文档视界 最新最全的文档下载
当前位置:文档视界 › 整流器的原理

整流器的原理

整流器的原理
整流器的原理

整流器的原理:

在以大功率二极管或晶闸管为基础的两种基本类型的整流器中,电网的高压交流功率通过变压器变换为直流功率。提到未来(不久的或遥远的)的其它类型整流器:以不可控二极管前沿产品为基础的斩波器、斩波直流/直流变换器或电流源逆变型有源整流器。显然,这种最新型的整流器在技术上包含较多要开发的内容,但是它能显示出优点,例如它以非常小的谐波干扰和1的功率因数加载于电网。

二极管整流器

所有整流器类别中最简单的是二极管整流器。在最简单的型式中,二极管整流器不提供任何一种控制输出电流和电压数值的手段。为了适用于工业过程,输出值必须在一定范围内可以控制。通过应用机械的所谓有载抽头变换器可以完成这种控制。作为典型情况,有载抽头变换器在整流变压器的原边控制输入的交流电压,因此也就能够在一定范围内控制输出的直流值。通常有载抽头变换器与串联在整流器输出电路中的饱和电抗器结合使用。通过在电抗器中引入直流电流,使线路中产生一个可变的阻抗。因此,通过控制电抗器两端的电压降,输出值可以在比较窄的范围内控制。

晶闸管整流器

在设计上非常接近二极管整流器的是晶闸管整流器。因为晶闸管整流器的电参数是可控的,所以不需要有载抽头变换器和饱和电抗器。

因为晶闸管整流器不包含运动部件,所以晶闸管整流器系统的维修减少了。注意到的一个优点是晶闸管整流器的调节速度较二极管整流器快。在过程特性的阶跃期间,晶闸管整流器常常调节很快,以致能够避免过电流。其结果是晶闸管系统的过载能力能够设计得比二极管系统小。

整流器的现状:

目前,业界推出的节能灯和电子镇流器专用三极管都十分注重对贮存时间的控制。因为贮存时间ts过长,电路的振荡频率将下降,整机的工作电流增大易导致三极管的损坏。虽然可以调整扼流圈电感及其他元器件参数来控制整机功率,但ts的离散性,将使产品的一致性差,可靠性下降。例如,在石英灯电子变压器线路中,贮存时间太大的晶体管可能引起电路在低于输出变压器工作极限的频率振荡,从而

造成每个周期的末端磁芯饱和,这使得晶体管Ic在每个周期出现尖峰,最后导致器件过热损坏(图3)。

如果同一线路上的两个三极管贮存时间相差太大,整机工作电流的上下半波将严重不对称,负担重的那只三极管将容易损坏,线路也将产生更多的谐波和电磁干扰。

实际使用表明,严格控制贮存时间ts并恰当调整整机电路,就可以降低对hFE参数的依赖程度。还值得一提的是,在芯片面积一定的情况下,三极管特性、电流特性与耐压参数是矛盾的,中国市场曾经用BUT11A来做220V40W电子镇流器,其出发点是BVceo、BVcbo数值高,但是目前绝大部分电子镇流器线路中,已经没有必要过高选择三极管的电压参数

整流器是一种能够将交流电转化为直流电的装置。通常由真空管,引燃管,固态矽半导体二极管,汞弧等制成,可用于供电装置及侦测无线电信号等。

整流器的原理

?二极管整流器

二极管整流器是所有整流器类别中最简单的。它不提供任何一种控制输出电流和电压数值的手段。为了适用于工业过程,输出值必须在一定范围内可以控制。通过应用机械的所谓有载抽头变换器可以完成这种控制。作为典型情况,有载抽头变换器在整流变压器的原边控制输入的交流电压,因此也就能够在一定范围内控制输出的直流值。通常有载抽头变换器与串联在整流器输出电路中的饱和电抗器结合使用。通过在电抗器中引入直流电流,使线路中产生一个可变的阻抗。因此,通过控制电抗器两端的电压降,输出值可以在比较窄的范围内控制。

可控硅整流器

在设计上非常接近二极管整流器的是可控硅整流器。因为晶闸管整流器的电参数是可控的,所以不需要有载抽头变换器和饱和电抗器。因为可控硅整流器不包含运动部件,所以晶闸管整流器系统的维修减少了。注意到的一个优点是可控硅整流器的调节速度较二极管整流器快。在过程特性的阶跃期间,可控硅整流器常常调节很快,以致能够避免过电流。其结果是可控硅系统的过载能力能够设计得比二极管系统小。

整流器的作用

?1、给蓄电池提供充电电压。因此,它同时又起到一个充电器的作用。

2、将交流电(AC)变成直流电(DC),经滤波后供给负载,或者供给逆变器。

整流器的型号释义

?

整流器的使用环境

?环境温度:0~40℃

相对湿度:15~85[%]RH

海拔高度:小于1000米

使用环境:无剧烈震动和冲击以及垂直倾斜度不超过5[%]的场所

网侧输入电压:380V;6.3KV;10KV;35KV;110KV;220KV

控制回路相和4线

整流器原理及其作用

在以大功率二极管或晶闸管为基础的两种基本类型的整流器中,电网的高压交流功率通过变压器变换为直流功率。提到未来(不久的或遥远的)的其它类型整流器:以不可控二极管前沿产品为基础的斩波器、斩波直流/直流变换器或电流源逆变型有源整流器。显然,这种最新型的整流器在技术上包含较多要开发的内容,但是它能显示出优点,例如它以非常小的谐波干扰和1的功率因数加载于电网。

二极管整流器

所有整流器类别中最简单的是二极管整流器。在最简单的型式中,二极管整流器不提供任何一种控制输出电流和电压数值的手段。为了适用于工业过程,输出值必须在一定范围内可以控制。通过应用机械的所谓有载抽头变换器可以完成这种控制。作为典型情况,有载抽头变换器在整流变压器的原边控制输入的交流电压,因此也就能够在一定范围内控制输出的直流值。通常有载抽头变换器与串联在整流器输出电路中的饱和电抗器结合使用。通过在电抗器中引入直流电流,使线路中产生一个可变的阻抗。因此,通过控制电抗器两端的电压降,输出值可以在比较窄的范围内控制。

晶闸管整流器

在设计上非常接近二极管整流器的是晶闸管整流器。因为晶闸管整流器的电参数是可控的,所以不需要有载抽头变换器和饱和电抗器。

因为晶闸管整流器不包含运动部件,所以晶闸管整流器系统的维修减少了。注意到的一个优点是晶闸管整流器的调节速度较二极管整流器快。在过程特性的阶跃期间,晶闸管整流器常常调节很快,以致能够避免过电流。其结果是晶闸管系统的过载能力能够设计得比二极管系统小。

整流器是一个整流装置,简单的说就是将交流(AC)转化为直流(DC)的装置。它有两个主要功能:第一,将交流电(AC)变成直流电(DC),经滤波后供给负载,或者供给逆变器;第二,给蓄电池提供充电电压。因此,它同时又起到一个充电器的作用。

镇流器和整流器的作用有何区别

把交流电变成直流电的设备就称为整流器。

按照所采用的整流器件,可分为机械式、电子管式和半导体式几类。电感镇流器是一个铁芯电感线圈,电感的性质是当线圈中的电流发生变化时,则在线圈中将引起磁通的变化,从而产生感应电动势,其方向与电流的方向相反,因而阻碍着电流变化。

整流器的原理

整流器的原理: 在以大功率二极管或晶闸管为基础的两种基本类型的整流器中,电网的高压交流功率通过变压器变换为直流功率。提到未来(不久的或遥远的)的其它类型整流器:以不可控二极管前沿产品为基础的斩波器、斩波直流/直流变换器或电流源逆变型有源整流器。显然,这种最新型的整流器在技术上包含较多要开发的内容,但是它能显示出优点,例如它以非常小的谐波干扰和1的功率因数加载于电网。 二极管整流器 所有整流器类别中最简单的是二极管整流器。在最简单的型式中,二极管整流器不提供任何一种控制输出电流和电压数值的手段。为了适用于工业过程,输出值必须在一定范围内可以控制。通过应用机械的所谓有载抽头变换器可以完成这种控制。作为典型情况,有载抽头变换器在整流变压器的原边控制输入的交流电压,因此也就能够在一定范围内控制输出的直流值。通常有载抽头变换器与串联在整流器输出电路中的饱和电抗器结合使用。通过在电抗器中引入直流电流,使线路中产生一个可变的阻抗。因此,通过控制电抗器两端的电压降,输出值可以在比较窄的范围内控制。 晶闸管整流器 在设计上非常接近二极管整流器的是晶闸管整流器。因为晶闸管整流器的电参数是可控的,所以不需要有载抽头变换器和饱和电抗器。 因为晶闸管整流器不包含运动部件,所以晶闸管整流器系统的维修减少了。注意到的一个优点是晶闸管整流器的调节速度较二极管整流器快。在过程特性的阶跃期间,晶闸管整流器常常调节很快,以致能够避免过电流。其结果是晶闸管系统的过载能力能够设计得比二极管系统小。 整流器的现状: 目前,业界推出的节能灯和电子镇流器专用三极管都十分注重对贮存时间的控制。因为贮存时间ts过长,电路的振荡频率将下降,整机的工作电流增大易导致三极管的损坏。虽然可以调整扼流圈电感及其他元器件参数来控制整机功率,但ts的离散性,将使产品的一致性差,可靠性下降。例如,在石英灯电子变压器线路中,贮存时间太大的晶体管可能引起电路在低于输出变压器工作极限的频率振荡,从而

三相电压型PWM整流器及仿真

三相电压型PWM整流器及仿真

————————————————————————————————作者:————————————————————————————————日期:

电力电子课程设计课程设计报告 题目:三相电压型PWM整流器与仿真 专业、班级: 学生姓名: 学号: 指导教师: 2015年 1 月 6 日 内容得分 1、三相桥式电路的基本原理(10分) 2、整流电路基本原理(10分) 3、pwm控制的基本原理(10分 4、三相电压型pwm整流电路仿真模型(30分) 5、结果分析(30分) 6、程序文件(10分) 总分

摘要:叙述了建立三相电压型PWM整流器的数学模型。在此基础上,使用功能强大的MATLAB软件进行了仿真,仿真结果证明了方法的可行性。 关键词:整流器;PWM;simulink

目录 一任务书 (1) 1.1 题目 (1) 1.2 设计内容及要求 (1) 1.3 报告要求 (1) 二基础资料 (2) 2.1 三相桥式电路的基本原理 (2) 2.2 整流电路基本原理 (4) 2.3 pwm控制的基本原理 (6) 2.4 PWM整流器的发展现状 (6) 三设计内容 (8) 3.1 仿真模型 (8) 3.2 各个元件参数 (11) 3.3 仿真结果 (13) 3.4 结果分析 (15) 四总结 (15) 五参考文献 (15)

一任务书 1.1 题目 三相电压型PWM整流器仿真 1.2 设计内容及要求 设计三相电压型PWM整流器及其控制电路的主要参数,并使用MATLAB软件搭建其仿真模型并验证。 设计要求(pwm整流器仿真模型参数): (1)交流电源电压600V,60HZ (2)短路电容30MVA (3)外接负载500kVar,1MW (4)变压器变比 600/240V (5)0.05s前,直流负载200kw,直流电压500V,0.05s后,通过断路器并联一个相同大小的电阻。 1.3 报告要求 (1)叙述三相桥式电路的基本原理 (2)叙述整流电路基本原理 (3)叙述pwm控制的基本原理 (4)记录参数(截图) (5)记录仿真结果,分析滤波结果 (6)撰写设计报告 (7)提交程序源文件

电子镇流器的工作原理与常见故障修

电子镇流器的工作原理与常见故障修 一、概述 自GE公司的因曼博士(Inman)等在1938年发明了实际应用的荧光灯,到现在已有近70年的历史。虽然新型光源不断出现,但在一定的时间范围内,荧光灯作为主要照明光源的地位可能难以改变。在日光灯发展的过程中,廉价实用的电感镇流器和启辉器,解决了荧光灯的启动与限流问题,对荧光灯迅速发展和普及曾起到过积极推动作用。然而,时至今日,资源变得越来越紧张了,电感镇流器消耗太多的有色金属使人们一定要想办法用更廉价的电子产品来替代它,电子镇流器在上世纪八十年代应运而生,到目前已 经非常普及。 电子镇流器所用元器件少,电路简单,容易制造,并且市场需求量大,是电子爱好者开始创业时的首选产品,有条件的同学,如果打算出去后大干一场的话,也可以考虑先制造电子镇流器。据我所知在仙 桃市,就有几个人在专门制造电子镇流器。 本讲座开办的目的是让同学们关注灯具的变化,了解日光灯电子镇流器的工作原理,学会修理和制 造电子镇流器。 二、普通日光灯的缺陷 普通日光灯的缺陷除消耗有色金属太多外,其对电能的损耗也是不容忽视的。电感镇流器的绕组的欧姆损耗和铁芯的涡流损耗较大,约占灯功率损耗的15%左右。在荧光灯如此普及的今天,电感镇流器所消耗的总能量是十分巨大的。此外,电感镇流器的功率因数较低,一般为0.5左右,会造成电网的严重污染,电力部门不得不加大功率因数补偿电容,增加了电力成本。 三、电子镇流器的特点 电子镇流器的工作原理是将工频(50Hz或60Hz)电源变换成20~50KHz左右高频电源,直接点灯,无需其它限流器件。与电感镇流器相比,电子镇流器具有以下优点: 1、节能: 1)照明效率提高 普通荧光灯的工作频率为50Hz,其照明高效率因所谓的正电(或负电)降落的存在而很低,当电源频率在1000Hz以上时,这种正电(或负电)降落现象消失。而电子镇流器工作频率一般都在20一50kHz,不产生正电或负电电位跌落,这就是电子镇流器能提高照明效率的原因。 2)电子镇流器自身功率损耗低。 电子镇流器的自身消耗功率较难测量,经间接测量估算,工作点调整较好的电子镇流器,其自身消 耗一般都在灯功率的5%以下。 2、其它优点 由于应用了高频电感,电子镇流器体积小,重量轻;低电压可启动点燃灯管;无需启辉器;无频闪, 无噪声等等。 四、电子镇流器的组成与主流电路分析 1、电子镇流器的组成

6脉冲12脉冲可控硅整流器原理与区别

6脉冲、12脉冲可控硅整流器原理与区别 2007-2-8 10:36:00文/厂商稿出处:https://www.docsj.com/doc/002712474.html, 摘要:本文从理论推导、实测数据分析、谐波分析和改善对策、性能对比四个方面详细阐述6脉冲和12脉冲整流器的原理和区别。对大功率UPS的整流技术有一个深入全面的剖析。 一、理论推导 1、6脉冲整流器原理: 6脉冲指以6个可控硅(晶闸管)组成的全桥整流,由于有6个开关脉冲对6个可控硅分别控制,所以叫6脉冲整流。 当忽略三相桥式可控硅整流电路换相过程和电流脉动,假定交流侧电抗为零,直流电感为无穷大,延迟触发角a为零,则交流侧电流傅里叶级数展开为:

(1-1) 由公式(1-1)可得以下结论: 电流中含6K?1(k为正整数)次谐波,即5、7、11、13...等各次谐波,各次谐波的有效值与谐波次数成反比,且与基波有效值的比值为谐波次数的倒数。 图1.1 计算机仿真的6脉冲A相的输入电压、电流波形2、12脉冲整流器原理: 12脉冲是指在原有6脉冲整流的基础上,在输入端、增加移

相变压器后在增加一组6脉冲整流器,使直流母线电流由12个可控硅整流完成,因此又称为12脉冲整流。 下图所示I和II两个三相整流电路就是通过变压器的不同联结构成12相整流电路。 12脉冲整流器示意图(由2个6脉冲并联组成) 桥1的网侧电流傅立叶级数展开为: (1-2) 桥II网侧线电压比桥I超前30?,因网侧线电流比桥I超前30? (1-3) 故合成的网侧线电流

(1-4) 可见,两个整流桥产生的5、7、17、19、...次谐波相互抵消,注入电网的只有12k?1(k为正整数)次谐波,即11、13、23、25等各次谐波,且其有效值与与谐波次数成反比,而与基波有效值的比值为谐波次数的倒数。 图1.2 计算机仿真的12脉冲UPS A相的输入电压、电流波形二、实测数据分析。 以上计算为理想状态,忽略了很多因数,如换相过程、直流侧电流脉动、触发延迟角,交流侧电抗等。因此实测值与计算值有一定出入。

日光灯工作原理图

日光灯的工作原理 简单的日光灯电路由灯管、启辉器和镇流器等组成,如上图所示。日光灯管的内壁涂有一层荧光物质,管两端装有灯丝电极,灯丝上涂有受热后易发射电子的氧化物,管内充有稀薄的惰性气体和水银蒸气。镇流器是一个带有铁心的电感线圈。启辉器由一个辉光管(管内由固定触头和倒U形双金属片构成)和一个小容量的电容组成,装在一个圆柱形的外壳内。 当接通电源时,由于灯管没有点燃,启辉器的辉光管上(管内的固定触头与倒U形双金属片之间)因承受了220V的电源电压而辉光放电,使倒U形双金属片受热弯曲而与固定触头接触,电流通过镇流器及灯管两端的灯丝及启辉器构成回路。灯丝因有电流(启动电流)流过被加热而发射电子。同时,启辉器中的倒U形双金属片由于辉光放电结束而冷却,与固定触头分离,使电路突然断开。在此瞬间,镇流器产生的较高感应电压与电源电压一齐(约 400--600V)加在灯管的两端,迫使管内发生弧光放电而发光。灯管点燃后,由于镇流器的限流作用,使得灯管两端的电压较低(30W灯管约100V左右),而启辉器与灯管并联,较低的电压不能使启辉器再次动作。 日光灯镇流器的作用 日光灯镇流器是指电感式镇流器,它起着以下三个作用:

⑴启动过程中,限制预热电流,防止预热电流过大而烧毁灯丝,而又保证灯丝具有热电发射能力。 ⑵建立脉冲高电势。启辉器两个电极跳开瞬间,在灯管两端就建立了脉冲高电势,使灯管点燃。 ⑶稳定工作电流,保持稳定放电。 32W日光灯镇流器电路图 电路如下图所示。该电路由整流滤波电容、高频振荡电路以及输出负载屯路三部分构成。 交流220V经整流滤波输出约300V直流为振荡电路提供电源。开机后,电源经R5对C3充电,使Vc3迅速升高,从而使VT2迅速达到饱和导通;此时由于T的反馈作用使VTI截止。VT2一旦导通,则Vc3下降,流过L2的电流减小,引起L2两端一个上负下正的电压。据同名端原则,L1得到上正下负的反馈电压,从而使VTI迅速饱和导通,同时T的正反馈作用又使VT2迅速截止,如此周而复始形成振荡方波(R6D6、R3D5起续流作用)。负载回路由L3、L4、C4构成。VTI、VT2产生的高频振荡方波由L3加给负载作激励源。灯管点亮前,由C4、L4等形成很大的谐振电梳流过灯丝,使管内氢气电离,进而使水银变为水银蒸汽,C4两端的高电压又使水银蒸汽形成弧光放电,激发管壁荧光粉发光。灯管点亮后,C4基本上不起作用,此时L4则起阻流作用。 常见故障 1.VTl、VT2击穿进而导致D1-D4被击穿,此时将引起电源短路; 2.R4偏置损坏; 3.振荡电路中L5.L6易损坏; 4.负载电路中C4因高压易被击穿。 最后特别说明,目前市场上所见的各种40W、32W节能日光灯以及各种环形灯,均可参考此电路进行分析。

浅谈电子整流器工作原理

浅谈电子整流器工作原理 前言 整流器(什么是整流器)是一个简单的将交流(AC)转化为直流(DC)的整流装置,它作为工业应用不可或缺的电子器件已越来越受到人们的亲睐。面对纷繁复杂的电子整流器件,怎样才能判别它的好坏呢?对于有用到电子整流器(整流器的作用)的人来说,了解其基础知识是必不可少的。小编通过搜集各种资料简要的对电子整流器的基础知识进行了以下总结。 电子整流器的工作原理(整流器原理) 电子整流器的基本工作原理如下图所示: 正常情况下,电子整流器通电后逆变器连同电感L、灯丝1、电容、灯丝2组成串联谐振电路,在一定时间内电容两端产生高压,这一高电压引起荧光灯弧光放电使荧光灯启动,然后谐振电路失谐,日光灯进入稳定的点燃状态。当出现灯管老化或者灯管漏气等异常状态时,荧光灯不能正常启动,上面的电路一直

处于谐振状态(除非灯丝烧断或电子整流器损坏),逆变器输出的电流不断增大,通常这个电流会升高到正常电流的3到5倍。如果这时不采取有效的保护措施,会造成极大危害。首先,过大的电流会导致逆变器中作为开关的三极管或场效应管及其它外围部件因过载而烧毁,甚至引起冒烟、爆裂等事故。同时,灯脚对地线或中线会形成长时间的极高电压,对于20W、36W、40W及其它大部分国标/非标灯的电子整流器,这一电压往往会达到一千伏或更高,这不仅为国标GB15143所严格禁止,而且也会危及人身、财产安全。GB15143-94“11、14”及GB15144-94“5.13”部分对电子整流器的异常状态试验包括:灯开路、阴极损坏、去激活、整流效应等,同时规定电子整流器在经过上述试验后不得发生安全性故障并能够正常工作。 电子整流器满足的两大功能要求 荧光灯的工作性能在很大程度上与相配套工作的电子整流器性能有关,在使用中应使荧光灯的工作性能和电子整流器的工作性能相匹配(如灯阻抗和灯的工作特性),以使荧光灯能工作在最佳状态, 使用中电子整流器应满足以下功能要求: ①能够限制和稳定荧光灯的工作电流。 ②在交流市电过零时,也能正常工作。

单相PWM整流电路设计(电力电子课程设计)..

重庆大学电气工程学院 电力电子技术课程设计 设计题目:单相桥式可控整流电路设计 年级专业:****级电气工程与自动化学生姓名:***** 学号: **** 成绩评定: 完成日期:2013年6月 23 日

指导教师签名:年月日

重庆大学本科学生电力电子课程设计任务书

单相桥式可控整流电路设计 摘要:本文主要研究单相桥式PWM整流电路的原理,并运用IGBT去实现电路的设计。概括地讲述了单相电压型PWM整流电路的工作原理,用双极性调制方式去控制IGBT的通断。在元器件选型上,较为详细地介绍了IGBT的选型,分析了交流侧电感和直流侧电容的作用,以及它们的选型。最后根据实际充电机的需求,选择元器件具体的参数,并用simulink进行仿真,以验证所设计的单相电压型PWM整流器的性能。实现了单相电压型PWM整流器的高功率因数,低纹波输出等功能。 关键词:PWM整流simulink 双极性调制IGBT

目录 1.引言 ......................................................... - 5 - 1.1 PWM整流器产生的背景.................................... - 5 - 1.2 PWM整流器的发展状况.................................... - 5 - 1.3 本文所研究的主要内容.................................... - 6 - 2.单相电压型PWM整流电路的工作原理 ............................. - 7 - 2.1电路工作状态分析......................................... - 7 - 2.2 PWM控制信号分析......................................... - 8 - 2.3 交流测电压电流的矢量关系............................... - 9 - 3.单相电压型PWM整流电路的设计 ................................ - 10 - 3.1 主电路系统设计......................................... - 10 - 3.2 IGBT和二极管的选型设计................................. - 11 - 3.3 交流侧电感的选型设计................................... - 11 - 3.4 直流侧电容的选型设计................................... - 12 - 3.5 直流侧LC滤波电路的设计................................ - 13 - 4.单相PWM整流电路的仿真及分析 ................................ - 13 - 4.1 整流电路的simulink仿真............................... - 13 - 4.2 对simulink仿真结果的分析............................. - 16 - 5.工作展望 ................................................... - 16 - 参考文献 ...................................................... - 17 -

荧光灯电子镇流器工作原理

荧光灯电子镇流器工作原理 该荧光灯电子镇流器电路由电源电路、高频振荡器和LC串联输出电路组成。电路中,电源电路由熔断器FU、电子滤波变压器T1、电容器C1、C2、压敏电阻器RV和整流二极管VD1 - VD4组成;高频振荡器电路由晶体管V1、V2,二极管VD5、V D6、电阻器R1一R6、电容器C3一C5和高频变压器TZ组成;LC串联输出电路由限流电感器L、电容器C6、C7和荧光灯管EL组成。接通电源,交流220V电压经T1和C1高频滤波、VD1一VD4整流及C2平滑滤波后,为高频振荡器提供300V左右的直流工作电压。在刚接通电源的瞬间,V1和V2中某只晶体管优先导通,在高频变压器T2的藕合和反馈作用下,V1和V2交替导通与截止,使高频振荡电路进人自激振荡状态,并通过L和C6为EL提供启辉电压。当C7两端电压达到EL的放电电压时,EL启辉点亮。 荧光灯电子镇流器电路图 本篇文章来源于百科全书转载请以链接形式注明出处网址:https://www.docsj.com/doc/002712474.html,/dianyuan/nb/200911/381412.html 本篇文章来源于百科全书转载请以链接形式注明出处网址:https://www.docsj.com/doc/002712474.html,/dianyuan/nb/200911/381412.html

18w荧光灯电子镇流器 作者:佚名文章来源:不详点击数:161 更新时间:2009-11-1 此荧光灯电子镇流器的工作电源范围为交流100一250V,适用于8一26W三基色直管式节能荧光灯。 电路中,整流滤波电路由整流二极管VD1一V D4和滤波电容器C1组成;触发电路由电阻器R6、电容器C3和双向二极管V3组成;高频振荡电路由晶体管V1、V2、二极管V D5一VD7、电阻器R1 -R5、电容器C2和高频变压器T(W1-W3)组成;LC串联输出电路由限流电感器L,电容器C4, C5和荧光灯管EL组成。 接通电源后,交流220V电压经VD1一V D4整流及C1滤波后,为高频振荡电路提供300V左右的直流电压。该直流电压还经R6对C3充电,当C3两端电压充至V3的转折电压时,V3迅速导通,C3上所充电荷经V3对T的W3绕组放电,在T的祸合作用下,Vi和V2交替导通与截止,高频振荡器振荡工作。高频振荡器振荡后,在C2两端之间产生一个近似正弦波的交变高频电压,此电压经C4、L1加在EL的灯丝上,当C5两端电压达到EL的放电电压时,EL启辉点亮。

PWM整流电路概述

PWM整流电路概述 1引言 在电力系统中,电压和电流应是完好的正弦波。但是在实际的电力系统中,由于非线性负载的影响,实际的电网电压和电流波形总是存在不同程度的畸变,给电力输配电系统及附近的其它电气设备带来许多问题,因而就有必要采取措施限制其对电网和其它设备的影响。随着电力电子技术的迅速发展,各种电力电子装置在电力系统、工业、交通、家庭等众多领域中的应用日益广泛,大量的非线性负载被引入电网,导致了日趋严重的谐波污染。电网谐波污染的根本原因在于电力电子装置的开关工作方式,引起网侧电流、电压波形的严重畸变。目前,随着功率半导体器件研制与生产水平的不断提高,各种新型电力电子变流装置不断涌现,特别是用于交流电机调速传动的变频器性能的逐步完善,为工业领域节能和改善生产工艺提供了十分广阔的应用前景。相关资料表明,电力电子装置生产量在未来的十年中将以每年不低于10%的速度递增,同时,由这类装置所产生的高次谐波约占总谐波源的70%以上。 在我国,当前主要的谐波源主要是一些整流设备,如化工、冶金行业的整流设备和各种调速、调压设备以及电力机车。传统的整流方式通常采用二极管整流或相控整流方式,采用二极管整流方式的整流器存在从电网吸取畸变电流,造成电网的谐波污染,而且直流侧能量无法回馈电网等缺点。采用相控方式的整流器也存在深度相控下交流侧功率因数很低,因换流引起电网电压波形畸变等缺点。这些整流器从电网汲取电流的非线性特征,给周围用电设备和公用电网都会带来不利影响。 为了抑制电力电子装置产生的谐波,其中的一种方法就是对整流器本身进行改进,使其尽量不产生谐波,且电流和电压同相位。这种整流器称为高功率因数变流器或高功率因数整流器。高功率因数变流器主要采用PWM整流技术,一般需要使用自关断器件。对电流型整流器,可直接对各个电力半导体器件的通断进行PWM调制,使输入电流成为接近正弦且与电源电压同相的PWM波形,从而得到接近1的功率因数。对电压型整流器,需要将整流器通过电抗器与电源相连。只要对整流器各开关器件施以适当的PWM控制,就可以对整流器网侧交流电流的大小和相位进行控制,不仅可实现交流电流接近正弦波,而且可使交流电流的相位与电源电压同相,即系统的功率因数总是接近于1。本文主要对与PWM整流器相关的功率开关器件、主电路拓扑结构和控制方式等进行详细说明,在此基础上对PWM整流技术的发展方向加以探讨。 2功率开关器件 PWM整流器的基础是电力电子器件,其与普通整流器和相控整流器的不同之处是其中用到了全控型器件,器件性能的好坏决定了PWM整流器的性能。优质的电力电子器件必须具有如下特点:(1)能够控制通断,确保在必要时可靠导通或截止;(2)能够承受一定的电压和电流,阻断状态时能承受一定电压,导通时匀许通过一定的电流;(3)具有较高的开关频率,在开关状态转换时具有足够短的导通时间和关断时间,并能承受高的di/dt 和dv/dt。目前在PWM整流器中得到广泛应用的电力电子器件主要有如下几种:

整流器工作原理

整流器工作原理 桥式整流器原理电路 桥式整流电路(如图5-5所示)是使用最多的一种整流电路。这种电路,只要增加两只二极管口连接成"桥"式结构,便具有全波整流电路的优点,而同时在一定 程度上克服了它的缺点。 图5-5(a)为桥式整流电路图(b)为其简化画法 式整流电路的工作原理如下:e2为正半周时,对D1、D3和方向电压,Dl,D3导通;对D2、D4加反向电压,D2、D4截止。电路中构成e2、Dl、Rfz、D3通电回路,在Rfz,上形成上正下负的半波整洗电压,e2为负半周时,对D2、D4加正向电压,D2、D4导通;对D1、D3加反向电压,D1、D3截止。电路中构成e2、D2Rfz、D4通电回路,同样在Rfz上形成上正下负的另外半波的整流电压。以上两种工作状态分别如图5-6(a)和(b)所示。

图5-6 桥式整流电路的工作原理示意图 如此重复下去,结果在Rfz,上便得到全波整流电压。其波形图和全波整流波形图是一样的。从图5-6中还不难看出,桥式电路中每只二极管承受的反向电压等于变压器次级电压的最大值,比全波整流电路小一半。 桥式整流电路的整流效率和直流输出与全波整流电路相同,变压器的利用率最高。现在常用的全桥整流,不用单独的四只二极管而用一只全桥,其中包括四只二极管,但是要标清符号,有交流符号的两端接变压器输出,+、-两端接入整流电路。 需要特别指出的是,二极管作为整流元件,要根据不同的整流方式和负载大小加以选择。如选择不当,则或者不能安全工作,甚至烧了管子;或者大材小用,造成浪费。表5-1所列参数可供选择二极管时参考。 另外,在高电压或大电流的情况下,如果手头没有承受高电压或整定大电滤的整流元件,可以把二极管串联或并联起来使用。

桥式整流器原理电路

桥式整流器原理电路 桥式整流电路(如图5-5所示)是使用最多的一种整流电路。这种电路,只要增加两只二极管口连接成"桥"式结构,便具有全波整流电路的优点,而同时在一定程度上克服了它的缺点。 图5-5(a)为桥式整流电路图(b)为其简化画法 桥式整流电路的工作原理如下:e2为正半周时,对D1、D3和方向电压,Dl,D3导通;对D2、D4加反向电压,D2、D4截止。电路中构成e2、Dl、Rfz、D3通电回路,在Rfz,上形成上正下负的半波整洗电压,e2为负半周时,对D2、D4加正向电压,D2、D4导通;对D1、D3加反向电压,D1、D3截止。电路中构成e2、D2Rfz、D4通电回路,同样在Rfz 上形成上正下负的另外半波的整流电压。以上两种工作状态分别如图5-6(a)和(b)所示。

图5-6 桥式整流电路的工作原理示意图 如此重复下去,结果在Rfz,上便得到全波整流电压。其波形图和全波整流波形图是一样的。从图5-6中还不难看出,桥式电路中每只二极管承受的反向电压等于变压器次级电压的最大值,比全波整流电路小一半。 桥式整流电路的整流效率和直流输出与全波整流电路相同,变压器的利用率最高。现在常用的全桥整流,不用单独的四只二极管而用一只全桥,其中包括四只二极管,但是要标清符号,有交流符号的两端接变压器输出,+、-两端接入整流电路。 需要特别指出的是,二极管作为整流元件,要根据不同的整流方式和负载大小加以选择。如选择不当,则或者不能安全工作,甚至烧了管子;或者大材小用,造成浪费。表5-1所列参数可供选择二极管时参考。 另外,在高电压或大电流的情况下,如果手头没有承受高电压或整定大电滤的整流元件,可以把二极管串联或并联起来使用。 图5-7示出了二极管并联的情况:两只二极管并联、每只分担电路总电流的一半口三只二极管并联,每只分担电路总电流的三分之一。总之,有几只二极管并联,流经每只二极管的电流就等于总电流的几分之一。但是,在实际并联运用时,由于各二极管特性不完全一致,不能均分所通过的电流,会使有的管子困负担过重而烧毁。因此需在每只二极管上串联一只阻

PWM整流工作原理

PWM整流工作原理

图6-28 单相PWM 整流电路 整流电路也可分为电压型和电流型两大类,目前半桥电路直流侧电容必须由两个电容串联,其中点和交流电源单相半桥电路 交流侧电感电感和交流电源内部电感,是电全桥电路直流侧电容只要一个就可以。 单相全桥电路 6-8 电力电子技术 (1)单相全桥PWM 整流电路的工作原理 正弦信号波和三角波相比较的方法对图6-28b 中的V 1~V 4进行SPWM 控制,就可以在桥的交流输入端AB 产生一个SPWM 波u AB 。 u AB 中含有和正弦信号波同频率且幅值成比例的基波分量,以及和三角波载波有关的频率很高的谐波,不含有低次谐波。 由于L s 的滤波作用,谐波电压只使i s 产生很小的脉动。 当正弦信号波频率和电源频率相同时,i s 也为与电源频率相同的正弦波。 u s 一定时,i s 幅值和相位仅由u AB 中基波u ABf 的幅值及其与u s 的相位差决定。 改变u ABf 的幅值和相位,可使i s 和u s 同相或反相,i s 比u s 超前90°,或使i s 与u s 相位差为所需角度。 6.4.1 PWM 整流电路的工作原理

6-12 电力电子技术 (2)对单相全桥PWM 整流电路工作原理的进一步说明 整流状态下: u s > 0时,(V 2、VD 4、VD 1、L s )和(V 3、VD 1、VD 4、L s )分别组成两个升压斩波电路,以(V 2、VD 4、VD 1、L s )为例。V 2通时,u s 通过V 2、VD 4向L s 储能。V 2关断时,L s 中的储能通过VD 1、VD 4向C 充电。u s < 0时,(V 1、VD 3、VD 2、L s )和(V 4、VD 2、VD 3、L s )分别组成两个升压斩波电路。 6.4.1 PWM 整流电路的工作原理

摩托车整流器的工作原理

摩托车整流器的工作原理 (2009-12-23 16:48:44) 转载 标签: 杂谈 摩托车上有一个非常重要的电器部件,它为整车用电设备提供稳定的工作电压,这就是整流稳压器,即我们俗称的“硅整流”。整流就是将交流电压变为直流电压,稳压就是将发电机输出的不稳定电压稳定在规定范围内,实现这两个功能的器件我们就称之为整流稳压器。摩托车整流稳压器从产生到现在已经经历了几个阶段,但直到目前为止,大多数摩托车仍使用技术上存在缺陷的削波短路型整流稳压器。随着科技的发展,新技术和新元器件的出现,改进整流稳压器的性能有了可能,因此新一代的开关型整流稳压器已研制成功并面世,人们已开始认识并使用它,相信不久它就能全面替代削波短路型整流稳压器了。 在未发明二极管前,摩托车只能采用复杂的激磁直流发电机,使用机械调压, 就是用继电器调节激磁电流的大小,是一种简单的开关调压电路。二极管发明后,人们试着采用简单一点的激磁交流发电机,同时用机械调压,后来慢慢用电子调压替代了它。这就是现在汽车上用的调压方式。为什么早期摩托车要用结构复杂的激磁交流发电机而不用结构简单小巧、故障率极低

的永磁交流发电机呢?因为永磁交流发电机的磁场与线圈是固定的,输出电压和频率随发动机转速变化而成正比变化,范围极宽,无法象激磁交流发电机一样用调整激磁电流大小的方法从内部调节输出电压的大小,只能发出电压后再予以稳压,以当时的技术条件无法实现。但后来因小功率永磁交流发电机结构简单,故障率少,还是被广泛用到了摩托车上。 最早的永磁交流发电机用整流稳压器是不带稳压功能的,只有四个二极管,即全波整流,它全靠电瓶稳压(如 XF250 )。发电机发出的交流电经过二极管桥式整流直接给电瓶充电,充电电压就是发电机输出电压,随转速变化很大,电压跟电流都远远超过电瓶正常的充电电压和电流,由于电瓶特有的稳压性能,所以电压能够稳定在合适的范围,但这是以电瓶的寿命为代价的(一般一年就损坏了,而电瓶的设计寿命为三年)。发动机运转当中,如果电瓶突然断开,所有用电设备便会即刻烧毁,而且随着时间的推移,电瓶稳压性能逐渐失去,电压逐渐升高,很容易烧毁用电设备。 因全波充电容易过充,就出现了半波充电,即只有一个二极管的整流器。因半波充电晚上电力不足,所以大灯只能由发电机交流直接供电,如早期的铃木A100 、本田CG125 等。半波充电也存在着问题:白天行驶时,电瓶仍然过充,于是就在照明线上接有泄流电阻,将电流通过电阻发热泄放掉,以免电瓶早期

电子镇流器的工作原理

第二章电子镇流器的工作原理 2.1荧光灯简介 2.1.1气体放电灯的基本原理 所谓气体放电灯是指带有能量的电子碰撞气体原子造成气体放电的现象,利用此原理所造成的气体放电灯有多种,使用较多的是辉光放电与弧光放电两种。不论哪一种,其结构大同小异,一般包括阳极、阴极,灯管外壳,灯管内填充的气体。对于交流灯来说则无阴极与阳极之分,两电极可以交替作为阴、阳极之用。对于气体放电灯来说,当加至灯管阴极与阳极之间的电场足够大,便会使灯管放电,此放电过程可以分为三个阶段: 第一阶段:在外加电场的作用下,自由电子被加速。 第二阶段:加速的自由电子与灯管内的气体原子碰撞,使得气体原子呈现激发状态。 第三阶段:受激发的气体,能量激发到更高的能阶并返回基态,所吸收的能量以辐射光的形式释放出来。若电子碰撞气体原子的能量足够大,则会使气体原子产生电离,电离所产生的电子又在电场中加速造成再次电离,使得自由电子成倍数增加,称此为汤生雪崩效应(Thomson Avalanche Effect)。所以,只要外加电场持续存在,则上述的放电过程就不断的重复,也就不断的放光。由于电流的主要成分为电子,为了使放电电流持续进行,阴极必须不断的提供自由电子,提供自由电子的主要方式分别叙述如下: (1)热电子发射:当阴极的温度越高,则越多的电子得到足够的能量从阴极中发射出来,此种发射方式是弧光放电灯主要的发射形式。而T5荧光灯就属于弧光放电灯。 (2)正离子轰击发射:当电极之间的电位差足够大时,使得正离子的速度足够快,此速度足够快的正离子撞击阴极便会轰击出自由电子。因此,电极材料必须能承受正离子的轰击,否则会使得电极的材料大量飞溅,减短电极的寿命并造成灯管早期发黑的现象。辉光放电灯便是以正离子轰击发射为主要发射形式。 (3)场致发射:若外加电场足够大,使得阴极获得足够的能量而直接发射电子,此现象称为场致发射。在气体放电灯中,有时灯管上的电压并不高,但如果在电极附近很小的范围内形成很强的空间电荷层,则可能在此区域造成很强

电子镇流器工作原理及分类

电子镇流器的三种启动类型 1、热启动(Pre-heated Start): 欧洲地区又叫做柔性启动(Soft Start)、暖性启动(Warm Start)、或者北美地区又叫可程式启动(Programmed Start),此种设计方式系于灯管启动时,先给予灯丝预热或者加温,其最大特色为不受灯管开关点灭次数的影响,减轻灯管黑化现象,可以延长灯管的寿命,适合开关频率高的使用场所,或者维修困难的场所,如果配合使用调光电子镇流器,更必须使用含有预热式启动功能的电子镇流器,换而言之,预热启动式的电子镇流器对灯管的保护提供最佳的保证。 2、快速启动(Rapid Start): 这是一类非常特别的启动方式,在美国市场上比较普遍,其特点是从启动至灯管点灯使用过程中,一直在灯丝上保留一很低的电压,因此其耗电量比预热或者瞬时启动型多出1.5W 至2W,一般以串联设计居多,这种启动方式较适合气候较冷的地区。 3、瞬时启动(Instant Start): 其特性是利用高压启动灯管(启动电压约介于800V至1200V之间),点灯非常容易,但易造成灯管黑化,灯丝断裂,灯管寿命降低,其最大竞争优势是价格较低,适合用在开关次数不频繁的场所(每天开关次数约小于5次者比较适用) 镇流器/电子镇流器的常用术语 1、镇流器(安定器)损失值(Ballast Loss) 这一数值代表电子镇流器(电子安定器)本身所消耗的能源转换成热能而非光能,此数值可由总输出功率减去全部灯管所消耗的功率,一般而言,传统40W双灯之镇流器约消耗22W,而电子镇流器约为7W。 2、光输出比值(Ballast Factor) 这一数值可以看出使用电子镇流器光输出的相对效果,其值是由测得电子镇流器的光输出值,除以标准镇流器点灯下的光输出值,所求得百分比,一般而言,此一数值愈高,代表光输出效果愈佳,对电子镇流器而言,不得小于0.9,但也有为专门强调高输出值而设计的

整流器工作原理

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 整流器工作原理 桥式整流器原理电路 桥式整流电路(如图5-5所示)是使用最多的一种整流电路。这种电路,只要增加两只二极管口连接成"桥"式结构,便具有全波整流电路的优点,而同时在一定程度上克服了它的缺点。 图5-5(a)为桥式整流电路图(b)为其简化画法 式整流电路的工作原理如下:e2为正半周时,对D1、D3和方向电压,Dl,D3导通;对D2、D4加反向电压,D2、D4截止。电路中构成e2、Dl、Rfz、D3通电回路,在Rfz,上形成上正下负的半波整洗电压,e2为负半周时,对D2、D4加正向电压,D2、D4导通;对D1、D3加反向电压,D1、D3截止。电路中构成e2、D2Rfz、D4通电回路,同样在Rfz上形成上正下负的另外

半波的整流电压。以上两种工作状态分别如图5-6(a)和(b)所示。 图5-6 桥式整流电路的工作原理示意图 如此重复下去,结果在Rfz,上便得到全波整流电压。其波形图和全波整流波形图是一样的。从图5-6中还不难看出,桥式电路中每只二极管承受的反向电压等于变压器次级电压的最大值,比全波整流电路小一半。 桥式整流电路的整流效率和直流输出与全波整流电路相同,变压器的利用率最高。现在常用的全桥整流,不用单独的四只二极管而用一只全桥,其中包括四只二极管,但是要标清符号,有交流符号的两端接变压器输出,+、-两端接入整流电路。 需要特别指出的是,二极管作为整流元件,要根据不同的整流方式和负载大小加以选择。如选择不当,则或者不能安全工作,甚至烧了管子;或者大材小用,造成浪费。表5-1所列参数可供选择二极管时参考。 另外,在高电压或大电流的情况下,如果手头没有承受高电压或整定大电滤的整流元件,可以把二极管串联或并联起来使用。

整流器的原理以及应用

整流器的原理以及应用 整流器的原理:在以大功率二极管或晶闸管为基础的两种基本类型的整流器中,电网的高压交流功率通过整流器变换为直流功率。提到未来(不久的或遥远的)的其它类型整流器:以不可控二极管前沿产品为基础的斩波器、斩波直流/直流变换器或电流源逆变型有源整流器。显然,这种最新型的整流器在技术上包含较多要开发的内容,但是它能显示出优点,例如它以非常小的谐波干扰和1的功率因数加载于电网。 西安中凯电力整流设备有限公司是一家专门从事工业用整流电源系统的设计、生产、销售、售后服务及整流系统的改造、设备备件的企业。提供各种电力电子装置、电力半导体器件、快速熔断器、整流变压器、电抗器和电力成套设备的科研、生产与服务。下面由西安中凯电力为大家讲述下整流器的应用。 整流器的主要应用是把交流电源转为直流电源。由于所有的电子设备都需要使用直流,但电力公司的供电是交流,因此除非使用电池,否则所有电子设备的电源供应器内部都少不了整流器。 至于把直流电源的电压进行转换则复杂得多。直流-直流转换的一种方法是首先将电源转换为交流(使用一种称为反用换流器的设备),然后使用变压器改变该交流电压,最后再整流回直流电源。 整流器还用在调幅(AM)无线电信号的检波。信号在检波前可能会先经增幅(把信号的振幅放大),如果未经增幅,则必须使用非常低电压降的二极管。使用整流器作解调时必须小心地搭配电容器和负载电阻。电容太小则高频成分传出过多,太大则将抑制讯号。 整流装置也用于提供电焊时所需固定极性的电压。这种电路的输出电流有时需要控制,此时会以可控硅(一种晶闸管)替换桥式整流中的二极管,并以相位控制触发的方式调整其电压输出。 晶闸管也用于各级铁路机车系统中,以实现牵引马达的微调。可关断晶闸管(GTO)则可用于从直流电源产生交流,例如在Eurostar 列车上使用此方式提供三相牵引马达所需的电源。

电子镇流器线路图资料

电子镇流器线路图大全1图片: 图片: 图片:

图片:

浅析新型逆变式电子镇流器工作原理与设计方法(组图) 发布日期:2005-2005-09-10文章来源:谢勇张纳敏照明工程师社区浏览次数:15387 摘要:介绍一种新型逆变式电子镇流器电路结构,该电子镇流器利用电感、电容和二极管构成的辅助电路实现输入电流波形的校正并使功率开关管工作在零电压开关状态,具有高功率因数、高工作效率、低波峰系数和电路结构简单的特点。分析了电路的工作原理,介绍了电路参数设计方法,给出了实验结果。 1 引言 由于电子镇流器具有较高的灯光效、高的功率因数、重量轻、无闪烁、无噪声和使用电压范围较宽(170~270V)等优点,在我国已得到广泛的应用。电子镇流器功率虽小,但使用量极大。因而其性能好坏直接影响到节电效果和对电网污染的程度。本文介绍的电子镇流器不但性能好,而且电路结构简单,成本低,具有较好的应用前景。 2 电路工作原理分析 2.1 电路结构 新型逆变式电子镇流器主电路如图1所示,图中CS为隔直电容,虚线所包围的部分为实现高功率因数而附加的电路,电感L为一个能量传输者传递着电流,同时也起着提高直流电压和电流波形校正的作用。两个电容Cx、CY为两个小型能量槽储存一部分能量,这两个能量槽在高频方式下完成充放电功能。两个二极管VDx、VDy引导电感电流进入电解电容C或负载回路。由于附加能量处理单元的作用,使整流二极管导通角增大到180°。电感L中的电流是一个高频振荡波形,其平均值电流跟随输入电压的波形,从而达到功率因数校正的目的。R1、C1、双向触发二极管VD4为触发启动电路。 2.2 工作过程 为了分析方便,输入电压和整流桥被等效成Urec(t)和VDr表示,其中Urec(t)=Uimㄧsinωtㄧ,Uim为输入电压峰值,ω为输入交流电压频率。灯负载回路等效成一个电流源电路,其电流表达式为io(t)=Iomsinωot(Iom为负载电流幅值,ωo为功率管开关频率)。由于逆变电路开关频率远比输入交流电压频率高,在分析过程的每一开关周期中可认为输入电压是近似不变的。又由于该逆变电路在输入电压峰值附近和输入电压瞬时值较低时的工作状态略有不同,分析时按两种情况讨论。对应的等效电路图及工作波形图分别如图2和图3所示。 第一种工作情况:这种工作情况对应于输入电压瞬时值较低时的工作状态。整个工作过程分五个阶段,此种情况下Ucx最大值低于电解电容C两端直流电压Udc,而且电感电流iL是断续的。

电子整流器工作原理详细分析

电子整流器工作原理详细分析 日光灯电子镇流器典型电路如图1所示、D1~D4和电容C2、C3等构成整流滤波电路,向镇流器提供直流用电;开关功率三极管BG1、BG2和双向触发二级管ST、变压器T等构成高频开关波(方波)电路,其中R1、C4和ST组成锯齿波发生器,用于启动振荡电路;方波振荡电路将直流电变为高频交流电,用于点燃日光灯,由于BG1、BG2工作在开关状态,故可获得很高效率。电感L2和C8、C9等构成串联谐振电路,其作用是起辉日光灯管和限制灯管工作电 流。 接通电源,220V交流电经整流滤波后,输出约300V直流电压,该直流电压经R1对C4进行充电。当C4两端充电电压超过ST的转折电压(约32V)时,ST导通,给BG2管基极提供一个窄电流脉冲使BG2首先导通。此时直流电源通过日光灯管灯丝、L2和T的绕组n1等形成回路,给C8、C9充电,由于脉冲变压器T的线圈n1对n2和反向线圈n3的感应耦合作用,n 2产生的感应电压将使BG1导通,而n3上的感应电压将使BG2截至。故C8、C9又通过L2、n 1和BG1形成放电回路。如此反复循环,BG1、BG2轮流导通,很快形成频率约25kHz的自动 激振荡。 电路起振后,C4经D8和GB1不停地放电,使ST不再产生触发电压,即锯齿发生器停止工作。同时,高频振荡信号很快使C8、C9和L2等构成的串联电路发生谐振,由于C8容量远大于C9容量,因此在C9两端产生足够高(约500-600V)的谐振电压,使灯管一次性启动 点亮。 灯一旦被点亮,LC串联电路则失谐,灯管两端电压将为100V左右,L2只起限流作用,C 8则起隔直作用,C9通过的极小电流对灯丝起辅助加热作用。 另外,当BG2由导通变为截至时,L2的自感电压与电源整流后的电压叠加在一起,会使B G2承受上千伏的高频电压,容易使三极管击穿,C7则可有效降低这个电压 在供电正常时,J2得电吸合,其动触点与“N/O(常开点)”接通,后备蓄电池正端与IC1的反相端相联。IC1(LM308)和D5、D6组成电压比较器,参考电压由D5、D6决定。这里用一个硅二极管(D5)和一个6.2V的稳压二极管(D6)组成6.9V的参考电压,对充电压电压进行监控。当I C1的2脚输入电压(既蓄电池电压)低于6.9V时,IC1的6脚输出高电平,T1导通,J1得电,其动触点与“N/O(常开点)”接通,电源电压通过R2对蓄电池充电,同时LED2点亮为充电指示。改变R2阻值可调整充电电流。随着充电时间增加,IC1的2脚电压逐渐增加,当电压大于参考电压6.9V时,IC1的6脚输出低电平,T1截止,J1失电,断开充电回路,实现自动充电保护功能。

相关文档