文档视界 最新最全的文档下载
当前位置:文档视界 › 半导体器件物理(第八章)施敏第二版(精)

半导体器件物理(第八章)施敏第二版(精)

半导体器件物理(第八章)施敏第二版(精)
半导体器件物理(第八章)施敏第二版(精)

半导体器件物理(第二版)第二章答案

2-1.P N + 结空间电荷区边界分别为p x -和n x ,利用2T V V i np n e =导出)(n n x p 表达式。给 出N 区空穴为小注入和大注入两种情况下的)(n n x p 表达式。 解:在n x x =处 ()()??? ??????? ??-=?? ? ??-=KT E E n x n KT E E n x p i Fn i n n FP i i n n exp exp ()()VT V i Fp Fn i n n n n e n KT E E n x n x p 22exp =??? ? ??-= 而 ()()() 000n n n n n n n n n n n n p x p p p n x n n n p x =+?≈?=+?=+ (n n n p ?=?) ()()T T V V i n n n V V i n n n e n p n p e n n n p 2020=?+?=?+ 2001T V V n i n n n p n p e n n ???+= ?? ? T V V 2 2n n0n i p +n p -n e =0 n p = (此为一般结果) 小注入:(0n n n p <>? 且 n n p p ?= 所以 T V V i n e n p 22=或 T V V i n e n p 2= 2-2.热平衡时净电子电流或净空穴电流为零,用此方法推导方程 2 0ln i a d T p n n N N V =-=ψψψ。 解:净电子电流为 ()n n n n I qA D n x με?=+? 处于热平衡时,I n =0 ,又因为 d dx ψ ε=-

半导体器件物理_复习重点

第一章 PN结 1.1 PN结是怎么形成的? 耗尽区:正因为空间电荷区内不存在任何可动的电荷,所以该区也称为耗尽区。 空间电荷边缘存在多子浓度梯度,多数载流子便受到了一个扩散力。在热平衡状态下,电场力与扩散力相互平衡。 p型半导体和n型半导体接触面形成pn结,p区中有大量空穴流向n区并留下负离子,n区中有大量电子流向p区并留下正离子(这部分叫做载流子的扩散),正负离子形成的电场叫做空间电荷区,正离子阻碍电子流走,负离子阻碍空穴流走(这部分叫做载流子的漂移),载流子的扩散与漂移达到动态平衡,所以pn 结不加电压下呈电中性。 1.2 PN结的能带图(平衡和偏压) 无外加偏压,处于热平衡状态下,费米能级处处相等且恒定不变。 1.3 内建电势差计算 N区导带电子试图进入p区导带时遇到了一个势垒,这个势垒称为内建电势差。

1.4 空间电荷区的宽度计算 n d p a x N x N = 1.5 PN 结电容的计算 第二章 PN 结二极管 2.1理想PN 结电流模型是什么? 势垒维持了热平衡。 反偏:n 区相对于p 区电势为正,所以n 区内的费米能级低于p 区内的费米能级,势垒变得更高,阻止了电子与空穴的流动,因此pn 结上基本没有电流流动。 正偏:p 区相对于n 区电势为正,所以p 区内的费米能级低于n 区内的费米能级,势垒变得更低,电场变低了,所以电子与空穴不能分别滞留在n 区与p 区,所以pn 结内就形成了一股由n 区到p 区的电子和p

区到n 区的空穴。电荷的流动在pn 结内形成了一股电流。 过剩少子电子:正偏电压降低了势垒,这样就使得n 区内的多子可以穿过耗尽区而注入到p 区内,注入的电子增加了p 区少子电子的浓度。 2.2 少数载流子分布(边界条件和近似分布) 2.3 理想PN 结电流 ?? ????-??? ??=1exp kT eV J J a s ?? ? ? ? ?+=+= 0020 11p p d n n a i n p n p n p s D N D N en L n eD L p eD J ττ 2.4 PN 结二极管的等效电路(扩散电阻和扩散电容的概念)? 扩散电阻:在二极管外加直流正偏电压,再在直流上加一个小的低频正弦电压,则直流之上就产生了个叠加小信号正弦电流,正弦电压与正弦电流就产生了个增量电阻,即扩散电阻。 扩散电容:在直流电压上加一个很小的交流电压,随着外加正偏电压的改变,穿过空间电荷区注入到n 区内的空穴数量也发生了变化。P 区内的少子电子浓度也经历了同样的过程,n 区内的空穴与p 区内的电子充放电过程产生了电容,即扩散电容。

半导体器件物理第二章答案

2-1.P N + 结空间电荷区边界分别为p x -与n x ,利用2T V V i np n e =导出)(n n x p 表达式。给出N 区空穴为小注入与大注入两种情况下的)(n n x p 表达式。 解:在n x x =处 ()()??? ??????? ??-=?? ? ??-=KT E E n x n KT E E n x p i Fn i n n FP i i n n exp exp ()()VT V i Fp Fn i n n n n e n KT E E n x n x p 22exp =? ?? ? ??-= 而 ()()() 000n n n n n n n n n n n n p x p p p n x n n n p x =+?≈?=+?=+ (n n n p ?=?) ()()T T V V i n n n V V i n n n e n p n p e n n n p 2020=?+?=?+ 2001T V V n i n n n p n p e n n ???+= ?? ? T V V 2 2n n0n i p +n p -n e =0 n p = (此为一般结果) 小注入:(0n n n p <>? 且 n n p p ?= 所以 T V V i n e n p 22=或 T V V i n e n p 2= 2-2.热平衡时净电子电流或净空穴电流为零,用此方法推导方程 2 0ln i a d T p n n N N V =-=ψψψ。 解:净电子电流为 ()n n n n I qA D n x με?=+? 处于热平衡时,I n =0 ,又因为 d dx ψ ε=- 所以n n d n n D dx x ψμ?=?,又因为n T n D V μ=(爱因斯坦关系)

69第6章3_半导体器件物理EM3模型

半导体器件物理(1)

半导体器件物理(I ) 在E-M2模型基础上进一步考虑晶体管的二阶效应,包括基区宽度调制、小电流下复合电流的影响、大注入效应等,就成为E-M3模型. 第6章BJT模型和BJT版图6-1 E-M 模型 四、E-M3模型

半导体器件物理(I ) 1.基区宽度调制效应(Early 效应) 按照器件物理描述的方法,正向放大应用情况下,采用正向Early 电压V A (记为VA )描述c’-b’势垒区两端电压Vc’b’对有效基区宽度X b 的影响,进而导致I S 、βF 等器件特性参数的变化。 同样引入反向Early 电压(记为VB )描述反向放大状态下Ve’b’的作用。 第6章BJT模型和BJT版图6-1 E-M 模型 四、E-M3模型

半导体器件物理(I ) 考虑基区宽变效应引入两个模型参数: 正向Early 电压VA 反向Early 电压VB 这两个模型参数的默认值均为无穷大。 若采用其内定值,实际上就是不考虑基区宽度调制效应。 考虑基区宽变效应等效电路并不发生变化。 第6章BJT模型和BJT版图1.基区宽度调制效应(Early 效应) 6-1 E-M 模型 四、E-M3模型

半导体器件物理(I ) 小电流下正偏势垒区存在的复合和基区表面复合效应使基极电流增大。引入下述基区复合电流项描述正向放大情况下be 结势垒区的影响: I 2=I SE [exp(qV b’e’/Ne kT)-1] 反向放大情况下引入下述基区复合电流描述bc 结势垒区的影响: I 4=I SC [exp(qV b’c’/Nc kT)-1] 相当于等效电路中I B 增加两个电流分量。 2.小电流下势垒复合效应的表征 第6章BJT模型和BJT版图6-1 E-M 模型 四、E-M3模型

施敏 半导体器件物理英文版 第一章习题

施敏 半导体器件物理英文版 第一章习题 1. (a )求用完全相同的硬球填满金刚石晶格常规单位元胞的最大体积分数。 (b )求硅中(111)平面内在300K 温度下的每平方厘米的原子数。 2. 计算四面体的键角,即,四个键的任意一对键对之间的夹角。(提示:绘出四 个等长度的向量作为键。四个向量和必须等于多少?沿这些向量之一的方向 取这些向量的合成。) 3. 对于面心立方,常规的晶胞体积是a 3,求具有三个基矢:(0,0,0→a/2,0,a/2), (0,0,0→a/2,a/2,0),和(0,0,0→0,a/2,a/2)的fcc 元胞的体积。 4. (a )推导金刚石晶格的键长d 以晶格常数a 的表达式。 (b )在硅晶体中,如果与某平面沿三个笛卡尔坐标的截距是10.86A ,16.29A , 和21.72A ,求该平面的密勒指数。 5. 指出(a )倒晶格的每一个矢量与正晶格的一组平面正交,以及 (b )倒晶格的单位晶胞的体积反比于正晶格单位晶胞的体积。 6. 指出具有晶格常数a 的体心立方(bcc )的倒晶格是具有立方晶格边为4π/a 的面心立方(fcc )晶格。[提示:用bcc 矢量组的对称性: )(2x z y a a -+=,)(2y x z a b -+=,)(2 z y x a c -+= 这里a 是常规元胞的晶格常数,而x ,y ,z 是fcc 笛卡尔坐标的单位矢量: )(2z y a a +=,)(2x z a b +=,)(2 y x a c +=。] 7. 靠近导带最小值处的能量可表达为 .2*2*2*22 ???? ??++=z z y y x x m k m k m k E 在Si 中沿[100]有6个雪茄形状的极小值。如果能量椭球轴的比例为5:1是常数,求纵向有效质量m*l 与横向有效质量m*t 的比值。 8. 在半导体的导带中,有一个较低的能谷在布里渊区的中心,和6个较高的能 谷在沿[100] 布里渊区的边界,如果对于较低能谷的有效质量是0.1m0而对 于较高能谷的有效质量是1.0m0,求较高能谷对较低能谷态密度的比值。 9. 推导由式(14)给出的导带中的态密度表达式。(提示:驻波波长λ与半导体

半导体器件物理(第六章)_93140777

半导体器件 物理进展 第六章其它特殊半导体器件简介Introduction to other Special Semiconductor Devices

本章内容提要: LDMOS、VDMOS等高压功率器件 IGBT功率器件简介 SOI器件与集成电路 电荷耦合器件的原理与应用

1. LDMOS、VDMOS功率器件 (1)MOSFET作为功率器件的优势: MOSFET为多子(多数载流子)器件,电流温度系数为负值(由迁移率随温度的变化引起),不会发生双极型功率器件的二次击穿现象(由Iceo,β随温度的升高而引起); 没有少子(少数载流子)的存贮效应,开关响应速度较快; 栅极输入阻抗较高,所需的控制功率较小; 具有一定的功率输出能力,可与控制电路集成在一起,形成Smart Power IC,例如LCD显示器的高压驱动电路(Driver)。

(2)MOSFET的击穿特性: (A)导通前的击穿: 源漏穿通: 早期的解释:随着源漏电压增大,→源漏耗尽区不断展宽,直至相碰到一起,→导致发生源漏穿通效应(这里仍然采用的是平面PN结耗尽区的概念,尽管可能不是十分准确); 目前的理解:由于DIBL效应引起的源漏穿通,与器件的沟道长度及沟道掺杂分布有关,其特点是(与PN结的击穿特性相比)击穿特性的发生不是非常急剧,换句话说,器件的击穿特性不是十分陡直的硬击穿,而是比较平缓的软击穿特性。

漏端PN结击穿: 比单纯的非MOSFET漏区的PN结击穿电压要低(原因:受场区离子注入、沟道区调开启离子注入等因素的影响),由于侧向双极型晶体管的放大作用,使得BV PN 有所下降(类似BV CEO 小于BV CBO ),不同点在于MOS器件的衬底(相当于BJT器件的基区)不是悬空的,而是接地(只是接地电阻可能偏大),这种击穿特性的特点是雪崩电流的发生比较急剧,发生雪崩效应之前的反向电流也很小。 (B )导通后的击穿:主要是由于侧向双极型晶体管效应所导致,特别是由于器件衬底电流的影响,将使源衬PN 结出现正偏现象,致使侧向双极型晶体管效应更为严重。

研究生《高等半导体器件物理》试题

2014级研究生《高等半导体器件物理》试题 1.简单说明抛物线性能能带和非抛物线性能带的能带结构以及各自 的特点、应用。 2.试描述载流子的速度过冲过程和弹道输运过程,以及它们在实际 半导体器件中的应用。 3.什么是半导体超晶格?半导体器件中主要的量子结构有哪些? 半导体超晶格:两种或者两种以上不同组分或者不同导电类型超薄层材料,交替堆叠形成多个周期结构,如果每层的厚度足够薄,以致其厚度小于电子在该材料中的德布罗意波的波长, 这种周期变化的超薄多层结构就叫做超晶格. 主要的量子结构:超晶格中, 周期交替变化的超薄层的厚度很薄,相临势阱中的电子波函数能够互相交叠, 势阱中的电子能态虽然是分立的, 但已被展宽. 如果限制势阱的势垒进度足够厚, 大于德布罗意波的波长, 那么不同势阱中的波函数不再交叠, 势阱中电子的能量状态变为分立的能级. 这种结构称之为量子阱( QW).在上述结构中,电子只在x 方向上有势垒的限制, 即一维限制,而在y , z 两个方向上是二维自由的. 如果进一步增加限制的维度,则构成量子线和量子点. 对于量子线而言, 电子在x , y 两个方向上都受到势垒限制; 对于量子点来说, 在x , y , z 三个方向上都有势垒限制. 我们通常将这些量子结构称为低维结构, 即量子阱、量子线和量子点分别为二维、一维和零维量子结构. 4.PHEMT的基本结构、工作原理以及电学特点。 5.隧道谐振二极管的主要工作特点,RITD的改进优势有哪些? 6.突变发射结、缓变基区HBT的工作原理、特点及其应用。 7.举例讨论半导体异质结光电器件的性能。

参考文献: 1.沃纳,半导体器件电子学,电子工业出版社,2005 2.施敏,现代半导体器件物理,科学出版社,2002 3.王良臣等,半导体量子器件物理讲座(第一讲~第七讲),物理(期刊),2001~2002

半导体器件物理施敏课后答案

半导体器件物理施敏课后答案 【篇一:半导体物理物理教案(03级)】 >学院、部:材料和能源学院 系、所;微电子工程系 授课教师:魏爱香,张海燕 课程名称;半导体物理 课程学时:64 实验学时:8 教材名称:半导体物理学 2005年9-12 月 授课类型:理论课授课时间:2节 授课题目(教学章节或主题): 第一章半导体的电子状态 1.1半导体中的晶格结构和结合性质 1.2半导体中的电子状态和能带 本授课单元教学目标或要求: 了解半导体材料的三种典型的晶格结构和结合性质;理解半导体中的电子态, 定性分析说明能带形成的物理原因,掌握导体、半导体、绝缘体的能带结构的特点 本授课单元教学内容(包括基本内容、重点、难点,以及引导学生解决重点难点的方法、例题等):

1.半导体的晶格结构:金刚石型结构;闪锌矿型结构;纤锌矿型 结构 2.原子的能级和晶体的能带 3.半导体中电子的状态和能带(重点,难点) 4.导体、半导体和绝缘体的能带(重点) 研究晶体中电子状态的理论称为能带论,在前一学期的《固体物理》课程中已经比较完整地介绍了,本节把重要的内容和思想做简要的 回顾。 本授课单元教学手段和方法: 采用ppt课件和黑板板书相结合的方法讲授 本授课单元思考题、讨论题、作业: 作业题:44页1题 本授课单元参考资料(含参考书、文献等,必要时可列出) 1.刘恩科,朱秉升等《半导体物理学》,电子工业出版社2005? 2.田敬民,张声良《半导体物理学学习辅导和典型题解》?电子工 业 出版社2005 3. 施敏著,赵鹤鸣等译,《半导体器件物理和工艺》,苏州大学出 版社,2002 4. 方俊鑫,陆栋,《固体物理学》上海科学技术出版社 5.曾谨言,《量子力学》科学出版社 注:1.每单元页面大小可自行添减;2.一个授课单元为一个教案;3. “重点”、“难点”、“教学手段和方法”部分要尽量具体;4.授课类型指:理论课、讨论课、实验或实习课、练习或习题课。

半导体器件物理复习纲要6页word

第一章 半导体物理基础 能带: 1-1什么叫本征激发?温度越高,本征激发的载流子越多,为什么? 1-2试定性说明Ge 、Si 的禁带宽度具有负温度系数的原因。 1-3、试指出空穴的主要特征及引入空穴的意义。 1-4、设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E v (k)分别为: 22 22100()()3C k k k E k m m -=h h +和2222100 3()6v k k E k m m =h h - ;m 0为电子惯性质量,1k a π=;a =0.314nm ,341.05410J s -=??h ,3109.110m Kg -=?,191.610q C -=?。 试求: ①禁带宽度;②导带底电子有效质量;③价带顶电子有效质量。 题解: 1-1、 解:在一定温度下,价带电子获得足够的能量(≥E g )被激发到导带成为导电 电子的过程就是本征激发。其结果是在半导体中出现成对的电子-空穴对。如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的电子被激发到导带中。 1-2、 解:电子的共有化运动导致孤立原子的能级形成能带,即允带和禁带。温度升 高,则电子的共有化运动加剧,导致允带进一步分裂、变宽;允带变宽,则导致允带与允带之间的禁带相对变窄。反之,温度降低,将导致禁带变宽。因此,Ge 、Si 的禁带宽度具有负温度系数。 1-3、准粒子、荷正电:+q ; 、空穴浓度表示为p (电子浓度表示为n ); 、E P =-E n (能量方向相反)、m P *=-m n *。 空穴的意义: 引入空穴后,可以把价带中大量电子对电流 的贡献用少量空穴来描述,使问题简化。 1-4、①禁带宽度Eg 根据dk k dEc )(=2023k m h +210 2()k k m -h =0;可求出对应导带能量极小值E min 的k 值: k min =14 3k ,

半导体器件物理(第二版)第二章答案

2-1.P N +结空间电荷区边界分别为p x -和n x ,利用2T V V i np n e =导出)(n n x p 表达式。给 出N 区空穴为小注入和大注入两种情况下的)(n n x p 表达式。 解:在n x x =处 ()()??? ??????? ??-=??? ??-=KT E E n x n KT E E n x p i Fn i n n FP i i n n exp exp 而 ()()()000n n n n n n n n n n n n p x p p p n x n n n p x =+?≈?=+?=+ (n n n p ?=?) n p =(此为一般结果) 小注入:(0n n n p <>? 且 n n p p ?= 所以 T V V i n e n p 22 =或 T V V i n e n p 2= 2-2.热平衡时净电子电流或净空穴电流为零,用此方法推导方程 20ln i a d T p n n N N V =-=ψψψ。 解:净电子电流为 ()n n n n I qA D n x με?=+? 处于热平衡时,I n =0 ,又因为 d dx ψε=- 所以n n d n n D dx x ψμ?=?,又因为n T n D V μ=(爱因斯坦关系) 所以dn n V d T =ψ, 从作积分,则 2-3.根据修正欧姆定律和空穴扩散电流公式证明,在外加正向偏压V 作用下,PN 结N 侧 空穴扩散区准费米能级的改变量为qV E FP =?。 证明: 从12x x →积分:

将T n 2n0V /V 1n0P (x )P Pn(x )P e =???=??代入 得FP E qV ?= 2-4. 硅突变结二极管的掺杂浓度为:31510-=cm N d ,320104-?=cm N a ,在室温下计算: (a )自建电势(b )耗尽层宽度 (c )零偏压下的最大内建电场。 解:(a )自建电势为 (b )耗尽层宽度为 (с) 零偏压下最大内建电场为 2–5.若突变结两边的掺杂浓度为同一数量级,则自建电势和耗尽层宽度可用下式表示 试推导这些表示式。 解:由泊松方程得: 积分一次得 由边界条件 所以 再积分一次得 令 ()()0 0p p n n x x ψψψ?-=??=?? 得: 10D = , 20D ψ= 于是()()()()2020022a p p d n n qN x x x k qN x x x k ψεψψε?=+????=--+?? ()()n p x x o x x ≤≤≤≤-0 再由电势的连续性,当x =0时 , ()()00p n ψψ=: 所以 ()2200 2a p d n q N x N x k ψε=+ 再由 ?????=+=n d p a n p x N x N x x W 得 故 ()()()2 2222020022a d n p a d d a a d a d qN N x x N N W N N W q k k N N N N ψεε??++==??++???? 将 p a n d x N x N =代入上式,得 2–6.推导出线性缓变PN 结的下列表示式:(a )电场(b )电势分布(c )耗尽层宽度(d )

半导体器件物理复习(施敏)

第一章 1、费米能级和准费米能级 费米能级:不是一个真正的能级,是衡量能级被电子占据的几率的大小的一个标准,具有决定整个系统能量以及载流子分布的重要作用。 准费米能级:是在非平衡状态下的费米能级,对于非平衡半导体,导带和价带间的电子跃迁失去了热平衡,不存在统一费米能级。就导带和价带中的电子讲,各自基本上处于平衡态,之间处于不平衡状态,分布函数对各自仍然是适应的,引入导带和价带费米能级,为局部费米能级,称为“准费米能级”。 2、简并半导体和非简并半导体 简并半导体:费米能级接近导带底(或价带顶),甚至会进入导带(或价带),不能用玻尔兹曼分布,只能用费米分布 非简并半导体:半导体中掺入一定量的杂质时,使费米能级位于导带和价带之间3、空间电荷效应 当注入到空间电荷区中的载流子浓度大于平衡载流子浓度和掺杂浓度时,则注入的载流子决定整个空间电荷和电场分布,这就是空间电荷效应。在轻掺杂半导体中,电离杂质浓度小,更容易出现空间电荷效应,发生在耗尽区外。 4、异质结 指的是两种不同的半导体材料组成的结。 5、量子阱和多量子阱 量子阱:由两个异质结或三层材料形成,中间有最低的E C和最高的E V,对电子和空穴都形成势阱,可在二维系统中限制电子和空穴 当量子阱由厚势垒层彼此隔开时,它们之间没有联系,这种系统叫做多量子阱 6、超晶格 如果势垒层很薄,相邻阱之间的耦合很强,原来分立的能级扩展成能带(微带),能带的宽度和位置与势阱的深度、宽度及势垒的厚度有关,这种结构称为超晶格。 7、量子阱与超晶格的不同点 a.跨越势垒空间的能级是连续的 b.分立的能级展宽为微带 另一种形成量子阱和超晶格的方法是区域掺杂变化 第二章 1、空间电荷区的形成机制 当这两块半导体结合形成p-n结时,由于存在载流子浓度差,导致了空穴从p区到n 区,电子从n区到p区的扩散运动。对于p区,空穴离开后,留下了不可动的带负电的电离受主,这些电离受主,没有正电荷与之保持电中性,所以在p-n结附近p 区一侧出现了一个负电荷区。同理,n区一侧出现了由电离施主构成的正电荷区,这些由电离受主和电离施主形成的区域叫空间电荷区。 2、理想p-n结 理想的电流-电压特性所依据的4个假设: a.突变耗尽层近似 b.玻尔兹曼统计近似成立 c.注入的少数载流子浓度小于平衡多数载流子浓度 d.在耗尽层内不存在产生-复合电流3、肖克莱方程(即理想二极管定律) 总电流之和J=J p+J n=J0 exp qV kT ?1,其中J0=qD p0n i2 L p N D +qD n n i2 L n N A 肖克莱方程准确描述了在低电流密度下p-n结的电流-电压特性,但也偏离理想情形,原因:a耗尽层载流子的产生和复合b在较小偏压下也可能发生大注入c串联电阻效应d载流子在带隙内两个状态之间的隧穿表面效应 4、p-n结为什么是单向导电 在正向偏压下,空穴和电子都向界面运动,使空间电荷区变窄,电流可以顺利通过。在反向偏压下,空穴和电子都向远离界面的方向运动,使空间电荷区变宽,电流不能流过,反向电压增大到一定程度时,反向电流将突然增大,电流会大到将PN结烧毁,表现出pn结具有单向导电性。 5、扩散电容和势垒电容 扩散电容:p-n结正向偏置时所表现出的一种微分电容效应 势垒电容:当p-n结外加电压变化时,引起耗尽层的电荷量随外加电压而增多或减少,耗尽层宽窄变化所等效的电容称为势垒电容。 6、击穿的机制 击穿仅发生在反向偏置下 a.热击穿:在高反向电压下,反向电流引起热损耗导致结温增加,结温反过来又增加了反向电流,导致了击穿 b.隧穿:在强电场下,由隧道击穿,使电子从价带越过禁带到达导带所引起的一种击穿现象 c.雪崩倍增:当p-n结加的反向电压增加时,电子和空穴获得更大的能量,不断发生碰撞,产生电子空穴对。新的载流子在电场的作用下碰撞又产生新的电子空穴对,使得载流子数量雪崩式的增加,流过p-n结的电流急剧增加,导致了击穿 6、同型异质结和反型异质结 同型异质结:两种不同的半导体材料组成的结,导电类型相同 异型异质结:两种不同的半导体材料组成的结,导电类型不同 8、异质结与常规的p-n结相比的优势 异质结注入率除了与掺杂比有关外,还和带隙差成指数关系,这点在双极晶体管的设计中非常关键,因为双极晶体管的注入比与电流增益有直接的关系,异质结双极晶体管(HBT)运用宽带隙半导体材料作为发射区以减小基极电流 第三章 1、肖特基二极管 肖特基二极管是一种导通电压降较低,允许高速切换的二极管,是利用肖特基势垒特性而产生的电子元件,一般为0.3V左右,且具有更好的高频特性 优点:其结构给出了近似理想的正向I-V曲线,其反向恢复时间很短,饱和时间大为减少,开关频率高。正向压降低,工作在0.235V 缺点:其反向击穿电压较低及方向漏电流偏大 2、肖特基二极管和普通二极管相比 优:开关频率高,正向电压降低缺:击穿电压低,反向电流大 3、欧姆接触 欧姆接触定义为其接触电阻可以忽略的金属-半导体接触 它不产生明显的附近阻抗,而且不会使半导体内部的平衡载流子浓度发生显著的改变,重掺杂的p-n结可以产生显著的隧道电流,金属和半导体接触时,如果半导体掺杂浓度很高,则势垒区宽度变得很薄,电子也要通过隧道效应贯穿势垒产生相当大的隧道流,甚至超过热电子发射电流而成为电流的主要成分。当隧道电流占主导地位时,它的接触电阻可以很小,可以用作欧姆接触。 制造欧姆接触的技术:a.建立一个更重掺杂的表面层 b.加入一个异质结,附加一个小带隙层材料、同种类型半导体的高掺杂区 4、整流接触 肖特基势垒是指具有整流特性的金属-半导体接触面(形成阻挡层),如同二极管具有整流特性。肖特基势垒相较于PN接面最大的区别在于具有较低的接面电压,以及在金属端具有相当薄的耗尽层宽度。 5、区别金属-半导体接触的电流输运主要依靠多子,而p-n结主要依靠少数载流子完成电流输运 第四章 1、MIS的表面电场效应 当VG=0时,理想半导体的能带不发生弯曲,即平带状态,在外加电场作用下,在半导体表面层发生的物理现象,主要在载流子的输运性质的改变。表面势及空间电荷区的分布随电压VG而变化。归纳为三种情况:积累,耗尽,反型。对于p型半导体 多子积累:当金属板加负电压时,半导体表面附近价带顶向上弯曲并接近于费米能级,对理想的MIS电容,无电流流过,所以费米能级保持水平。因为载流子浓度与能量差呈指数关系,能带向上弯曲使得多数载流子(空穴)在表面积累 耗尽:当施加小的正电压时,能带向下弯曲,多数载流子耗尽 反型:施加更大的正电压,能带更向下弯曲,以致本征费米能级和费米能级在表面附近相交,此时表面的电子(少数载流子)数大于空穴数,表面反型 2、解释MIS的C-V曲线图 高低频的差异是因为少数载流子的积累 a.低频时,左侧为空穴积累时的情形,有大的半导体微分电容,总电容接近于绝缘体电容;当负电压降为零时,为平带状态;进一步提高正向电压,耗尽区继续扩展,可将其看作是与绝缘体串联的、位于半导体表面附近的介质层,这将导致总电容下降,电容在达到一个最小值后,随电子反型层在表面处的形成再次上升,强反型时,电荷的增量不再位于耗尽层的边界处,而是在半导体表面出现了反型层导致了大的电容。 b.高频时,强反型层在φs≈2φB处开始,一旦强反型发生。耗尽层宽度达到最大,当能带弯曲足够大,使得φs=2φB时,反型层就有效的屏蔽了电场向半导体内的进一步渗透,即使是变化缓慢的静态电压在表面反型层引发附加电荷,高频小信号对于少数载流子而言变化也是很快的。增量电荷出现在耗尽层的边缘上 第五章 1、三种接法共基、共射、共集 2、四种工作状态 放大:发射极正偏,集电极反偏饱和:都正偏 截止:都反偏发向:发射极反偏,集电极正偏 3、Kirk效应(基区展宽效应) 在大电流状态下,BJT的有效基区随电流密度增加而展宽,准中性基区扩展进入集电区的现象,称为Kirk效应 产生有效基区扩展效应的机构主要是大电流时集电结N?侧耗尽区中可移动电荷中和离化的杂质中心电荷导致空间电荷区朝向远离发射结方向推移。 4、厄尔利效应(基区宽度调制效应) 当双极性晶体管(BJT)的集电极-发射极电压VCE改变,基极-集电极耗尽宽度WB-C(耗尽区大小)也会跟着改变。此变化称为厄利效应 5、发射区禁带宽度变窄 在重掺杂情况下,杂质能级扩展为杂质能带,当杂质能带进入了导带或价带,并相连在一起,就形成了新的简并能带,使能带的状态密度发生变化,简并能带的尾部伸入禁带,导致禁带宽度减小,这种现象称为禁带变窄效应。

《半导体器件物理》教学大纲(精)

《半导体器件物理》教学大纲 (2006版) 课程编码:07151022学时数:56 一、课程性质、目的和要求 半导体器件物理课是微电子学,半导体光电子学和电子科学与技术等专业本科生必修的主干专业基础课。它的前修课程是固体物理学和半导体物理学,后续课程是半导体集成电路等专业课,是国家重点学科微电子学与固体电子学硕士研究生入学考试专业课。本课程的教学目的和要求是使学生掌握半导体器件的基本结构、物理原理和特性,熟悉半导体器件的主要工艺技术及其对器件性能的影响,了解现代半导体器件的发展过程和发展趋势,对典型的新器件和新的工艺技术有所了解,为进一步学习相关的专业课打下坚实的理论基础。 二、教学内容、要点和课时安排 第一章半导体物理基础(复习)(2学时) 第二节载流子的统计分布 一、能带中的电子和空穴浓度 二、本征半导体 三、只有一种杂质的半导体 四、杂质补偿半导体 第三节简并半导体 一、载流子浓度 二、发生简并化的条件 第四节载流子的散射 一、格波与声子 二、载流子散射 三、平均自由时间与弛豫时间 四、散射机构

第五节载流子的输运 一、漂移运动迁移率电导率 二、扩散运动和扩散电流 三、流密度和电流密度 四、非均匀半导体中的自建场 第六节非平衡载流子 一、非平衡载流子的产生与复合 二、准费米能级和修正欧姆定律 三、复合机制 四、半导体中的基本控制方程:连续性方程和泊松方程 第二章PN结(12学时) 第一节热平衡PN结 一、PN结的概念:同质结、异质结、同型结、异型结、金属-半导体结 突变结、缓变结、线性缓变结 二、硅PN结平面工艺流程(多媒体演示图2.1) 三、空间电荷区、内建电场与电势 四、采用费米能级和载流子漂移与扩散的观点解释PN结空间电荷区形成的过程 五、利用热平衡时载流子浓度分布与自建电势的关系求中性区电势 及PN结空间电荷区两侧的内建电势差 六、解poisson’s Eq 求突变结空间电荷区内电场分布、电势分布、内建电势差 和空间电荷区宽度(利用耗尽近似) P 结 第二节加偏压的N

施敏-半导体器件物理英文版-第一章习题

施敏-半导体器件物理英文版-第一章习题

施敏 半导体器件物理英文版 第一章习题 1. (a )求用完全相同的硬球填满金刚石晶格常规单位元胞的最大体积分数。 (b )求硅中(111)平面内在300K 温度下的每平方厘米的原子数。 2. 计算四面体的键角,即,四个键的任意一对键对之间的夹角。(提示:绘出四个等长度的向量作为键。四个向量和必须等于多少?沿这些向量之一的方向取这些向量的合成。) 3. 对于面心立方,常规的晶胞体积是a 3,求具有三个基矢:(0,0,0→a/2,0,a/2),(0,0,0→a/2,a/2,0),和(0,0,0→0,a/2,a/2)的fcc 元胞的体积。 4. (a )推导金刚石晶格的键长d 以晶格常数a 的表达式。 (b )在硅晶体中,如果与某平面沿三个笛卡尔坐标的截距是10.86A ,16.29A ,和21.72A ,求该平面的密勒指数。 5. 指出(a )倒晶格的每一个矢量与正晶格的一组平面正交,以及 (b )倒晶格的单位晶胞的体积反比于正晶格单位晶胞的体积。 6. 指出具有晶格常数a 的体心立方(bcc )的倒晶格是具有立方晶格边为4π/a 的面心立方(fcc )晶格。[提示:用bcc 矢量组的对称性: )(2x z y a a -+=,)(2y x z a b -+=,)(2 z y x a c -+= 这里a 是常规元胞的晶格常数,而x ,y ,z 是fcc 笛卡尔坐标的单位矢量: )(2z y a a ρρρ+=,)(2x z a b ρρρ+=,)(2 y x a c ρρρ+=。] 7. 靠近导带最小值处的能量可表达为 .2*2*2*22 ???? ??++=z z y y x x m k m k m k E η 在Si 中沿[100]有6个雪茄形状的极小值。如果能量椭球轴的比例为5:1是常数,求纵向有效质量m*l 与横向有效质量m*t 的比值。 8. 在半导体的导带中,有一个较低的能谷在布里渊区的中心,和6个较高的能谷在沿[100] 布里渊区的边界,如果对于较低能谷的有效质量是0.1m0而对于较高能谷的有效质量是1.0m0,求较高能谷对较低能谷态密度的比值。

半导体器件物理

半导体器件物理 Physics of Semiconductor Devices 教学大纲 课程名称:半导体器件物理 课程编号:M832001 课程学分:2 适用专业:集成电路工程领域 一、课程性质 本课程的授课对象为集成电路工程专业硕士研究生,课程属性为专业基础必修课。要求学生在学习过《电路分析》,《数字电路》,《模拟电路》和《半导体物理》的基础上选修这门课程。 二、课程教学目的 通过本课程教学,使得学生知道微电子学的用途、主要内容,明白学习微电子学应该掌握哪些基础知识;对微电子学的发展历史、现状和未来有一个比较清晰的认识;学会应用《半导体物理》的基础知识来对半导体器件物理进行分析,初步掌握电子器件物理、工作原理等基本概念,对微电子学的整体有一个比较全面的认识。

三、教学基本内容及基本要求 第一章微电子学常识 (一)教学基本内容 第一节晶体管的发明 1.1 晶体管发明的历史过程 1.2 晶体管发明对现代文明的作用 第二节集成电路的发展历史 2.1 集成电路的概念 2.2 集成电路发展的几个主要里程碑 2.3 目前集成电路的现状 2.4 集成电路未来发展的主要趋势 第三节集成电路的分类 3.1 集成电路的分类方法 3.2 MOS集成电路的概念 3.3 双极集成电路的概念 第四节微电子学的特点 4.1 微电子学的主要概念 4.2 微电子学的主要特点 (二)教学基本要求 了解:晶体管发明的过程,晶体管发明对人类社会的作用; 微电子学的概念,微电子学的特点; 掌握:集成电路的概念,集成电路发展的几个主要里程碑;集成电路的分

类方法,MOS集成电路的概念,双极集成电路的概念;第二章p-n结二极管 (一)教学基本内容 第一节p-n结的空间电荷区 1.1 p-n结的结构和制造概述 1.2 p-n结的空间电荷层和内建电场、内建电势 1.3 p-n结的耗尽层(势垒)电容 第二节p-n结的直流特性 2.1 p-n结中载流子的注入和抽取 2.2 理想p-n结的伏-安特性 2.3 实际p-n结的伏-安特性 2.4 大注入时p-n结的伏-安特性 2.5 实际p-n结的电流、正向结电压与温度的关系 第三节p-n结的小信号特性 3.1 p-n结的交流电流密度 3.2 扩散电容C d 第四节p-n结的开关特性 4.1 p-n结中少数载流子存储的电荷 4.2 p-n结的瞬变过程 4.3 p-n结反向恢复时间的计算 第五节p-n结的击穿特性 5.1 隧道击穿(Zener击穿)

半导体器件物理(第二章)_194702163

半导体器件 物理进展 第二章(1) 半导体的导电理论Theory of Electrical Conduction in Semiconductor

本章主要介绍描述半导体中带电粒子(即载流子)运动规律的几个方程,包括载流子的电荷与外加电场、电势分布之间的相互关系。电子和空穴也不再作为单个粒子来处理,而是以晶体中宏观的载流子分布或者载流子浓度来处理。从分析方法上来看,也不再使用量子力学的处理方法,而是采用求解麦克斯韦方程组以及应用电荷守恒原理、浓度梯度导致的扩散过程等方法来进行分析。

本章主要内容: 电子在电场作用下的漂移 载流子的迁移率 漂移电流 扩散电流 漂移-扩散方程 电流输运方程 准费米能级

§1 电子在电场作用下的漂移 1. 晶格热振动与声子的概念 至此,我们讨论半导体材料中的载流子(包括导带电子和价带空穴)都是处于理想的晶体材料中(即具有完美的周期性势场),而在实际的晶体材料中,往往含有间隙原子、空位和一些特定的杂质,同时晶格原子往往还存在热振动(只要不是处在绝对零度条件下),这种晶格原子热振动的幅度主要与晶体材料所处的温度相关。利用量子力学和统计力学的方法对晶格原子热振动(特别是对其热振动的能量)所做的详细研究使得我们可以引入声子的概念来处理其与晶体中载流子之间的相互作用。

声子的概念: 所谓声子实际上是我们人为假想的一种准粒子,它反映了晶格原子热振动能量在晶体材料中与载流子之间相互传递、交换的过程。 对于各种实际的非完美晶体材料,其中存在着多种非理想因素:既包括上面介绍的间隙原子、空位或杂质原子,也包括晶格原子偏离平衡位置的热振动,它们都会对完美晶格的周期性势场产生一定的畸变,从而对其中载流子(包括导带中的电子和价带中的空穴)的运动产生一定的相互作用。

半导体器件物理课程大纲_施敏

《半导体器件物理》教学大纲 课程名称: 半导体器件物理 学分: 4 总学时:64 实验学时:(单独设课)其它实践环节:半导体技术课程设计 适用专业:集成电路设计与集成系统 一、本课程的性质和任务 本课程是高等学校本科集成电路设计与集成系统、微电子技术专业必修的一门专业主干课,是研究集成电路设计和微电子技术的基础课程。本课程是本专业必修课和学位课。 本课程的任务是:通过本课程的学习,掌握半导体物理基础、半导体器件基本原理和基本设计技能,为学习后续的集成电路原理、CMOS模拟集成电路设计等课程以及为从事与本专业有关的集成电路设计、制造等工作打下一定的基础。 二、本课程的教学内容和基本要求 一、半导体器件简介 1.掌握半导体的四种基础结构; 2.了解主要的半导体器件; 3.了解微电子学历史、现状和发展趋势。 二、热平衡时的能带和载流子浓度 1.了解主要半导体材料,掌握硅、锗、砷化镓晶体结构; 2.了解基本晶体生长技术; 3.掌握半导体、绝缘体、金属的能带理论; 4.掌握本征载流子、施主、受主的概念。 三、载流子输运现象 1.了解半导体中两个散射机制;掌握迁移率与浓度、温度的关系; 2.了解霍耳效应; 3.掌握电流密度方程式、爱因斯坦关系式; 4.掌握非平衡状态概念;了解直接复合、间接复合过程; 5.掌握连续性方程式;

6.了解热电子发射过程、隧穿过程和强电场效应。 四、p-n结 1.了解基本工艺步骤:了解氧化、图形曝光、扩散和离子注入和金属化等概念; 2.掌握热平衡态、空间电荷区的概念;掌握突变结和线性缓变结的耗尽区的电场和电势分布、势垒电容计算; 3.了解理想p-n结的电流-电压方程的推导过程; 4.掌握电荷储存与暂态响应、扩散电容的概念; 5.掌握p-n结的三种击穿机制。 6.了解异质结的能带图。 五、双极型晶体管及相关器件 1.晶体管的工作原理:掌握四种工作模式、电流增益、发射效率、基区输运系数;2.双极型晶体管的静态特性:掌握各区域的载流子分布;了解放大模式下的理想晶体管的电流-电压方程;掌握基区宽度调制效应; 3.双极型晶体管的频率响应与开关特性:掌握跨导、截止频率、特征频率、最高振荡频率的概念; 4.了解异质结双极型晶体管HBT的结构及电流增益; 5.了解可控硅器件基本特性及相关器件。 六、MOSFET及相关器件 1.掌握MOS二极管基本结构、三种表面状态、C-V特性、平带电压;了解CCD器件;2.掌握MOSFET基本原理,掌握阈值电压的计算及影响因素; 3.了解电流-电压方程推导过程,掌握MOSFET的种类及亚阈值区的概念; 4.短沟道效应、CV及CE理论; 5.MOS反相器的原理与闩锁效应; 6.T和SOICMOS结构。 七、MESFET及相关器件 1.金属-半导体接触的能带图及肖特基势垒理论; 2.MESFET基本器件结构及工作原理; 3.MESFET电流-电压方程推导及截止频率的概念; 4.了解MODFET的基本原理。 八、微波二极管、量子效应和热电子器件

半导体器件物理(第二版)第二章答案

半导体器件物理(第二版)第二章答案

2-1.P N + 结空间电荷区边界分别为p x -和n x ,利用 2T V V i np n e =导出)(n n x p 表达式。给出N 区空穴为 小注入和大注入两种情况下的)(n n x p 表达式。 解:在 n x x =处 ()()??? ??? ???? ??-=?? ? ??-=KT E E n x n KT E E n x p i Fn i n n FP i i n n exp exp ()()VT V i Fp Fn i n n n n e n KT E E n x n x p 22exp =? ?? ? ??-= 而 ()()()000n n n n n n n n n n n n p x p p p n x n n n p x =+?≈?=+?=+ (n n n p ?=?) ()()T T V V i n n n V V i n n n e n p n p e n n n p 202 0=?+?=?+ 200 1T V V n i n n n p n p e n n ???+= ??? T V V 22n n0n i p +n p -n e =0 T V V 2 2n0n0i n -n +n +4n e p = (此为一般结果) 小注入:(0 n n n p <>? 且 n n p p ?= 所以 T V V i n e n p 22=或 T V V i n e n p 2= 2-2.热平衡时净电子电流或净空穴电流为零, 用此方法推导方程

相关文档
相关文档 最新文档