“定义域优先”的原则!!! 2、定义域必须写成集合或区间的形式!!! (1)分式函数中分母不等于零 (2)偶次根式函数被开方式大于或等于0 (3)一次函数、二次函数的定义域均为R (4)y=a x(a>0且a≠1),y=sin x,y=cos x的定义域均为R (5)y=log a x(a>0且a≠1)的定义域为(0,+∞) (6)函数f(x)=x0的定义域为{x|x≠0} 部分内容来源于网络,有侵权请联系删除!

部分内容来源于网络,有侵权请联系删除! (7)实际问题中的函数定义域,除了使函数的解析式有意 义外,还要考虑实际问题对函数自变量的制约. (补充) 三角函数中的正切函数y =tan x 定义域为 {|,,}2 ∈≠+∈x x R x k k Z π π 如果函数是由几个部分的数学式子构成的, 那么函数的定义域是使各部分式子都有意义的实数集合. 知识点二 基本初等函数的值域 注意: 值域必须写成集合或区间的形式!!! (1)y =kx +b (k ≠0)的值域是R . (2)y =ax 2+bx +c (a ≠0)的值域是: 当a >0时,值域为{y |y ≥4ac -b 2 4a }; 当a <0时,值域为{y |y ≤4ac -b 2 4a } (3)y =k x (k ≠0)的值域是{y |y ≠0} (4)y =a x (a >0且a ≠1)的值域是{y |y >0} (5)y =log a x (a >0且a ≠1)的值域是R . (补充)三角函数中 正弦函数y =sin x ,余弦函数y =cos x 的值域均为[]1,1- 正切函数y =tan x 值域为R

函数定义域值域求法十一种

高中函数定义域和值域的求法总结 一、常规型 即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式 或不等式组,解此不等式(或组)即得原函数的定义域。 解:要使函数有意义,则必须满足 x 2 2x 15 0 ① 11 或 x>5。 3且x 11} {x |x 5}。 1 例2求函数y ' 定义域。 *16 x 2 解:要使函数有意义,则必须满足 sinx 0 ① 16 x 2 0 ② 由①解得2k x 2k ,k Z ③ 由②解得 4x4 ④ 由③和④求公共部分,得 4 x 或 0 x 故函数的定义域为(4, ] (0,] 评注:③和④怎样求公共部分?你会吗? 二、抽象函数型 抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函 数的定义域求另一个抽象函数的解析式,一般有两种情况。 (1)已知f(x)的定义域,求f [g(x)]的定义域。 (2)其解法是:已知f (x)的定义域是]a , b ]求f [g(x)]的定义域是解a g(x) b , 即为所求的定义域。 例3已知f(x)的定义域为[—2, 2],求f (x 2 3 x 3,故函数的定义域是{x | x (2)已知f [g(x)]的定义域,求f(x)的定义域。 其解法是:已知f [g(x)]的定义域是]a , b ],求f(x)定义域的方法是:由 a x b ,求 g(x)的值域,即所求f(x)的定义域。 例4已知f(2x 1)的定义域为]1,2],求f(x)的定义域。 解:因为 1 x 2,2 2x 4,3 2x 1 5。 即函数f(x)的定义域是{x 13 x 5}。 三、逆向型 即已知所给函数的定义域求解析式中参数的取值范围。特别是对于已知定义域为 R ,求 参数的范围问题通常是转化为恒成立问题来解决。 例5已知函数y . mx 2 6mx m 8的定义域为R 求实数m 的取值范围。 分析:函数的定义域为 R ,表明mx 2 6mx 8 m 0 ,使一切x € R 都成立,由x 2项 例1求函数y ,x 2 2x 15 |x 3| 8 的定义域。 |x 3| 8 0 ② 由①解得 x 3或x 5。 由②解得 x 5或x 11 解:令 2 x 2 1 2 ,得 1 x 2 3,即 0 x 2 3,因此0 | x | 3,从而 1)的定义域。 3}。 ③和④求交集得x 3且x 故所求函数的定义域为 {x |x

函数定义域值域求法总结

、函数定义域、值域求法总结

————————————————————————————————作者:————————————————————————————————日期:

函数定义域、值域求法总结 1、函数的定义域是指自变量“x ”的取值集合。 2、在同一对应法则作用下,括号内整体的取值范围相同。 一般地,若已知 f(x)的定义域为[a,b],求函数f[g(x)]的定义域时,由于分别在两个函数中的x 和g(x)受同一个对应法则的作用,从而范围相同。因此f[g(x)]的定义域即为满足条件a ≤g(x)≤b 的x 的取值范围。 一般地,若已知 f[g(x)]的定义域为[a,b],求函数 f(x)的定义域时,由于x 和g(x) 受同一个对应法则的作用, 所以f(x)的定义域即为当a ≤x≤b 时,g(x)的取值范围。 定义域是X 的取值范围,g(x)和h(x)受同一个对应法则的影响,所以它们的范围相同。 ()的定义域 求的定义域已知练习)2(],9,3[log :313-x f x f 一、定义域是函数y=f(x)中的自变量x 的范围。 求函数的定义域需要从这几个方面入手: (1)分母不为零 ():f (x),f[g(x)]题型一已知的定义域求的定义域 ()():f g x ,f (x)????题型二已知的定义域求的定义域 ()[]():f g x ,f h(x)????题型三已知的定义域求的定义域()[]()[] )x (h f x f x g f →→

(2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数y=f(x)中y 的取值范围。 常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。 三、典例解析 1、定义域问题 例1 求下列函数的定义域: ① 21)(-= x x f ;② 23)(+=x x f ;③ x x x f -++=21 1)( 解:①∵x-2=0,即x=2时,分式2 1 -x 无意义, 而2≠x 时,分式21 -x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-32 时,根式23+x 无意义, 而023≥+x ,即3 2 -≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3 2 -≥x }. ③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x -21 同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ???≠-≥+0201x x ? ???≠-≥2 1 x x 例2 求下列函数的定义域: ①14)(2 --= x x f ②214 3)(2-+--=x x x x f ③= )(x f x 11111++ ④x x x x f -+= 0)1()( ⑤3 7 3132+++-= x x y 解:①要使函数有意义,必须:142 ≥-x 即: 33≤≤-x ∴函数14)(2--= x x f 的定义域为: [3,3- ]

函数的值域题型总结

求函数的值域 在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定,确定函数的值域是研究函数不可缺少的重要一环。函数的值域,就是已知函数的定义域,求函数值最值问题,或取值范围的过程。研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。对于如何求函数的值域,它所涉及到的知识面广,方法灵活多样,是高考中每年必考知识,而且试题占比很大,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。本文就函数值域求法归纳如下。 一、观察法求函数的值域 1 1+=x y 23+=x y 3 42-=x y 42sin +=θy 5 32-=x y 6 11+= x y 7 3cos 2+=θy 提示:(1)一次函数R y b kx y ∈+=,。 (2)二次函数0,2≥=y x y 。 (3)幂函数0,≥=y x y 。 (4)指数函数0,>=y a y x 。 (5)反比例函数0,≠=y x k y 。 (6)三角函数]1,1[,cos ,sin -∈==y y y θθ 二、利用函数的单调性求值域 1已知[0,1]x ∈,则函数21y x x = +-的值域是 23?? . 2函数4()([3,6])2 f x x x =∈-的值域为______[]1,4______。 3 已知函数]2,1[,42)(∈-=x x x x f 的值域 ]2,2[- 4 已知函数),1[,22+∞∈-=-x y x x 的值域 ),2 3[+∞ 5求函数]10,2[,1log 225∈-+=-x x y x 的值域。]33,8 1[ 提示:(1)利用函数的单调性,将定义域的取值带入函数求值。 三、分离常数法求函数的值域 1求函数x x y -+= 132的值域2-≠y 2求函数2323--=x x y 的值域 32-≠y 3求函数2 5422----=x x x x y 的值域 R y ∈{2≠y 且1≠y } 提示:(1)函数a c y b ax d cx y ≠++=,。(2)函数e f a b e f c d y a c y f ex b ax f ex d cx y --≠≠++++=且,,))(())(( 四、二次函数的值域问题 1函数22)(2+-=x x x f 在区间]4,0(的值域为( ]10,1[ ) 2函数2 1,(12)y x x =-+-≤<的值域是( (]3,1- ) 3函数1422 -+=x x y 的值域 ),3[+∞-

函数定义域值域求法(全十一种)

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 高中函数定义域和值域的求法总结 一、常规型 即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。 例1 求函数8 |3x |15 x 2x y 2-+--= 的定义域。 解:要使函数有意义,则必须满足 ?? ?≠-+≥--②① 8|3x |015x 2x 2 由①解得 3x -≤或5x ≥。 ③ 由②解得 5x ≠或11x -≠ ④ ③和④求交集得3x -≤且11x -≠或x>5。 故所求函数的定义域为}5x |x {}11x 3x |x {>-≠-≤ 且。 例2 求函数2 x 161 x sin y -+=的定义域。 解:要使函数有意义,则必须满足 ???>-≥②①0 x 160 x sin 2 由①解得Z k k 2x k 2∈π+π≤≤π, ③ 由②解得4x 4<<- ④ 由③和④求公共部分,得 π≤<π-≤<-x 0x 4或 故函数的定义域为]0(]4(ππ--,, 评注:③和④怎样求公共部分?你会吗? 二、抽象函数型 抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的解析式,一般有两种情况。 (1)已知)x (f 的定义域,求)]x (g [f 的定义域。 (2)其解法是:已知)x (f 的定义域是[a ,b ]求)]x (g [f 的定义域是解b )x (g a ≤≤,即为所求的定义域。 例3 已知)x (f 的定义域为[-2,2],求)1x (f 2-的定义域。 解:令21x 22≤-≤-,得3x 12≤≤-,即3x 02≤≤,因此3|x |0≤≤,从而3x 3≤≤-,故函数的定义域是}3x 3|x {≤ ≤-。

函数定义域、值域求法的总结

函数定义域、值域求法总结 一、定义域是函数()y f x =中的自变量x 的范围。 求函数的定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数()y f x =中y 的取值范围。 常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。 三、典例解析 1、定义域问题 例1 求下列函数的定义域: ① 21)(-= x x f ;② 23)(+=x x f ;③ x x x f -++=21 1)( 解:①∵x-2=0,即x=2时,分式2 1 -x 无意义, 而2≠x 时,分式21 -x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-32 时,根式23+x 无意义, 而023≥+x ,即3 2 -≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3 2 -≥x }. ③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x -21 同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ? ??≠-≥+020 1x x ? ???≠-≥21x x 例2 求下列函数的定义域: ①14)(2 --= x x f ②2 14 3)(2-+--= x x x x f

函数的概念及定义域、值域基本知识点总结.doc

函数的概念及定义域.值域基本知识点总结 函数概念 1.映射的概念 设A、B是两个集合,如果按照某种对应法则/ ,对于集合4小的任意元素,在集合B 中都冇唯一确宦的元索与Z对应,那么这样的单值对应叫做从A到B的映射,通常记为f :A^ B , f 表示对应法则 注意:(1)A中元素必须都有彖J1唯一;(2)B中元素不一定都有原彖,但原彖不一定唯一。 2.函数的概念 (1)函数的定义: 设A、B是两个非空的数集,如果按照某种对应法则/,对于集合4屮的每个数兀, 在集合B中都

冇唯一确怎的数和它对应,那么这样的对应叫做从A到B的一个函数,通常

⑵函数的定义域、值域 在函数y = f(x\xeA中,x叫做自变量,x的取值范围A叫做y = f(x)的定义域;与x的值相对应的y值叫做两数值,函数值的集合{/⑴卜e △}称为函数y = /(%)的值域。 (3)函数的三要素:定义域、值域和对丿应法则 3.函数的三种表示法:图象法、列表法、解析法 (1).图象法:就是用函数图象表示两个变量之间的关系; (2).列表法:就是列出表格来表示两个变量的函数关系; (3).解析法:就是把两个变量的函数关系,用等式來表示。 4.分段函数 在H变量的不同变化范围屮,对应法则用不同式子來表示的函数称为分段函数。 (-)考点分析 考点1:映射的概念 例1. (1) A = R , B = {yly〉O}, f :x —> y =1 xI ; (2) A = {x\ x>2,x e N^}, B = {y\ y>O,y e N], / : x y = x2 - 2x + 2 ; (3) A = {xI x > 0}, = {>' I y e R}, / : x —> y = ±\[x . 上述三个对应是A到B的映射. 例2.若A = {1,2,3,4}, B = {aM,a,b,cwR,则A到B的映射有个,B到A的映射有个,A到B 的函数有个 例3.设集合M ={-1,0,1}, 7V = {-2,-1,0,1,2},如果从M到N的映射/满足条件:对 (4)8 个(3)12 个(C)16 个(0)18 个 M中的每个元素兀与它在N中的象/(兀)的和都为奇数,则映射/的个数是() 考点2:判断两函数是否为同一个函数

求函数的定义域与值域的常用方法完整版

求函数的定义域与值域 的常用方法 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

求函数的定义域与值域的常用方法 引入: 自变量x 的取值范围为 定义域 因变量y 的取值范围为 值域 求函数的解析式、求函数的定义域、求函数的值域、求函数的最值? 一、求函数的解析式 (一)解析式的表达形式 (解析式的表达形式有一般式、分段式、复合式等。) 1、一般式 (是大部分函数的表达形式) 例:一次函数:b kx y +=)0(≠k 二次函数:c bx ax y ++=2 )0(≠a 反比例函数:x k y = )0(≠k 正比例函数:kx y = )0(≠k 2、复合式 若y 是u 的函数,u 又是x 的函数,即),(),(),(b a x x g u u f y ∈==,那么y 关于x 的函数[]()b a x x g f y ,,)(∈=叫做f 和g 的复合函数。 例1、已知3)(,12)(2+=+=x x g x x f ,则[]=)(x g f , []=)(x f g 。 解:[]721)3(21)(2)(22+=++=+=x x x g x g f (二)解析式的求法 (根据已知条件求函数的解析式,常用配凑法、换元法、待定系数法、赋值(式)法、方程法等。) 1. 配凑法 例1.已知 :23)1(2+-=+x x x f ,求f(x); 解:因为15)1(23)1(22+-+=+-=+x x x x x f 例2、已知:221)1(x x x x f +=+,求)(x f 。 解: 2)1(1)1(222-+=+=+x x x x x x f ∴ )22(2)(2-≤≥-=x x x x f 或 注意:使用配凑法也要注意自变量的范围限制。 2.换元法 例1.已知:x x x f 2)1(+=+,求f(x); 解:令2)1(,1,1-=≥=+t x t t x 即则 则1)1(2)1()(22-=-+-=t t t t f 所以)1(1)(2≥-=x x x f 例2、已知:11)11(2-=+x x f ,求)(x f 。

高中数学求函数值域的方法十三种审批稿

高中数学求函数值域的 方法十三种 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

高中数学:求函数值域的十三种方法 一、观察法(☆ ) 二、配方法(☆) 三、分离常数法(☆) 四、反函数法(☆) 五、判别式法(☆) 六、换元法(☆☆☆) 七、函数有界性 八、函数单调性法(☆) 九、图像法(数型结合法)(☆) 十、基本不等式法 十一、利用向量不等式 十二、 十三、一一映射法 十四、 多 种 方 法 综 合 运 用 一、观察法:从自变量x 的范围出发,推出()y f x =的取值范围。 【例1】 求函数1y =的值域。 11≥, ∴函数1y =的值域为[1,)+∞。 【例2】求函数 x 1 y = 的值域。 【解析】∵0x ≠ ∴0 x 1≠ 显然函数的值域是: ),0()0,(+∞-∞ 【例3】已知函数()112--=x y ,{}2,1,0,1-∈x ,求函数的值域。

【解析】因为{}2,1,0,1- =f f,()1 1- f所以: = 2 0= f,()()0 ∈ 3 x,而()()3 -f = 1= {}3,0,1- ∈ y 注意:求函数的值域时,不能忽视定义域,如果该题的定义域为R x∈,则函数的值域为{}1 y。 y ≥ |- 二.配方法:配方法式求“二次函数类”值域的基本方法。形如2 =++的 F x af x bf x c ()()() 函数的值域问题,均可使用配方法。 【例1】求函数225,[1,2] y x x x =-+∈-的值域。 【解析】将函数配方得:∵由二次函数的性质可知:当x=1 ∈[-1,2]时,,当时,故函数的值域是:[4,8] 【变式】已知,求函数的最值。 【解析】由已知,可得,即函数是定义在区间上的二次函数。将二次函数配方得,其对称轴方程,顶点坐标,且图象开口向上。显然其顶点横坐标不在区间内,如图2所示。函数的最小值为,最大值为。 图2

(推荐)高三文科数学一轮复习之求函数定义域和值域方法总结

求函数定义域和值域方法总结 一、求函数定义域方法总结 (一)简单函数定义域的类型及方法【必会!!!】 (1)f(x)为整数型函数时,定义域为R. 例如d cx bx ax x f c bx ax x f b kx x f +++=++=+=232)(,)(,)(定义域均为R. (2)f(x)为分式型函数时,定义域为使分母不为零的实数集合. 例如-4)(x 41)( ,1)(x 1)(≠+=≠= x x f x x f (3)f(x)为二次根式(偶次根式)型函数时,定义域为使被开方数大于等于零的实数的集合. 例如0)x -2(x 2)( 0),(x )(2≥≤+=≥=或x x x f x x f (4)f(x)为对数型函数时,定义域为使真数大于零的实数集合. 例如-1)(x )1(log )( 0),(x log )(2>+=>=x x f x x f a (5)正切函数)k ,k 2(x tan Z x y ∈+≠=ππ 例如Z)k ,2 k 4(x )2tan()(∈+≠=ππ x x f (6)00没有意义. 例如)2 1(x ,)12()(0≠-=x x f

(二)对于抽象函数定义域的求解 (1)若已知函数)(x f 的定义域为],[b a ,则复合函数))((x g f 的定义域由不等式b x g a ≤≤)(求出的x 的范围; 例如:已知)(x f 的定义域为]5,1[,则)23(+x f 的定义域为]1,3 1[-. (2)若已知函数))((x g f 的定义域为],[b a ,则函数)(x f 的定义域为)(x g 在],[b a x ∈上的值域. 例如:已知)3(-x f 的定义域为]7,0[,则)(x f 的定义域为]4,3[-. 二、求函数值域方法总结 (一)常见函数的值域(结合图像)【必会!!!】 (1)一次函数)0( ≠+=k b kx y 的值域为R . (2)二次函数)0( 2≠++=a c bx ax y 的值域为: 当0>a 时,值域为}44|{2a b ac y y -≥;当0=a a a y x 且的值域为}0|{>y y . (5)对数函数)10( log ≠>=a a x y a 且的值域为R . (6)三角函数:

定义域和值域的求法

定义域和值域的求法 Final revision by standardization team on December 10, 2020.

函数定义域求法总结 一、定义域是函数y=f(x)中的自变量x 的范围。 (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、抽象函数的定义域 1.已知)(x f 的定义域,求复合函数()][x g f 的定义域 由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可得其方法为:若)(x f 的定义域为()b a x ,∈,求出)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。 2.已知复合函数()][x g f 的定义域,求)(x f 的定义域 方法是:若()][x g f 的定义域为()b a x ,∈,则由b x a <<确定)(x g 的范围即为)(x f 的定义域。 3.已知复合函数[()]f g x 的定义域,求[()]f h x 的定义域 结合以上一、二两类定义域的求法,我们可以得到此类解法为:可先由()][x g f 定义域求得()x f 的定义域,再由()x f 的定义域求得()][x h f 的定义域。 4.已知()f x 的定义域,求四则运算型函数的定义域 若函数是由一些基本函数通过四则运算结合而成的,其定义域为各基本函数定义域的交集,即先求出各个函数的定义域,再求交集。 函数值域求法四种 在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定。研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。确定函数的值域是研究函数不可缺少的重要一环。对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。本次课就函数值域求法归纳如下,供参考。 1. 直接观察法 对于一些比较简单的函数,其值域可通过观察得到。

函数值域求法十一种

函数值域求法十一种 尚化春 在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定。研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。确定函数的值域是研究函数不可缺少的重要一环。对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。本文就函数值域求法归纳如下,供参考。 1. 直接观察法 对于一些比较简单的函数,其值域可通过观察得到。 例1. 求函数 x 1 y = 的值域。 解:∵0x ≠ ∴0 x 1 ≠ 显然函数的值域是:),0()0,(+∞-∞ 例2. 求函数x 3y - =的值域。 解:∵0x ≥ 3x 3,0x ≤- ≤-∴ 故函数的值域是:]3,[-∞ 2. 配方法 配方法是求二次函数值域最基本的方法之一。 例3. 求函数]2,1[x ,5x 2x y 2 -∈+-=的值域。 解:将函数配方得:4)1x (y 2 +-= ∵]2,1[x -∈ 由二次函数的性质可知:当x=1时,4y m i n =,当1x -=时,8y m a x = 故函数的值域是:[4,8] 3. 判别式法 例4. 求函数2 2 x 1x x 1y +++= 的值域。 解:原函数化为关于x 的一元二次方程 0x )1y (x )1y (2 =-+- (1)当1y ≠时,R x ∈ 0)1y )(1y (4)1(2 ≥----=? 解得:23y 2 1 ≤ ≤ (2)当y=1时,0x =,而? ?? ???∈23,211

定义域和值域的求法经典

函数定义域求法总结 一、定义域是函数y=f(x)中的自变量x 的范围。 (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 (6)0x 中x 0≠ 二、抽象函数的定义域 1.已知)(x f 的定义域,求复合函数()][x g f 的定义域 由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可得其方法为:若)(x f 的定义域为()b a x ,∈ ,求出)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。 2.已知复合函数()][x g f 的定义域,求)(x f 的定义域 方法是:若()][x g f 的定义域为()b a x ,∈,则由b x a << 确定)(x g 的范围即为)(x f 的定义域。 3.已知复合函数[()]f g x 的定义域,求[()]f h x 的定义域 结合以上一、二两类定义域的求法,我们可以得到此类解法为:可先由()][x g f 定义域求得()x f 的定义域,再由()x f 的定义域求得()][x h f 的定义域。 4.已知()f x 的定义域,求四则运算型函数的定义域 若函数是由一些基本函数通过四则运算结合而成的,其定义域为各基本函数定义域的交集,即先求出各个函数的定义域,再求交集。 函数值域求法四种 在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定。研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。确定函数的值域是研究函数不可缺少的重要一环。对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。本次课就函数值域求法归纳如下,供参考。 1.直接观察法 对于一些比较简单的函数,其值域可通过观察得到。

函数的定义域与值域单调性与奇偶性三角函数典型例题

函数的定义域与值域、单调性与奇偶性 一、知识归纳: 1. 求函数的解析式 (1)求函数解析式的常用方法: ①换元法( 注意新元的取值范围) ②待定系数法(已知函数类型如:一次、二次函数、反比例函数等) ③整体代换(配凑法) ④构造方程组(如自变量互为倒数、已知f (x )为奇函数且g (x )为偶函数等) (2)求函数的解析式应指明函数的定义域,函数的定义域是使式子有意义的自变量的取值范围,同时也要注意变量的实际意义。 (3)理解轨迹思想在求对称曲线中的应用。 2. 求函数的定义域 求用解析式y =f (x )表示的函数的定义域时,常有以下几种情况: ①若f (x )是整式,则函数的定义域是实数集R ; ②若f (x )是分式,则函数的定义域是使分母不等于0的实数集; ③若f (x )是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合; ④若f (x )是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合; ⑤若f (x )是由实际问题抽象出来的函数,则函数的定义域应符合实际问题. 3. 求函数值域(最值)的一般方法: (1)利用基本初等函数的值域; (2)配方法(二次函数或可转化为二次函数的函数); (3)不等式法(利用基本不等式,尤其注意形如)0(>+=k x k x y 型的函数) (4)函数的单调性:特别关注)0(>+ =k x k x y 的图象及性质 (5)部分分式法、判别式法(分式函数) (6)换元法(无理函数) (7)导数法(高次函数) (8)反函数法 (9)数形结合法 4. 求函数的单调性 (1)定义法: (2)导数法: (3)利用复合函数的单调性: (4)关于函数单调性还有以下一些常见结论: ①两个增(减)函数的和为_____;一个增(减)函数与一个减(增)函数的差是______; ②奇函数在对称的两个区间上有_____的单调性;偶函数在对称的两个区间上有_____的单调性; ③互为反函数的两个函数在各自定义域上有______的单调性; (5)求函数单调区间的常用方法:定义法、图象法、复合函数法、导数法等 (6)应用:比较大小,证明不等式,解不等式。 5. 函数的奇偶性 奇偶性:定义:注意区间是否关于原点对称,比较f (x ) 与f (-x )的关系。f (x ) -

求函数定义域和值域方法和典型题归纳

<一>求函数定义域、值域方法和典型题归纳 一、基础知识整合 1.函数的定义:设集合A 和B 是非空数集,按照某一确定的对应关系f ,使得集合A 中任意一个数x,在集合B 中都有唯一确定的数f(x)与之对应。则称f:为A 到B 的一个函数。 2.由定义可知:确定一个函数的主要因素是①确定的对应关系(f ),②集合A 的取值范围。由这两个条件就决定了f(x)的取值范围③{y|y=f(x),x ∈A}。 3.定义域:由于定义域是决定函数的重要因素,所以必须明白定义域指的是: (1)自变量放在一起构成的集合,成为定义域。 (2)数学表示:注意一定是用集合表示的范围才能是定义域,特殊的一个个的数时用“列举法”;一般表示范围时用集合的“描述法”或“区间”来表示。 4.值域:是由定义域和对应关系(f )共同作用的结果,是个被动变量,所以求值域时一定注意求的是定义域范围内的函数值的范围。 (1)明白值域是在定义域A 内求出函数值构成的集合:{y|y=f(x),x ∈A}。 (2)明白定义中集合B 是包括值域,但是值域不一定为集合B 。 二、求函数定义域 (一)求函数定义域的情形和方法总结 1已知函数解析式时:只需要使得函数表达式中的所有式子有意义。 (1)常见要是满足有意义的情况简总: ①表达式中出现分式时:分母一定满足不为0; ②表达式中出现根号时:开奇次方时,根号下可以为任意实数;开偶次方时,根号下满足大于或等于0(非负数)。 ③表达式中出现指数时:当指数为0时,底数一定不能为0. ④根号与分式结合,根号开偶次方在分母上时:根号下大于0. ⑤表达式中出现指数函数形式时:底数和指数都含有x ,必须满足指数底数大于0且不等于1.(0<底数<1;底数>1) ⑥表达式中出现对数函数形式时:自变量只出现在真数上时,只需满足真数上所有式子大于0,且式子本身有意义即可;自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大于0且不等于 1. (2 ()log (1)x f x x =-) 注:(1)出现任何情形都是要注意,让所有的式子同时有意义,及最后求的是所有式子解集的交集。 (2)求定义域时,尽量不要对函数解析式进行变形,以免发生变化。(形

定义域和值域

定义域、解析式、值域方法总结 (一)定义域: 1. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域) 相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备) 2. 求函数的定义域有哪些常见类型? () ()例:函数的定义域是 y x x x =--432lg ()()()(答:,,,)022334 函数定义域求法: ● 分式中的分母不为零; ● 偶次方根下的数(或式)大于或等于零; ● 指数式的底数大于零且不等于一; 对数式的底数大于零且不等于一,真数大于零。 ● 正切函数x y tan = ??? ??∈+≠∈Z ππk k x R x ,2,且 ● 反三角函数的定义域 ● 函数y =arcsinx 的定义域是 [-1, 1] ,值域是, 函数y =arccosx 的定义域是 [-1, 1] ,值域是 [0, π] ,函数y = arctgx 的定义域是 R ,值域是.,函数y =arcctgx 的定义域是 R ,值域是 (0, π) . 当以上几个方面有两个或两个以上同时出现时,先分别求出满足每一个条 件的自变量的范围,再取他们的交集,就得到函数的定义域。 3. 如何求复合函数的定义域? []的定,则函数,,的定义域是如:函数)()()(0)(x f x f x F a b b a x f -+=>-> 义域是_____________。 [] (答:,)a a - 复合函数定义域的求法:已知)(x f y =的定义域为[]n m ,,求[])(x g f y =的 定义域,可由n x g m ≤≤)(解出x 的范围,即为[])(x g f y =的定义域。 例 若函数)(x f y =的定义域为??????2,21,则)(log 2x f 的定义域为 。

函数值域求法十一种(可编辑修改word版)

x x x x 函数值域求法十一种 1.直接观察法 对于一些比较简单的函数,其值域可通过观察得到。 y =1 例1. 求函数x 的值域。 解:∵x ≠ 0 1 ≠ 0 ∴x 显然函数的值域是:(-∞,0) (0,+∞) 例2. 求函数y = 3 -的值域。 解 :∵ ≥ 0 ∴-≤ 0,3 -≤ 3 故函数的值域是:[-∞,3] 2.配方法 配方法是求二次函数值域最基本的方法之一。 例3. 求函数y = x 2- 2x + 5, x ∈[-1,2] 的值域。解:将函数配方得:y = (x - 1) 2+ 4 ∵x ∈[-1,2] 由二次函数的性质可知:当x=1 时,y min = 4 ,当x =-1时,y max = 8故函数的值域是:[4,8] 3.判别式法例 4. 求函数y = 1 + x + x2 1 + x2的值域。 解:原函数化为关于x 的一元二次方程(y - 1)x 2+ (y - 1)x = 0 (1)当y ≠ 1时,x ∈R ?= (-1) 2- 4(y - 1)(y - 1) ≥ 0 1 ≤ y ≤ 3 解得:2 2 1∈?1 , 3 ? (2)当y=1 时,x = 0 ,而??2 2 ??

? 1 , 3 ? 故函数的值域为?? 2 2 ? ? 例5. 求函数y = x + 的值域。 解:两边平方整理得:2x 2 - 2(y + 1)x + y 2 = 0 (1) ∵x ∈R ∴? = 4(y + 1) 2 - 8y ≥ 0 解得:1 - ≤ y ≤ 1 + 但此时的函数的定义域由x(2 - x) ≥ 0 ,得0 ≤ x ≤ 2 由? ≥ 0 ,仅保证关于x 的方程:2x 2 - 2(y + 1)x + y 2 = 0 在实数集R 有实根, 而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由 ? 1 , 3 ? ? ≥ 0 求出的范围可能比y 的实际范围大,故不能确定此函数的值域为?? 2 2 ? ? 。 可以采取如下方法进一步确定原函数的值域。 ∵0 ≤ x ≤ 2 ∴y = x + ∴y min = 0, y = 1 + x 1 = ≥ 0 代入方程(1) ∈[0,2] 解得: 2 + 即当 x 1 = 2 - 24 2 2 时, 原函数的值域为:[0,1 + 2 ] 注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时, 应综合函数的定义域,将扩大的部分剔除。 4. 反函数法 直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函 数的值域。 3x + 4 例6. 求函数5x + 6 值域。 x = 4 - 6y 解:由原函数式可得: y = 4 - 6y 5y - 3 x ≠ 3 则其反函数为: 5x - 3 ,其定义域为: 5 x(2 - x) 2 2 x(2 - x) 2 2 + 2 - 24 2 2

相关文档
相关文档 最新文档